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Abstract
We present an efficient rebinning algorithm for positron emission tomography (PET) systems with
panel detectors. The rebinning algorithm is derived in the planogram coordinate system which is
the native data format for PET systems with panel detectors and is the 3-D extension of the 2-D
linogram transform developed by Edholm. Theoretical error bounds and numerical results are
included.

Index Terms
Image reconstruction; medical imaging; positron emission tomography; X-ray transform

I. Introduction
We present a new rebinning algorithm for positron emission tomography (PET) systems
with parallel planar detectors. This work is motivated by a new positron emission
mammography/PET PEM-PET system developed at West Virginia University [1]. The
scanner is comprised of four planar detectors that form a box, with coincidences acquired
between opposite detector heads. The detector heads are capable of rotation in step-and-
shoot mode to acquire full tomographic data. The distance between detector panels is 26.4
cm. Each detector head is 206 mm wide by 151 mm high and composed of 94 × 70 LYSO
crystals. The LYSO crystals are 2 mm × 2 mm wide and 15 mm thick with a separation of
0.1 mm between the crystals. The system also incorporates a method for biopsy guidance.
Compression plates are used to stabilize the breast.

Fast reconstruction algorithms are required by this system for a few reasons. One motivation
for high quality, rapid image reconstruction is the detection of small lesions (less than 5
mm), so that if a lesion is detected an image-guided biopsy can be performed while the
patient remains on the imaging table. Since both breasts are scanned with a possible biopsy

Correspondence to: Kyle Champley, champlk@u.washington.edu.

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 13.

Published in final edited form as:
IEEE Trans Med Imaging. 2008 ; 27(7): 925–933. doi:10.1109/TMI.2008.923950.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



performed on either, the need for rapid image reconstruction is compounded. We also wish
to perform dynamic studies. In this case, many images must be reconstructed. This would be
a significant burden with fully 3-D image reconstruction algorithms and thus we set out to
develop an efficient rebinning algorithm.

The rebinning algorithm that we develop below determines (through observing relationships
in Fourier space) how to best reassign the oblique data to the direct data. After the rebinning
algorithm is applied, one can use any 2-D reconstruction algorithm (e.g., filtered
backprojection or OSEM) on the stack of linograms. We name our rebinning algorithm the
planogram frequency-distance rebinning algorithm (PFDR). The PFDR algorithm is derived
in the planogram coordinate system [2] which is the native data format for PET systems with
panel detectors and is the 3-D extension of the 2-D linogram transform developed by
Edholm [3].

An exact rebinning algorithm for PET systems with panel detectors has been developed by
Kao et al. [4]. It is similar to the rebinning algorithm that we develop here, but a detailed
comparison of the two methods is beyond the scope of this paper. The Kao rebinning
algorithm is an exact rebinning algorithm based on John’s Equation [5] which requires finite
difference methods to approximate derivatives in the data. Data derivatives are known to
often increase noise as observed with the exact rebinning algorithm based on John’s
equation for cylindrical scanners [6]. This noise amplification was noted by Kao as a
problem in their algorithm. In contrast, the PFDR algorithm is an approximate rebinning
algorithm that is more computationally efficient and involves numerically stable operations.
In addition, we derive theoretical error bounds in Theorem IV.4 that characterize the
distribution of the errors introduced by the PFDR algorithm. To the best of our knowledge,
this is the first time that such as error bound has been obtained for a rebinning algorithm in
PET. We test the PFDR algorithm with numerical experiments from both simulated and
measured data from our PEM-PET system. Noise and contrast metrics of images produced
with the PFDR algorithm are computed.

Other than rebinning algorithms, there are a few other reconstruction methods for PET
systems with planar detectors. Two alternatives to rebinning algorithms are the fully 3-D
OSEM algorithm [7] and the direct planogram method (a fully 3-D analytic reconstruction
method) developed by Brasse et al. [2].

II. Planogram Geometry and Transform
Consider two planar detectors given by

We will parameterize each line of response (LOR) by (u0, v0, u1, v1) ∈ ℝ4, where (u0, u1)
are the x- and z-co-ordinates, respectively, of the intersection of the LOR with the plane y =
0, v0 is the y–x slope of the LOR, and v1 is the y–z slope of the LOR. Thus, the LORs of
planogram data are given by

and the planogram transform is given by
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for (u0, v0, u1, v1) ∈ ℝ4. The function f: ℝ3→ℝ quantifies that distribution of the radiotracer
and g: ℝ4→ℝ models the PET coincidence data. Note that the planogram transform weighs

the raw data by . See Fig. 1 for a sketch of the detector orientation and the
parameterization of the LORs. The variables (v0, v1) are playing the role of the angular
orientation of the LOR, so g(·, v0, ·, v1) is a 2-D parallel beam projection. Planogram
coordinates can be expressed as linear transformations of the local detector coordinates by

(see Fig. 1).

