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Abstract
Current techniques for segmenting macular optical coherence tomography (OCT) images have
been 2-D in nature. Furthermore, commercially available OCT systems have only focused on
segmenting a single layer of the retina, even though each intraretinal layer may be affected
differently by disease. We report an automated approach for segmenting (anisotropic) 3-D macular
OCT scans into five layers. Each macular OCT dataset consisted of six linear radial scans centered
at the fovea. The six surfaces defining the five layers were identified on each 3-D composite
image by transforming the segmentation task into that of finding a minimum-cost closed set in a
geometric graph constructed from edge/regional information and a priori determined surface
smoothness and interaction constraints. The method was applied to the macular OCT scans of 12
patients (24 3-D composite image datasets) with unilateral anterior ischemic optic neuropathy
(AION). Using the average of three experts’ tracings as a reference standard resulted in an overall
mean unsigned border positioning error of 6.1 ± 2.9 µm, a result comparable to the interobserver
variability (6.9 ± 3.3 µm). Our quantitative analysis of the automated segmentation results from
AION subject data revealed that the inner retinal layer thickness for the affected eye was 24.1 µm
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(21%) smaller on average than for the unaffected eye (P < 0.001), supporting the need for
segmenting the layers separately.

Index Terms
Ophthalmology; optical coherence tomography; retina; segmentation; 3-D graph search

I. INTRODUCTION
Optical coherence tomography, first described in 1991 by Huang et al. [1], is increasingly
being used in the diagnosis and management of a variety of ocular diseases such as
glaucoma, diabetic macular edema, and age-related macular degeneration. As illustrated in
Fig. 1, retinal time-domain optical coherence tomography (OCT) images are commonly
acquired in the macular region or the peripapillary region (region near the optic disk). One
common scanning protocol for acquiring scans in the macular region involves the
acquisition of six linear radial scans in a “spoke pattern” centered at the fovea (e.g., the fast
macular protocol on the commercially available Stratus OCT-3, Carl Zeiss Meditec, Inc.,
Dublin, CA). When acquiring scans surrounding the optic disk, it is common to use a
number of circular scans. An example set of six radial images from a macular OCT series
can be found in Fig. 2. Note that these protocols are reflective of the time-domain systems in
current clinical usage; however, newer generation systems working in the Fourier-domain
have just been released to the market, allowing the acquisition of substantially more data.

In the presence of ocular disease, each intraretinal layer may be affected differently.
However, even though multiple layers of the retina are identifiable on OCT images,
commercially available systems currently only segment and provide thickness measurements
for one layer of the retina (i.e., the total retina on macular scans and the retinal nerve fiber
layer on peripapillary scans). Although we do not know the proprietary details of the
segmentation approach used, it is most likely a 2-D approach. Similarly, to the best of our
knowledge, the reported approaches by others [2]–[9] for the segmentation of OCT images
have been 2-D in nature (i.e., if multiple 2-D slices are available in a particular scanning
sequence they are segmented independently). Thus, applying these approaches to the
segmentation of 3-D images (e.g., by repeatedly applying the 2-D approach to each slice)
does not take advantage of any 3-D contextual information. In fact, many of the reported
approaches do not even take full advantage of 2-D contextual information as they first rely
on finding intensity peaks from each preprocessed A-scan (column) separately [2]–[5], [7],
[8]. While variations to each of the prior approaches exist for the segmentation of retinal
boundaries, a typical approach proceeds as follows.

• Preprocess the image (e.g., with a median filter as in [2]–[5] or anisotropic
diffusion filter as in [7]).

• Perform a 1-D peak detection algorithm on each A-scan (column) of the processed
image to find points on each border of interest.

• For only a few approaches process the points further to correct for possible
discontinuities in the 1-D border detection approaches (e.g., use Markov modeling
to connect smaller segments to the largest continuous segment followed by spline-
fit as in [2] and [3]).

