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Dynamic Positron Emission Tomography Data-Driven
Analysis Using Sparse Bayesian Learning

Jyh-Ying Peng, John A. D. Aston*, Roger N. Gunn, Cheng-Yuan Liou, and John Ashburner

Abstract—A method is presented for the analysis of dynamic
positron emission tomography (PET) data using sparse Bayesian
learning. Parameters are estimated in a compartmental frame-
work using an over-complete exponential basis set and sparse
Bayesian learning. The technique is applicable to analyses re-
quiring either a plasma or reference tissue input function and
produces estimates of the system’s macro-parameters and model
order. In addition, the Bayesian approach returns the posterior
distribution which allows for some characterisation of the error
component. The method is applied to the estimation of parametric
images of neuroreceptor radioligand studies.

Index Terms—Basis pursuit, compartmental models, DEPICT,
nonnegative least squares, time course analysis.

I. INTRODUCTION

D YNAMIC positron emission tomography (PET) is a
technique that can be used to study the function of the

brain in vivo. Reconstructed images contain measurements
of the concentration of the injected tracer over time. These
data can then be analyzed quantitatively using compartmental
models [1] where the compartments represent distinct pools
of tracer substance, for example tracer in the blood, free in
tissue, or bound to specific receptors. Compartmental analysis
assumes that the injected tracer causes negligible perturbation
in the process under study and that each compartment contains
a homogeneous tracer concentration (instantaneous mixing
within compartments). These models can have different inputs:
the blood/plasma input model can be used when blood/plasma
tracer input measurements are available in addition to the
dynamic PET image data. If a suitable reference tissue exists
within the image then a reference tissue input model may be
used.
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PET compartmental analysis can be divided into model-
driven methods and data-driven methods as defined in [2].
When using model-driven methods, a specific compartmental
model is selected a priori and the model parameters estimated
from the data. For data-driven methods, both the model order
and model parameters are obtained from the data, hence a
priori assumptions about the number of compartments and
the topology of particular compartmental structure are not
needed. While data driven methods may not have the power
of model-driven methods when the correct model is used,
data-driven methods do allow a more general approach to be
taken to data analysis. Bias that might be introduced by using
an incorrect model choice will not be present, and in addition
biological information may be obtained about the system
by examining the implied model determined from the data
driven methods. Thus, data-driven approaches allow for the
extension of biological questions from those about parameters
conditioned on the model, to those concerning the parameters
within a general class of models, without being restricted to one
particular model. A class of data-driven methods constructs the
modelling approach in terms of a set of basis functions. The
new algorithm presented in this paper falls into this category.

The differential equations that are derived from compart-
mental models can be solved using exponential functions.
Data-driven analysis proceeds using a predefined range of
possible exponential functions, together with the input function
(from blood/plasma or reference tissue), to obtain the weight
for each basis function. Since the number of basis functions
(in the hundreds) is often much larger than the number of
identifiable physiological compartments (usually one to three),
the correct weight vector should be sparse. Such analysis
can be applied voxel-by-voxel to obtain parametric images,
or applied to region of interest (ROI) data to obtain regional
parameter estimates. From the coefficients of these exponential
basis functions, it is straightforward to derive the relevant
macro-parameters such as volume of distribution or binding
potential [1].

Two data-driven methods, which have previously approached
kinetic modelling with exponential bases, are spectral analysis
[3] and basis pursuit denoising via DEPICT [2]. Spectral anal-
ysis is a data-driven method for blood/plasma input models. At
its core is the nonnegative least squares (NNLS) algorithm [4].
Spectral analysis finds a solution by noting that in the blood/
plasma input model weights are nonnegative for nearly all tracer
compartmental structures [5], and the nonnegativity constraint
in the NNLS algorithm is sufficient to ensure a sparse and unique
solution.

Data-driven estimation of parametric images based on com-
partmental theory (DEPICT) [2] solves the over-complete ex-
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ponential basis problem using a mixed norm objective function
containing the residual sum of squares (2-norm) and a penalty
term of the sum of the weights (1-norm) using basis pursuit de-
noizing [6]. The 1-norm is used as a surrogate for minimiza-
tion of the 0-norm for sparsity. Basis pursuit obtains the weight
vector by minimizing the mixed norm objective function, the
relative contribution of the two terms also being obtained auto-
matically from the data (via cross validation). Since basis pur-
suit does not need the nonnegativity constraint to ensure spar-
sity, it can be applied to both blood/plasma input models and
reference tissue models (the latter can have negative weights).

The purpose of this work is to investigate whether the appli-
cation of sparse Bayesian learning (SBL) [7], [8] techniques can
improve the estimation of parameters and facilitate the straight-
forward estimation of model errors. SBL assumes an error distri-
bution for the linear model, and also prior distributions for each
weight, and defines hyper-parameters that govern these distri-
butions. The hyper-parameters themselves also have prior dis-
tributions, and the analysis proceeds using Bayesian probability
theory. Sparsity in this case is achieved by using the concept
of automatic relevance determination (ARD) [9], where each
weight has its own governing hyper-parameter, leading to indi-
vidual distributions for each weight. Hence relevance of each
weight (basis) is then determined by its distribution, with irrel-
evant weights having distributions that peak at zero.