The term planogram comes from the fact that the collection of lines intersecting a fixed
point lies on a 2-D plane in the 4-D data space. The planogram transform is the 3-D
extension of the linogram transform, which is given by

The linogram transform was first introduced by Edholm [3].

In the following, we will refer to the direct data as the data where v1 = 0 and the oblique
data as the data where v1 ≠ 0. Note that when v1 = 0, the planogram transform reduces to a
stack of linogram transforms (one for each u1). We will refer to the support of a function, h:
ℝn→ℝ, as the set

where the overline denotes the closure of the set. The indicator function of a set A will be
denoted by

Binary subscripts mark which variables for which we have taken the Fourier transform. For
example, if h ∈ L1(ℝ2), then the Fourier transform of h in the second variable is
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III. Domain and Support of the Planogram Transform
Since the planar detectors are of finite size, we cannot measure the planogram transform for
all values of (u0, v0, u1, v1) ∈ ℝ4. The measured domain is the direct product of two
diamond-shaped regions given by

Now suppose that

where a < min(L, R) and c < H, i.e., supp(f) is contained in a cylinder entirely within the
field of view of the PET system. The support of the planogram transform is contained in the
direct product of two butterfly-shaped regions given by

See Fig. 2 for a sketch of the sets Sg and Mm. After observing the intersection of Mm and
Sg, we see that there is no truncation of the projection (i.e., no truncation for the variables
(u0, u1)) for

In other words, for |v0| > vm0 or |v1| > vm1 there exists LORs that intersect the support of f
that are not measured by the PET system due to the finite size of the detectors. All of the
LORs corresponding to |v0| ≤ vm0 and |v1| ≤ vm1 have either been measured or do not
intersect the support of f and thus g = 0 for these LORs.

Now define

and the measured planogram by
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and the restricted planogram by

We will refer to g(u0, v0, u1, v1), where (u0, v0, u1, v1) ∈ ℝ4 as the ideal data.

The restricted data is defined so that the 1-D projections (1-D projection defined by gm0 (·,
v0, u1, v1)) are not truncated. This will provide an easier analysis in the development of our
rebinning algorithm. The restriction of |v1| ≤ vm1 is necessary for fully 3-D analytic
reconstruction algorithms [2], but is not necessary for rebinning algorithms and thus is not
mentioned in the remainder of our discussion.

IV. Rebinning Algorithms
A. Development

The acquired planogram data is a 4-D data set used to determine a 3-D object, thus there is
redundancy in the measurements (in the noise-free case). One could reconstruct the image
only using the direct data, ignoring the redundant, oblique data. However, one can improve
the signal-to-noise ratio of the data with the use of a rebinning algorithm. Compared to fully
3-D reconstruction algorithms, most rebinning algorithms speed up the reconstruction at the
cost of reduced accuracy. One rebinning technique is known as single slice rebinning
(SSRB) [8]. In the planogram coordinate system, the SSRB algorithm is given by

where the rebinned data gSSRB is a stack of linograms in our case.

The rebinning algorithm that we develop below determines (through observing relationships
in Fourier space) how to best reassign the oblique data to the direct data. After the rebinning
algorithm is applied, one can use any 2-D reconstruction algorithm (e.g., filtered
backprojection or OSEM) on the stack of linograms.

We now develop the rebinning formula that can be applied to the ideal, measured, or
restricted planogram data. In the case of ideal data, the rebinning formula is exact, otherwise
the rebinning formula is approximate and in this case we develop theoretical error bounds.
Below is a sequence of theorems that will establish these results (some proofs are in the
Appendix). Our rebinning algorithm is a direct result of Theorem IV.2, but since the Proof
of Theorem IV.2 relies on Theorem IV.1, we start with the restricted planogram. We will
return to Theorem IV.1 when developing our theoretical error bounds.

Theorem IV.1—Let f ∈ L2(ℝ3), supp(f) ⊆ Sf, and let gm0 be the restricted planogram as
defined above. Then for (u1, v1) ∈ MmH

(1)
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(2)

(3)

where the indicator function

is plotted for v1 = 0 and v1 ≠ 0 in Fig. 3.

The Proof of Theorem IV.1 is in the Appendix.

Theorem IV.2—Let f ∈ L2(ℝ3), supp(f) ⊆ Sf. Then we have that

Proof: From Theorem IV.1 we have that

(4)

From Theorem IV.2 we have that

(5)

(6)

Equation (6) is the key to the PFDR algorithm. We can use (6) to rebin the 4-D planogram
into a stack of linograms by

(7)
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(8)

(9)

The term v1max is an arbitrary limit placed on the maximum oblique angle for which we
wish to perform the rebinning. This quantity may be limited to avoid excessive parallax
errors or limited simply due to the detector geometry.

The rebinning algorithm can be performed in three steps. First we take the Fourier transform
of g(u0, v0, u1, v1) in the first two variables for each (u1, v1) ∈ MmH. Now let N(−V0/U0, z)
be the number of values of ĝ1100(U0, V0, z − v1V0/U0, v1) that we have computed (for
varying v1) for each fixed set of values (−V0/U0, z). Then we compute the normalized sum
over v1 by

which is the analog of (8) when v1 is discrete. Finally, we compute an inverse Fourier

transform of  in the first two variables for each z. This is our rebinned data.
Then we can reconstruct this rebinned data with any 2-D reconstruction algorithm for each
axial slice.

We would like to apply this rebinning formula to the measured or restricted planogram and
from (4) we see that this could very well be possible for the restricted planogram. From
Theorem IV.1 we have

where f* is the result of filtering f by

Note that this approximation becomes increasingly accurate as vm0→∞ or U0→∞.

The relations (3, 4, 6) were first shown by Defrise et al. in an unpublished note [9]. Also
note that from (4) with y = −V0/U0 we have that

(10)

This relationship is known as the frequency-distance relationship. It says that for a fixed (u1,
v1) a line through the center of the 2-D transform of the data with slope −y is related to the
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image f at a distance y from the center of the of coincidence detector panels. The rebinning
formula that we described above is a direct consequence of this relation and thus we
appropriately name our rebinning algorithm the planogram freqency-distance rebinning
(PFDR) algorithm.

We note that the frequency distance relationship is an exact relationship only in the
planogram/linogram coordinate system. For sinograms this is an approximate relationship.

Thus far we have provided an argument for the use of the PFDR rebinning algorithm to
restricted and ideal data. We wish to apply this rebinning algorithm to the practical case of
measured data. We start with the following theorem.

Theorem IV.3—Let f ∈ L2(ℝ3), supp(f) ⊆ Sf, and let gm be the measured planogram as
defined above. Then for (u1, v1) ∈ MmH

We omit the Proof of Theorem IV.3 because it simply follows from the same argument as
the Proof of Theorem IV.1. Note the similarity between the relationship given above and the
relationship between the restricted data and the image, given by

Using the same argument as we did above for the restricted data, one can see that

and thus it is reasonable to use the PFDR algorithm with the measured data also.
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B. Error Bounds
The next theorem establishes error bounds for the SSRB and PFDR rebinning algorithms
when applied to the restricted data.

Theorem IV.4—Let Ω= [−W,W]2 ⊆ ℝ2 and f ∈ L2(ℝ2) be such that supp(f) ⊆ Sf and for
any U0 ∈ ℝ

for some small ε > 0. Then the PFDR error can be characterized by

and the SSRB error can be characterized by

where

The Proof of Theorem IV.4 follows from Theorem IV.1 and the Cauchy-Schwarz inequality.

Note that |1E0 (Y,Z) − 1Ev1
 (Y,Z)| = 1E0ΔEv1

 (Y, Z), where

Also note that for x, y ∈ ℂ, ||x| − |y|| ≤ |x − y|, so

and thus
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Although the above does not prove than the PFDR error is less that the error for SSRB, it
does indicate that this is most likely the case. The above error bound also shows how the
accuracy of images reconstructed by application the SSRB algorithm depend on y, the
distance from the center of the field of view of the system, while the accuracy of images
reconstructed by application of the PFDR algorithm does not depend on this parameter. We
note that the variable y is indeed the distance from the center of the field of view as was
shown in Theorem IV.1.