II. COMPARTMENTAL MODELS

The two main classes of compartmental model input used
in PET are reviewed: the blood/plasma input model and the
reference tissue input model. Since only data-driven methods
are considered here, the prime emphasis will be on the corre-
sponding linear regression problems implied by the model dif-
ferential equations.

A. Blood/Plasma Input Models

In this model, it is assumed that in addition to the dynamic
PET data, measurements of the blood/plasma input function are
also available, which is the concentration of tracer in blood/
plasma over time. From the dynamic PET data, the tissue time-
activity function can be obtained, which is the total concentra-
tion of tracer in tissue. For parametric imaging it is assumed
that the blood/plasma input is the same at all voxels, but that
each voxel can have a different number of compartments. Since
each voxel is analyzed independently, the model for one voxel
is presented, and extension to the whole image can be readily
inferred.

As given in [1], in the blood/plasma input compartmental
model, the tissue time-activity function is modelled as
the convolution of the blood/plasma input function with
the tissue response function (a weighted sum of exponen-
tial functions)

(1)

(2)

where is the number of compartments, and are the
weights and exponents respectively, and represents the con-
volution operator.

The tissue time-activity function is measured for
discrete (not necessarily equally spaced) time frames ending at
times . In this paper, the data for is measured
nearly continuously in time, although it is possible to extend the
methods to discretely measured data for . Reformulating
(1)

(3)

To solve this linear equation, is replaced by a large number
and the ’s take values in the range of all possible kinetics

(basis functions that are not present will have weight in
the solution), and define the discrete target (the measured data)
as

(4)

where . If the basis/design matrix is defined as

(5)

then the problem can be expressed as the linear equation

(6)

where each column of is a basis vector. Solving this equa-
tion yields the number of compartments (as the number of
nonzero weights) and the parameters and from which the
macro-parameters can be derived.

In blood/plasma input model PET analysis, the macro-param-
eter of interest is the total tissue volume of distribution

(7)

It is defined as the integral of the tissue response function, which
can be calculated from and .

B. Reference Tissue Input Models

A reference tissue input model [10], [1] may be used when a
suitable reference region exists. The input function is obtained
as the average time activity curve for the reference region. If
a large region is taken, the average time-activity curve can be
assumed to be essentially noise free.

is modelled as the convolution of the reference tissue
input function with the response function (in this
model a sum of exponentials plus an impulse at )

(8)
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(9)

where is the dirac delta function and is the equivalent
number of compartments with the addition of reference tissue
compartments. The same (6) can be obtained by discretizing
over the time frames and replacing as before, with one
extra basis function, , in . The linear problem for this
model differs from the blood/plasma input model in that it is
possible for the basis function weights to be negative [2].

It should be noted that (1) and (8) are very much related. The
reference region is used as a surrogate for the input function,
with the reference region being available directly from the data
rather than from a separate measurement. However, it is often
difficult to obtain a reference region, as it must be devoid of spe-
cific binding of the tracer [1], and thus plasma input methods are
preferable when plasma input function data is available. Also
if very complex structures are estimated from the data, while
macro parameter estimates will still be available, the exact com-
partmental configuration may not be identifiable.

The macro-parameter of interest for the reference tissue input
model is the binding potential for the tracer, defined as

(10)

the integral of the response function minus one. For a radioli-
gand, this is a function of the tissue free fraction, the receptor
availability and the equilibrium dissociation rate constant of the
radioligand. For the definition of the radioligand nomenclature
see [11].

III. DATA-DRIVEN METHODS

All the methods presented here try to solve the general linear
regression problem, (6), to obtain model order and basis func-
tion weights. The spectral analysis [3] method uses NNLS [4],
and the DEPICT [2] method uses basis pursuit denoizing [6]. A
new algorithm is proposed that uses SBL [7], [8], a statistical
learning algorithm based on Bayesian probability theory.

It can be noted that while all the methods find different ways
to constrain the solution to the overcomplete linear fit problem,
the same underlying basis set is used for each method. The
basis is selected over a suitable kinetic range, selected between
values from half-life decay (slowest exponential rate) to arterial
transfer (fastest exponential rate). In practice, the basis is usu-
ally brought in a little from the half-life decay to reduce bias,
thus the basis used for all methods in this paper was generated
using the range from to 0.01 sec , which is the default
range in the DEPICT software. However, it should be noted that
choice of the range can be problematic, and is one of the known
sources of bias in the output of NNLS. It has also recently been
shown that basis pursuit also is sensitive to the choice of basis
range [12], and thus a method with little bias would be of con-
siderable interest.

The following methods are all applied voxel-by-voxel to gen-
erate parametric images, thus each individual voxel is assumed
to be analyzed separately and their results independent. There
is no loss of generality since voxel based analysis is just ROI

analysis with a small ROI, namely a voxel. However, traditional
larger ROI analysis would proceed identically.

A. Spectral Analysis

Spectral analysis was the first data-driven method developed
for PET and can be used for plasma input function studies. Spec-
tral analysis formulates the linear problem as above and solves
the problem using the NNLS algorithm

(11)

Least squares with nonnegative constraints is used here be-
cause, by definition, the weights of basis functions in this model
must be positive, or zero if that basis function is not present.
The constraints have the effect of ensuring a sparse solution.
Since the time-activity curve and the basis vectors in the design
matrix are, in general, all positive (since they are all concen-
trations), the nonnegative constraint prevent the case where one
“negative” weighted basis almost cancels out another (spurious)
positive weighted basis.

It is not possible to study the accuracy of the weight
micro-parameter estimates obtained with NNLS directly, since
the asymptotic theoretical statistical properties of NNLS are
not well known. However, general bootstrap resampling proce-
dures can be applied to get an estimate of the possible variance
of weight solutions found conditional on the current PET
data [13], with no assumptions about the error distribution.
However, bootstrap procedures can require many repetitions.
For example, in the case of NNLS about a thousand bootstrap
samples are needed, which means the same algorithm has to
run on a thousand times more data to obtain an error estimate.

B. DEPICT

The DEPICT method can be used for both blood/plasma input
models and reference tissue input models. DEPICT formulates
the solution to the linear regression problem in terms of a mixed
norm objective function

(12)

The DEPICT algorithm includes a cross-validation procedure to
obtain the regularization parameter needed in the basis pursuit
objective function.

To enable estimation and to avoid dense weight vectors
resulting from fitting of over-complete basis/design matrices,
basis pursuit uses a weight vector 1-norm term in its objective
function, which is an approximation to model order (0-norm).
Both the error of fit and 1-norm are minimized together. A
value for the regularization parameter, which determines the
relative importance of the error of fit term and 1-norm term, is
estimated from the data by leave one out cross validation.

Like NNLS in spectral analysis, the error properties of esti-
mates obtained from basis pursuit are not well known, mainly
due to the addition of the 1-norm term in the objective function.
Bootstrap resampling procedures can be applied to DEPICT to
obtain the probability distribution [14], where about two hun-
dred samples are needed to obtain an accurate estimate.
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C. SBL

SBL, originally developed in the machine learning literature
[7], solves the supervised learning problem

(13)

where the basis function can be of any general form
parameterized by model parameters , and are assumed to be
independent samples from a zero-mean Gaussian noise process.
SBL outputs the posterior distribution of the model parameters

, from which an estimation of the model parameters
and the error component can be determined.

For application to PET data analysis, the basis functions are
chosen to be of the form

(14)

where is the basis/design matrix for the PET data. Treating
the targets and disturbances as vectors, we have

(15)

which is the linear equation corresponding to (6) with an ad-
ditive noise assumption. Using the tissue time-activity function

to obtain the target , and input function or
with exponential coefficients to obtain the basis/design ma-
trix , SBL is used to solve for the basis function weights .

SBL solves the linear (15) by assuming that both the distur-
bance and weights are Gaussian distributed with zero mean,
and incorporates two sets of hyper-parameters: as the inverse
variance of each and as the inverse variance of the noise.
Setting a separate variance for each weight parameter is known
as ARD [9], as irrelevant parameters will have , yielding
a zero-mean Gaussian distribution with zero variance, and hence

with probability one. So the weight priors are given by

for each basis function (16)

and noise distribution

for each time point (17)

The data distribution (given model parameters) is then Gaussian

(18)

where is just a matrix with on the diagonals and zeros else-
where. The prior distributions of the hyper-parameters and
(hyper-priors) are assumed to be log-uniform, which is the stan-
dard uninformative prior for scale parameters [15].

Since the noise in the tissue time-activity curve is actually
time varying and signal dependent, appropriate weighting is
needed for the target and corresponding entries in the basis
matrix before running SBL, so the noise at each time point
can be treated as coming from the same distribution. This is
implicitly assumed in both previous methods too, as they also
use signal dependent weighting. The true time course weighting

(noise structure) depends on many functions of both the data it-
self, and the reconstruction algorithm used, but many algorithms
have used frame dependent counts as weights successfully [3],
[16], [2] and this approximation will also be used here. This
weighting correction is implicitly assumed in subsequent dis-
cussion.

SBL uses a type-II maximum likelihood procedure [15]. The
posterior distribution of the weights (given data and hyper-pa-
rameters) can be calculated analytically given that both the data
and weight prior distributions are Gaussian

(19)

where can be computed from

(20)

(21)

The hyper-parameter posterior can usually be approximated by
a delta function [7]

(22)

where is the most probable value obtained after
the maximization procedure converges. The posterior
can be approximated by . The reason for
choosing type-II maximum likelihood instead of directly max-
imizing the parameter posterior is because the shape of the
parameter posterior distribution with the assumed priors is
extremely multimodal, for details see [9].