Unfortunately, one does not have such a nice representation of the error with measured data
as we have with the restricted data. The above also establishes that the PFDR algorithm is
essentially exact for W ≤ (vm0|U0|)/(|v1| + 1) or v1 = 0 because

(11)

in this region.

In practice W is the Nyquist rate determined by the geometry of the system and thus is fixed.
But in such a situation, we reconstruct a bandlimited function, bandlimited with this rate.
Thus it is reasonable to assume that ε is extremely small if not equal to zero.

V. Numerical Results
In this section, we describe the numerical experiments for which we tested the PFDR
rebinning algorithm. We used both simulated data (analytic simulation implemented by ray
tracing) and data from our PEM-PET system whose specifications were described in the
introduction of this paper. In either case, the same software was used to reconstruct our
image. Detector response, attenuation, etc. were not incorporated in our simulation.

Three gantry positions were used (0°, 30°, 60°) to acquire full tomographic data for a field-
of-view of size 12×12×15.1 cm. Since our PEM-PET system has two sets of detectors in
coincidence, three gantry positions result in six sets of data. We have implemented three
different reconstruction algorithms for the purpose of comparison. The PFDR and SSRB
rebinning algorithms are implemented with a maximum copolar acceptance angle of 15°,
i.e., v1max = tan(15°). Depending on the axial slice, this entails the rebinning of up to 67
oblique planes to one direct plane. To illustrate the noise-reducing capabilities of the PFDR
and SSRB rebinning algorithms we also reconstructed images using only the direct data, i.e.,
the data where v1 = 0. After reducing our 4-D set of data (gm) into a 3-D set of data, all three
methods (PFDR, SSRB, and direct) use the same 2-D linogram filtered backprojection [10]
software applied to each axial slice of the data to reconstruct the image. All reconstructed
images displayed in this paper are comprised of a volume of 230×230×276 cubic voxels
with side length d/4 cm = 0.0525 cm, where d = 0.21 cm is the detector pixel sampling
distance. The units of the axes of the reconstructed images is measured in centimeters.

To illustrate that the PFDR algorithm reduces noise while introducing few distortions, we
tested the algorithm with noisy simulated data from a four-quadrant hot sphere phantom.
This phantom is composed of a warm background with wedge-shaped regions of hot spheres
(contrast between hot spheres and background is 5:1) of diameters equal to 0.32, 0.24, 0.16,
and 0.12 cm. Noisy data was produced by Poisson noise generation software applied to the
values obtained by the analytic line tracing calculations. A total of 1163 × 106 events were
simulated. The PFDR and SSRB algorithms use approximately 559 × 106 of these events
and the Direct reconstruction uses approximately 24 × 106 of these events. Reconstruction
images are shown in Figs. 4 and 5.
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The images reconstructed from the four-quadrant hot sphere phantom were evaluated by
measuring the contrast recovery coefficients and noise, see Fig. 6. The contrast recovery
coefficients were calculated for each of the diameters of the hot spheres. Noise was
calculated with reconstructions from twenty five independent realizations of the data.

As shown by Theorem IV.4, the accuracy of the SSRB algorithm degrades with increasing
distance from the center of the scanner while the accuracy of the PFDR algorithm does not
depend on this parameter. To support this claim, we simulated a phantom of 13 rod sources
stacked on top of each other in the axial direction. Each rod has a rectangular cross section
and is 5×0.42×0.42 cm in size. A gap of size 0.42 cm is placed between each rod. The
results of reconstructing this phantom with the PFDR and SSRB rebinning algorithms with
v1max = tan(15°)can be found in Fig. 7.

The PFDR and SSRB algorithms were also tested with measured data from our PEM-PET
system using a micro-Derenzo phantom (Fig. 8) and a phantom consisting of two trans-axial
line sources (Fig. 9). Scatter and attenuation correction algorithms were not implemented.
The micro-Derenzo phantom is comprised of vertically oriented cylinders of diameters equal
to 0.48, 0.40, 0.32, 0.24, 0.16, and 0.12 cm. A maximum polar acceptance angle of v1max =
tan(15°) was used in the reconstructions of both phantoms. The choice of v1max is due to
parallax considerations.

The reconstruction software was written in C++ and experiments were ran on a 2.3-GHz
PowerPC G5 processor. Images of voxel side length 0.21/2 cm (image is 115×115×138
voxels), 0.21/3 cm (image is 172×172×207 voxels), and 0.21/4 cm (image is 230×230×276
voxels) were reconstructed with the Direct, SSRB, and PFDR algorithms and their
computation times are given in Table I.

VI. Discussion and Conclusion
We have developed a rebinning algorithm that is extremely efficient and easy to implement
as it only requires FFT operations and a simple summation to reorganize the data into a 3-D
set. Initial numerical results show that the PFDR algorithm significantly reduces noise while
providing good resolution in the axial direction compared to a reconstruction that would
only incorporate the direct data. The quality of the axial resolution indicates that the
approximation made by the PFDR algorithm is acceptable for PET systems with panel
detectors.

Theorem IV.4 provides slice-by-slice error bounds for the PFDR and SSRB rebinning
algorithms. Not only do we see that the PFDR is more accurate, but we also see how the
accuracy of SSRB degrades as we move away from the center of the field of view. The
images in Figs. 7 and 9 support the conclusion of this theorem. Notice how the resolution of
images reconstructed with the SSRB algorithm degrade with increasing distance from the
center of the scanner while the resolution of the images reconstructed with the PFDR
remains constant.

The rebinning algorithm that we have developed here is similar to the Fourier rebinning
(FORE) algorithm, a rebinning algorithm developed by Defrise et al. [11] for PET systems
with detectors oriented on a cylinder. Our algorithm is similar in the fact that one finds the
relation between the direct and oblique data in Fourier space. The original motivation for
this work was to derive similar relationships derived in [11] for the planogram geometry.
The relationships between the direct and oblique Radon data in Fourier space can also be
derived by John’s equation [5].
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One could take the planogram data from all gantry rotations and interpolate the data into the
sinogram data format by placing a virtual cylinder inside the PEM-PET gantry. This
however would entail a loss of data near the axial extremities of the scanner because a
cylindrical geometry could never perfectly fit the four planar detector geometry. This
interpolation would also add to the reconstruction time and/or introduce errors. It is
unknown if the errors introduced by these interpolations would be significant compared to
the approximations used in the PFDR and FORE algorithms. From Theorem IV.4, we see
that the PFDR algorithm is more accurate than SSRB in all variables (frequencies), while the
Fourier rebinning (FORE) algorithm for sinogram data is less accurate than SSRB for small
frequencies. To remedy this inaccuracy, implementation of FORE requires the use of SSRB
for small frequencies. This gives an indication that the PFDR algorithm may be more
accurate than FORE for small frequencies. The PFDR algorithm has another computational
advantage over FORE for the planar imaging geometry other than that resulting from
interpolations. Data from different gantry positions can be rebinned independently with the
PFDR algorithm. Thus, with the PFDR algorithm, one could rebin the planogram data
acquired from one gantry position while data is being acquired at another gantry position.
Rebinning with FORE may only be done after full tomographic data is acquired and the data
has been interpolated into sinogram coordinates, i.e., only after the scan is complete. If
image reconstruction is done with the PFDR algorithm followed by linogram filtered
backprojection [10], then each set of data from a different gantry position can be rebinned,
filtered (ramp filter), and backprojected independently. With this scheme reconstructions
from our PEM-PET system can be reduced by a factor of three if one processor is used and
reduced by a factor of six if two processors are used. The computation times presented in
Table I do not take this into account.

As stated in the introduction, the motivation for this work was to develop a fast
reconstruction algorithm that is suitable for an imaging system capable of detecting lesions
of less than 0.5 cm. The PFDR algorithm is certainly fast and computation times are
comparable to the SSRB algorithm. As indicated by the reconstructions of the four-quadrant
hot sphere phantom (Figs. 4 and 5), the spheres of diameter 0.16 cm and larger are resolved.
This resolution is remarkable considering that the detector pixel sampling distance is 0.21
cm. The contrast recovery coefficients of the PFDR algorithm are essentially equal to the
reconstructions that use only direct data (which is an exact reconstruction algorithm), while
providing superior noise qualities. As indicated in Fig. 6, the noise in the images
reconstructed from the SSRB and PFDR algorithms across multiple realizations of the data
is similar. This is due to the fact that the noise level is primarily driven by the amount of
data used in the reconstruction algorithms which is nearly the equal for the SSRB and PFDR
algorithms. However, from Figs. 4 and 5 we see that the noise correlations within an image
is significantly greater in the images reconstructed with SSRB as compared with the PFDR
algorithm.