In the type-II maximum likelihood procedure, firstly an
appropriate initial value for the hyper-parameters and is
chosen (e.g., , where is
the number of basis functions). Incorrect a priori values for
the initial parameters cause slow down in convergence for the
algorithm. For the first step the weight parameter posterior
distribution is obtained by calculating and from the cur-
rent values of the hyper-parameters. For the second step the
hyper-parameter posterior

(23)

is maximized with respect to the hyper-parameters and by
differentiating

(24)

with respect to and , as the prior distributions of
the hyper-parameters and are assumed to be log-uniform,
as mentioned above. This yields the update equations

(25)

(26)

(27)

where is the number of time points and intuitively gives an
indication of the relevance of that basis function to the data such
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that it can be used in the calculation as a surrogate for degrees-
of–freedom (see [7, Appendix A] for derivation details and the
formal meaning of ). Incidentally it is exactly because ,
the normalizing factor for (23), cannot be calculated that we
have to use (22) to approximate the hyper-parameter posterior.

The two steps of calculating and updating are
iterated in turn until the hyper-parameters converge. ARD is
achieved procedurally by setting a large number as the threshold
for (e.g., ). Once an exceeds the threshold, it is log-
ically set to infinity and the corresponding basis discarded in
further iterations, effectively reducing the computation time of
subsequent iterations.

On the surface it appears that SBL uses twice as many param-
eters as non-Bayesian methods, but from the Bayesian perspec-
tive the hyper-parameters should be correctly integrated out at
the end and the correct parameter posterior obtained, thus over-
fitting should not be a concern [7]. The SBL method calculates
an approximation for , which is then used to calculate
the weight posterior

(28)

hence in this sense the hyper-parameters and are “inte-
grated out” of the final output, which consists of the posterior
distribution of the weights. The fact that SBL uses the mode
of to approximate the whole distribution makes the
integration less apparent. This also implies that only and
should be considered the output of SBL, and it is only through
the choice of approximating the hyper-parameter posterior by a
delta function that and converge to a single value.

The error estimate from the model is calculated from the pos-
terior distribution through the parameter . As will be discussed
later, this does not yield the same parameter errors as the boot-
strap which is used for error calculation in both NNLS and basis
pursuit, but does provide useful information as to the error as-
sociated with the SBL model assumptions and the data itself.

In the presented method, SBL is used in place of other solvers
for the linear regression problem. For the blood/plasma input
models where the weights are constrained to be nonnegative,
each negative element in of SBL is multiplied by a small
negative value (e.g., ) at every iteration to ensure the
chosen weight will be positive. This is equivalent to restarting
the iteration with positive weight mean, assuming that the “cor-
rect” fitting will involve only positive components. This step
is heuristic as convergence is no longer absolutely guaranteed
when restarting is used, as it might be possible to encounter
a loop of restarting and becoming negative. However, when
signal is present and given the nature of the priors to favour
sparsity, this is unlikely to happen. Indeed in the simulated and
real data analysis, convergence always occurred.

IV. DATA ANALYSIS

First the presented method is compared against previous
methods using 1-D data simulated from real input functions,
then analysis of real PET data is performed.

A. One-Dimensional Data Simulations

In this section simulated data derived from a real
blood/plasma input function is used to test the three methods.
First, noise level performance is assessed and then two sets of
1–D time activity curve (TAC) data are generated using the
one-tissue compartment model and two-tissue compartment
model respectively. Appropriate ranges of values (based on
actual analysis results of the corresponding PET data) for basis
function weights and exponential coefficients are used in
these simulations, to assess parameter dependent bias for the
methods. While of interest is the relative performances of the
data-driven methods, the true model is also fitted to the data
using nonlinear least squares (NLLS), using a Gauss-Newton
method, for comparison (see [17] for more details on NLLS).

1) Relative Noise Level Performance: First, the two-tissue
compartmental model plasma input and reference tissue input
simulations that were performed in [2] are carried out for the
three methods. Here, a different plasma input function is used
to generate the data, and a larger number of time frames (32) are
also generated than the corresponding analysis in [2]. This was
to allow direct comparison with the measured [ C]-diprenor-
phine data that is analyzed in Section IV-B. However, the
same parameter values are used. Thus, following [2], the rate
constants (mL plasma) sec (mL
tissue) sec
sec and sec for the target tissue
are used and (mL plasma) sec (mL
tissue) sec sec and

sec for the reference tissue. These correspond
to weight and exponential coefficient pairs of
sec sec and sec sec
for the two components in the plasma case, and there will be
three components in the reference tissue case. The volume of
distribution for the target region is 10 and the binding potential
for the target region, given the reference region, is 4. As in [2],
the noise added to the data was proportional to the true data
divided by the frame duration, with the proportionality varying
from 0.01 to 5.12, giving noise levels from lower than typical
ROI analysis to higher than voxel level analysis. We generated
2000 realizations for each noise level. In addition, the reference
tissue input function simulation from [2], with the same noise
levels and number of realizations was performed, and the
results from basis pursuit and the presented method compared.