The PFDR rebinning algorithm shares many similarities with the work by Kao et al. [4]. An
in-depth comparison between the PFDR algorithm and Kao’s method is beyond the scope of
this paper. In Kao’s paper, they perform numerical experiments on simulated data with a
stack of uniform disks. These images show significant artifacts even in the case of noise-free
data. Here we have shown that the PFDR algorithm produces images of high fidelity with
both noisey simulated data and data collected from the PEM-PET system. Much of the
algorithm analysis presented in Kao’s work was done in the (rebinned) data space. Our work
is the first to present noise and contrast image metrics for a re-binning method applied to
panel detectors.

In this work, we have only considered using the filtered back-projection algorithm to
perform our 2-D reconstructions of the rebinned data. As is often done with rebinning
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algorithms such as FORE and SSRB, one could use 2-D OSEM to reconstruct each axial
slice of the image. If attenuation effects are to be included in the reconstruction, one must
reweight the data by the attenuation factors after the rebinning is performed to
approximately preserve the Poisson nature of the data, as done in [12].
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Appendix

Proof
(Theorem IV.1) Note that gm0 = g on Mm0. Then for (u1, v1) ∈ MmH

Now we have established (3). For (2) we have
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Fig. 1.
Diagram representing the detectors of the PEM-PET system (left). Parameterization of the
LORs in the planogram coordinate system (right).
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Fig. 2.
The cross product of the two shaded regions represents the support of g, denoted by Sg (left).
The cross product of the two shaded regions represents the measured domain of the
planogram transform, denoted by Mm (right). Here, the boundaries of Sg have been drawn to
illustrate the meaning of the quantities vm0 and vm1.
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Fig. 3.
Frequency response of the band-pass filter from Theorem IV.1. The filter is supported on the
set {(U0, Y, Z): |Y − v1Z| ≤ vm0|U0|}. Filter shape for direct data, i.e., for v1 = 0 (left). Filter
shape for oblique data, i.e., for v1 ≠ 0 (right).
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Fig. 4.
Axial slices of reconstructions of noisey four-quadrant hot sphere phantom. Exact phantom
(top left). Reconstruction of phantom where we have only used direct data, i.e., the data such
that v1 = 0 (top right). Reconstruction from PFDR with v1max = tan(15°) (bottom left).
Reconstruction from SSRB with v1max = tan(15°) (bottom right).

Champley et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Coronal slices of reconstructions of noisey four-quadrant hot sphere phantom. Exact
phantom (top left). Reconstruction of phantom where we have only used direct data, i.e., the
data such that v1 = 0 (top right). Reconstruction from PFDR with v1max = tan(15°) (bottom
left). Reconstruction from SSRB with v1max = tan(15°) (bottom right).

Champley et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Image metrics for four-quadrant hot sphere phantom. Noise in images reconstructed from
direct, SSRB, and PFDR algorithms (left). The noise was computed from regions of interest
of the background of sizes 0.32, 0.24, 0.16, and 0.12 cm over 20 independent realizations.
Contrast recovery coefficients (CRC) for direct, SSRB, and PFDR algorithms for hot
spheres (center). Contrast recovery coefficients divided by noise calculations (right).
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Fig. 7.
Coronal slices of reconstructions of simulated rod source phantom. The rods are of size 5 cm
× 0.42 cm × 0.42 cm. Reconstruction using the PFDR algorithm with v1max = tan(15°) (left).
Reconstruction using the SSRB algorithm with v1max = tan(15°) (right).
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Fig. 8.
Axial and coronal slices of the reconstruction of the micro-Derenzo Phantom from the PEM-
PET system. Here, we have used the PFDR algorithm with v1max = tan(15°).
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Fig. 9.
Axial and coronal slices of data obtained from the PEM-PET system with a line-source
phantom. Axial slice of PFDR reconstruction (top left). Coronal slice of PFDR
reconstruction (top right). Axial slice of SSRB reconstruction (bottom left). Coronal slice of
SSRB reconstruction (bottom right). For all reconstructions we have used v1 max = tan(15°).

Champley et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Champley et al. Page 24

TABLE I

Image Reconstruction Computation Times (sec). Detector Sampling Distance Is Equal to d = 0.21 cm

Reconstruction Algorithm Voxel Side Length d/2 cm Voxel Side Length d/3 cm Voxel Side Length d/4 cm

Direct 65 144 376

SSRB 216 407 714

PFDR 251 416 718
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