In Figs. 1 and 2, graphs of bias and model order histograms
are presented. The bias graphs show the mean result over the
2000 realizations along with standard error bars. Percentage bias
can be derived by dividing by the true value. Histograms of
model order reflect the number of times a model with a partic-
ular order was chosen across the 2000 realizations. The values
of the color bar refer to the proportion falling into each box and
thus the histograms should be compared down each column with
separate columns (indicating various noise levels) being inde-
pendent.

As can be seen in Fig. 1, there is positive bias for the NNLS al-
gorithm at most noise levels, as is well known for the algorithm.
It is also seen that the basis pursuit algorithm has positive bias
at higher noise levels for this set of parameter values, although
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Fig. 1. Noise level simulations for two-tissue compartments using a plasma input function. (a) Volume of distribution � estimates and error bars. (b) Model
order histograms.

it has little bias for low noise levels. The findings are in agree-
ment with the findings in [2] although slightly different MSEs
are found (see Table I), due to the different input function and
also the different number of frames used. SBL does not contain
as much bias as the other methods are subject to at higher noise
levels, and the variance of the parameter estimates is slightly
lower for SBL than for basis pursuit. This results in large reduc-
tions in MSE for higher noise levels using SBL. Thus, while
both basis pursuit and SBL are essentially unbiased for ROI
analysis (lower noise levels), SBL should be preferred at higher
noise levels. In comparison to the fixed model estimated with
NLLS, SBL performed well and is not subject to the high vari-
ance that can affect NLLS at higher noise levels.

The model orders are more stable for SBL at higher noise
levels, although slightly less stable at very low noise levels,
given that noise is assumed to be in the system for SBL. The
model order estimate for NLLS is not given as it is fixed at the
true model. It was also found that the value of corresponded
well with the variance of the noise added to the data. However,
the value was slightly biased downwards, about 10% lower than
the true value.

In Fig. 2, there is a positive bias for basis pursuit when the
noise level starts to get higher, as was seen in the original paper
[2]. However, again this bias is less using the SBL algorithm.
In addition, larger variances result from using basis pursuit, and
as such the MSE (see Table II) is greatly reduced using SBL.
Again SBL gives good performance relative to NLLS without
the high variance that arises at higher noise levels.

2) Parameter Dependent Bias—One-Tissue Compartment
Model: In the next two subsections, the plasma input function

will be considered so a comparison can be made between all
three methods. While from the simulations in Section IV-A1, it
can be seen that only the presented method is essentially unbi-
ased for those parameter values, it is of interest to determine if
the amount of bias present is dependent on the parameter values
themselves. The noise level used in these simulations is compa-
rable to voxel noise levels in the real data (and corresponds to a
value of 1 on the noise simulation graphs in Section IV-A1).

For the first simulation, the tissue is assumed to contain only
one tissue compartment, and the corresponding linear model is
then set to have one component with varying from 0.0001
sec to 0.02 sec , and varying from 0.0008 sec to 0.012
sec . For each combination of and values 1000 realiza-
tions are generated, and the noise level is scaled to the data value
at each time frame and inversely scaled to the frame length,
specifically the noise variance at each time frame equals the
data value at that time point divided by the frame length, which
roughly corresponds to residuals observed in real data analysis.
A total number of 30 40 1000 time activity curves are thus
generated. Each TAC is then analyzed by all three methods using
the original input function, the analysis results (macro-parame-
ters) for each combination of and values are averaged over
1000 trials, and presented on a plane with and axis. The
data is also analyzed against NLLS using the true model.

Fig. 3(a) shows the absolute average bias divided by the
true value (absolute percentage bias) at each point for all
three methods, truncated at 3%. The NNLS algorithm has the
highest positive bias overall, whereas the basis pursuit method
has both positive and negative bias. The method of SBL has
the lowest absolute bias over the whole range. It can be seen
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Fig. 2. Noise level simulations for two-tissue compartments using a reference tissue input function. (a) Binding potential �� estimates and error bars. (b)
Model order histograms.

TABLE I
MSE FOR THE NOISE LEVEL SIMULATIONS USING A PLASMA INPUT FUNCTION. (NLLS USING THE TRUE MODEL IS INCLUDED FOR COMPARISON)

though that the bias is dependent on the parameters and is not the
same across the image for both NNLS and basis pursuit, and to
a lesser extent SBL. It is interesting to note that the performance
of NLLS and SBL are very similar in these examples, indicating
that SBL performs well even against a method where the true
model is known.

Fig. 3(b) shows the average model order obtained from each
method. SBL has the lowest and most uniform model order com-
pared to the other two methods, and is closest to model order 1,
which is the correct model order. Nonnegative least square has
the most spurious components, which is related to its high pos-
itive bias in those regions, whereas basis pursuit also slightly
overestimates the model order.

Table III gives summary statistics for the overall percentage
bias in the simulations. SBL can be seen to be the least bi-
ased both in terms of percentage and absolute percentage bias.
In addition NNLS only contains positive bias. These simula-
tion results show that SBL is overall the most stable method for
one-tissue compartment data, with generally smaller bias in
estimation and model orders that more accurately reflect the un-
derlying data, compared to NNLS and basis pursuit.

3) Parameter Dependent Bias—Two-Tissue Compartment
Model: A simulation for two-tissue compartment data, similar
to the one-tissue compartment simulation above, was also
carried out. Values of component weights sec and

sec are chosen, and the component exponential
coefficient for both are varied from 0.0008 sec to 0.012
sec , yielding 36 36 1000 TAC realizations. The noise
level is chosen to be the same as the one-tissue compartment
simulations. Averaged macro-parameter analysis results over
all trials are plotted on a plane with and axis.

Comparing the absolute bias relative to the true value
[Fig. 4(a)], truncated at 2%, SBL has the lowest bias overall.
NNLS has the most bias while basis pursuit is a little biased
in some parameter combinations, but overall is fairly unbiased.
The bias in all cases for NNLS is parameter dependent. Basis
pursuit is less parameter dependent while SBL is possibly even
less so. The overall mean (standard deviation) for the biases in
these simulations for the three methods are given in Table IV. It
shows that again SBL has the lowest overall absolute percentage
bias, but in this case, basis pursuit has both positive and nega-
tive bias resulting in low overall bias when averaged. This again
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TABLE II
MSE FOR THE NOISE LEVEL SIMULATIONS USING A REFERENCE TISSUE INPUT FUNCTION. (NLLS USING THE TRUE MODEL IS INCLUDED FOR COMPARISON)

Fig. 3. Comparison of � absolute %bias and model order for one-tissue compartmental simulations. The model orders are the averages over the 1000 trials at
each point. (a) � Absolute %Bias. (b) Model order.

TABLE III
OVERALL STATISTICS FOR ONE-TISSUE COMPARTMENTAL SIMULATIONS

illustrates the parameter dependency of the bias in basis pursuit.
As in the one-tissue compartmental case, there is a similar per-
formance for SBL and NLLS using the known model.

In the model order plot [Fig. 4(b)] the threshold between dis-
tinguishing the two components can be clearly seen for all three
methods. Overall NNLS and basis pursuit still tend to overesti-
mate the model order, whereas SBL has model order 1 on the
diagonal and model order 2 at the corner where the two compo-
nents are distinguishable.

In comparison to the noise level simulations given in Sec-
tion IV-A1, the exponential coefficients lie in the lower right
hand corner of the image. The bias in this region is consistent
with the results from the noise level simulations with the ratio
equal to 1.

In conclusion, simulation results show that SBL outperforms
both other data driven methods and compares favorably with
a model-driven method in terms of parameter estimation bias
and model order estimation. This is true for both one-tissue and
two-tissue compartment models, over a wide range of possible
micro-parameters.

B. [ C]-Diprenorphine Measured PET Data

Four dynamic scans from a measured [ C]-diprenorphine
study of normal subjects, for which an arterial input func-
tion was available, were analyzed. The subjects underwent
95-min dynamic [ C]-diprenorphine PET baseline scans on
the same camera. The subjects were injected with 185 MBq of
[ C]-diprenorphine. PET scans were acquired in 3D mode on
a Siemens/CTI ECAT EXACT3D PET camera, with a spatial
resolution after image reconstruction of approximately 5 mm.
Data were reconstructed using the reprojection algorithm [18]
with ramp and Colsher filters cutoff at Nyquist frequency.
Reconstructed voxel sizes were 2.096 mm 2.096 mm 2.43
mm. Acquisition was performed in listmode (event-by-event)
and scans were rebinned into 32 time frames of increasing
duration. Frame-by-frame movement correction was performed
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Fig. 4. Comparison of � absolute % bias and model orders for two-tissue compartmental simulations. The model orders are the averages over the 1000 trials at
each point. (a) � Absolute %Bias. (b) Model order.

TABLE IV
OVERALL STATISTICS FOR TWO-TISSUE COMPARTMENTAL SIMULATIONS

on the dynamic [ C]-diprenorphine PET images. The compu-
tational time of one scan for the three methods were, NNLS
36 min, basis pursuit 33 min and SBL 5 h 30 min on a single
processor Celeron PC.

As measured input data was available, all three methods were
compared, and in each case estimated. In the case of NNLS
and SBL, the voxels are all analyzed individually and indepen-
dently, while for basis pursuit the regularization parameter is
globally estimated, but then analysis proceeds independently at
each voxel. Results from one of the scans is shown in Fig. 5. The
distribution of is moderately similar for each of the methods,
although differences do occur. NNLS is higher than SBL, as
would be predicted from the simulations due to the positive bias
of NNLS. However, basis pursuit yields parameter values even
higher than NNLS, which can be most easily seen around the
basal ganglia.

Given the bias shown in the simulations this is surprising.
However, Fig. 6 immediately reveals the reason for this. The
model order of basis pursuit is almost uniformly greater than
either NNLS or SBL and as such higher values of result.
Problems with high bias for basis pursuit have been witnessed

in other studies as well [12]. The model order is higher in the
case of NNLS versus SBL, which would be expected from the
simulations, and SBL has model order consistently between one
and two. The results for all four of the scans analyzed were very
similar, although one showed slightly less positive bias in basis
pursuit than the other three (Fig. 5 is one of the scans with higher
bias for basis pursuit).

As further investigation of the bias, the dynamic data was spa-
tially smoothed, and the obtained from this data compared to
the spatially smoothed original results (data not shown). This
gives an indication of the bias in the methods, as the smoothed
dynamic should be less noisy and thus the estimation of be
less biased, as indicated by the simulation results. It is, how-
ever, only an approximation due to partial volume effects that
are present in the smoothed data. It was found that SBL outper-
formed NNLS in regions of high (and was essentially unbi-
ased) while NNLS was marginally better than SBL in regions
with very small . However, basis pursuit had much greater
bias than either of the other two methods especially in regions
of high signal. This was likely due to difficulty in finding a suit-
able unique regularization parameter.

C. [ C]-Raclopride Measured PET Data

The second PET example considered a dynamic [ C]-raclo-
pride study of the -receptor distribution in the normal brain.
The scanner of reference is the ECAT 953B PET camera (CTI/
Siemens, Knoxville, TN) with images reconstructed using the
3-D-RP FBP algorithm [19] with a ramp filter (transaxial res-
olution mm at the center of the FOV) and corrected using
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Fig. 5. [ C]-Diprenorphine: Image of � . The three methods produce moderately similar results, although higher values are associated with basis pursuit. (a)
NNLS. (b) Basis pursuit. (c) SBL.

measured attenuation. Images were 128 128 matrices with
2-mm pixel size. Arterial samples were not available, and a ref-
erence region placed on the cerebellum was used as input func-
tion. Again the analysis was performed voxel-by-voxel, inde-
pendently, except for the estimation of the global regularization
parameter for basis pursuit. The time for computation for the
two methods was 11 min for basis pursuit and 2 h 40 min for
SBL again on a single processor Celeron PC.

One standard method of analysis for [ C]-raclopride is to use
the simplified reference tissue model (SRTM) [10] which was
fitted using a basis function method [16]. Fig. 7 shows the output
for the SRTM, SBL, and basis pursuit. They can be seen to be
very similar, even though the SRTM method has the additional
assumption of a known model, which for the case of [ C]-raclo-
pride is widely accepted as a good model for the data. Thus
SBL is able to produce robust estimates of the parameters even
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Fig. 6. [ C]-Diprenorphine: Image of Model order. The model order is slightly larger in the NNLS and much higher in the basis pursuit method. (a) NNLS. (b)
Basis pursuit. (c) SBL.

without assuming the model. In fact Bland-Altman [20] plots of
SRTM and SBL show that the methods are in agreement, while
there is evidence of bias for the plot of basis pursuit against
the SRTM model (data not shown). Again the model selected
was slightly more sparse for SBL than for basis pursuit, but the
parameter images did not display as much difference as in the
[ C]-Diprenorphine case.

V. DISCUSSION

Through the use of SBL, a data-driven method of deter-
mining macro-parameters from PET data has been presented.
This method has been shown through simulation to be less
biased than previous methods, and also to generate models
which are generally sparser. Indeed, using simulations, it has
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Fig. 7. [ C]Raclopride: Comparison between known compartmental structure (SRTM) and the SBL technique. Images of binding potential. (a) SRTM. (b) Basis
pursuit. (c) SBL.

been shown that SBL predominantly determines the correct
model order from exponential bases at higher noise levels.
While the simulations were only carried out for a single scan
protocol, the results likely generalize to other protocols. Basis
pursuit produces less biased results than NNLS, but can still
be biased at higher noise levels. In addition the bias seems to
be parameter dependent for both NNLS and basis pursuit at
high noise levels. It is noticeable in the real analysis that while

the three methods give similar results in terms of estimation of
parameters, there are likely distinct biases in NNLS and basis
pursuit, and there are also model order differences present.
In addition, as seen in the simulations, the bias is parameter
dependent and so bias in real data will depend on the kinetics
involved. This is of importance when dealing with comparisons
across subjects as the bias may then not be constant between
the different scans.
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The bias results for basis pursuit deserve particular men-
tion. In the simulations for one and two-tissue compartmental
model structures, it was seen that both positive and negative
bias could be present, while in the real data with an available
input function, the bias was likely positive. After further in-
vestigation, it appears that basis pursuit is more sensitive to
the weighting of the data than either NNLS or SBL. Whether
inadequate weighting either directly affects the data fit itself, or
the estimation of the regularization parameter is unclear, but it
is likely a combination of both. However, as a single weighting
function is used for the entire image (this procedure was also
used for the simulations to allow accurate comparison) and
as this is unlikely to be correct for all points, it is difficult
to know exactly which points will be sensitive to what bias.
The resulting stability issues for basis pursuit, in the case of
reference tissue models as opposed to input function models,
have also been remarked upon in the recent paper by Cselenyi
et al. [12]. They suggest that the bias issues could also be
related to the suitable choice of basis range. However, it should
be stressed that the simulation results indicate that the bias is
only a problem at higher noise levels.

It could be argued that linear parametric data-driven methods
such as the Patlak [21] and Logan [22] plots could be used
instead of the kinetic based methods given here. Firstly, these
methods do not provide estimates of model order which can be
useful especially at lower noise levels or when examining many
voxels in a region. In addition, these methods require a user
determination of where linearity has been achieved, adding in
an additional source of error into the analysis. It has also been
shown that methods such as the Logan plot have noise depen-
dent bias [23], which is difficult to account for and thus makes
them unattractive when methods with less bias are available.

In addition to estimation of parameters, SBL allows some es-
timation of errors on the parameters. This is due to the poste-
rior distributions being found through the algorithm. Normally
the expectation of the distribution is used as the estimate for
the parameters, but use can also be made of the variance of
the distribution with knowledge of its exact nature. However,
care must be taken when using these estimates. The estimates of
the noise in the model (from the parameter) generally corre-
sponded well with the noise level in the simulations. However,
it was slightly biased downwards. Two reasons can be postu-
lated for this. First, in the simulations the simulated parameter
values were fixed. SBL assumes that they come from a distribu-
tion, thus a certain amount of variance will be assigned to them
as opposed to the noise variance estimate. However, it should
be recognized that while is estimated by the algorithm, the
parameter variance is really the output of the model, and this
incorporates both the variance of the weights and of the noise
together.

Another explanation for this is that the basis functions are
not actually fixed but are functions of parameters themselves.
In this case, there are actually more parameters to be estimated
than acknowledged which will bias the error variance estimate
downwards. However, given the model is unknown before the
start, it is not easy to know how much of an effect this will have.
It might be possible to incorporate the final number of bases
chosen into the estimate but this would require fundamental re-

vision of the SBL algorithm. In addition, if error estimates of the
parameters themselves are of interest, the implied nonlinearity
of the model due to the basis function parameters should be ac-
counted for. This could be approximated using methods such as
those in [24] and assuming that the model was fixed after it has
been chosen by the algorithm.

It should be emphasized that if parameter standard devia-
tion plots were obtained from normal SBL procedures, would
be fundamentally different from bootstrap estimates of param-
eter estimation errors obtained from bootstrapping basis pur-
suit or NNLS. The bootstrap errors are variances of the param-
eter estimate conditional on the observed data and its corre-
sponding model fit. For a particular analysis method, it is es-
sentially a property of the method conditional on the data. In
contrast, SBL parameter variance is a property of the parameter
itself, given all SBL model assumptions (Gaussian errors, prior
distributions, fixed basis, etc.). It does not say anything about
the SBL method itself, for that a bootstrap procedure for SBL
is needed, but rather how dispersed the parameter, treated as a
random variable, is distributed conditional on the data. By as-
suming Bayesian structure in the method, the output result is
exactly another Bayesian statement. While the validity of both
the bootstrap resampling procedure and the Bayesian structure
assumptions can be disputed, nevertheless they both provide in-
formation as to how the macro-parameter estimate would vary
given the same underlying model with different realizations of
noise.

SBL has well-known theoretical properties relating to its con-
vergence [25]. It has been shown to converge and also that any
local minima present are related to sparse solutions. In prac-
tice, SBL converged in all cases for both the simulated and real
data. However, in the case of voxels where there is little signal
present, convergence is often slow. SBL, due to the need to com-
pute a matrix inversion in every iteration, is generally slower
than either the NNLS algorithm or the basis pursuit algorithm
(but faster than the standard NLLS algorithm), but due to the
need to perform cross validation, basis pursuit is sometimes
slower than SBL when the input data is not sufficiently homo-
geneous (this is especially apparent in the simulations). Also a
new implementation of SBL using a faster algorithm has been
developed [26] and this might be adapted to increase the effi-
ciency of the calculations.

SBL does allow for model selection even in the cases where
the model underlying the data is complex. Using ARD allows
for complex data to be characterized with relative simplicity
from the basis by penalizing models towards sparsity. This fea-
ture is especially useful when the model is assumed to be com-
plex overall, but the data will not support such complexity due
to a small number of measurements, poor signal to noise ratio
or other such factors. This type of data is often the case when
dealing with biological systems, and certainly true in PET. In-
deed due to the Bayesian nature of the model, it maybe possible
to combine multiple subjects in the same large Bayesian model.
This could help alleviate many of the bias-related shortcomings
that result from the current procedures, whereby kinetic model-
ling is done independently for each subject and the results en-
tered into a statistical analysis to produce a -value. The use of
Bayes factors for model comparisons, along with the use of the
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evidence framework, given by ARD and the type II ML proce-
dure, for approximating the probabilities, is increasingly being
advocated for use within medical analyses [27], and the frame-
work proposed here could be extended to incorporate these ideas
for PET analysis.

In conclusion, SBL provides a Bayesian interpretation of
model selection in PET data-driven methodology, leading to all
its inherent advantages, and presents an interesting alternative
perspective to standard analysis methods.
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