Other prior approaches include the use of 2-D dynamic programming by Baroni et al. [9]
and manually initialized deformable models for the segmentation of fluid-filled regions by
Cabrera Fernández [6].
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The prior segmentation approaches by others have attempted to find different numbers of
boundaries of the retina. In particular, Koozekanani et al. [2], [3] found two, Baroni et al. [9]
found three, Shahidi et al. found four [8], Ishikawa et al. [4], [5] found five, and Cabrera
Fernández et al. found seven [7]. Because many authors reported limited quantitative
validation (e.g., subjective failure rates), it is difficult to assess the robustness of the
approaches. Nevertheless, it is clear that better segmentation approaches are needed for
greater accuracy.

The specific purpose of this work was to develop an automated 3-D segmentation approach
for the division of the retina on macular optical coherence tomography (OCT) scans into
five layers and compare its performance on OCT scans of patients with unilateral anterior
ischemic optic neuropathy to that of human experts. An early attempt at 3-D segmentation of
the total retina (two bounding surfaces only) on peripapillary scans was presented in [10]. A
preliminary version of this work outlining the method and giving a limited validation
appeared in [11]. The work reported here provides additional studies in a set of subjects with
unilateral anterior ischemic optic neuropathy (AION) and consists of three parts: 1)
description of the method, 2) its validation in OCT slices for which manual tracings were
available, and 3) employment of this validated segmentation approach to assess layer-
specific differences in unilateral AION disease.

Fig. 3(b) shows an example of the six surfaces (labeled 1–6) we desired to find on each 3-D
composite image. Based on histology and higher-resolution OCT images (from research
scanners) published in the literature [12], we assumed the surfaces roughly had the
following anatomical correspondence: surface 1 corresponded to the vitreo-retinal interface
(VRI), surface 2 corresponded to the separation of the retinal nerve fiber layer (NFL) above
from the ganglion cell layer (GCL) below, surface 3 corresponded to the separation of the
inner plexiform layer (IPL) above from the inner nuclear layer (INL) below, surface 4
corresponded to separation of the outer plexiform layer (OPL) above from the outer nuclear
layer (ONL) below, surface 5 corresponded to the junction between the photoreceptor inner
and outer segments (IS/OS), and surface 6 corresponded to the separation of the
photoreceptor outer segment (OS) from the retinal pigment epithelium (RPE). The
corresponding five layers [labeled A–E in Fig. 3(b)] may well be associated with the
following anatomical layers: A) NFL, B) GCL+IPL, C) INL+OPL, D) ONL+IS, E) OS. It is
important to note that the actual segmentation was performed in 3-D. For example, Fig. 3(c)
shows a 3-D visualization of surfaces 1, 3, and 4.

Our method found each surface (or set of surfaces) by transforming the 3-D segmentation
problem into finding a minimum-cost closed set in a corresponding vertex-weighted
geometric graph constructed from edge/regional image information and a priori surface
smoothness and interaction constraints. This type of transformation for general 3-D multiple
surface segmentation problems has been previously reported by Li et al. [13]. It extends a
previously reported method for detecting a single optimal surface by Wu and Chen [14] by
adding additional edges to model interactions between surfaces. One important advantage of
using this surface detection method [13], [14] when compared to other previously reported
3-D based surface segmentation methods [15]–[17] is that it guarantees to find the three-
dimensionally optimal solution with respect to the cost function.

II. METHODS
A. Overview

As was indicated in Fig. 1(a)–(c) and Fig. 2, one macular OCT image series (using the fast
macular Stratus OCT-3 protocol) consisted of six radial linear cross-sectional scans centered
at the fovea. For each eye, repeated series were acquired (six, if possible), so that up to six
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raw scans existed at each angular location. The overall goal of the segmentation method was
to determine the six surfaces defining the five retinal layers on a composite 3-D image
derived from the repeated raw scans. There were two stages to the overall approach: 1) the
creation of a composite 3-D macular image from the raw scans and 2) the determination of
the six surfaces on the 3-D composite image. An overview of the data flow in the
segmentation process can be found in Fig. 4.

1) Overview of Stage I: Creation of Each 3-D Composite Image—The 3-D
composite image associated with each eye was created in two major steps. In the first step
(Fig. 5), raw scans for a particular angular location (e.g., all the vertical scans) were
individually aligned so that that boundary 6 (the retinal pigment epithelium) appeared
approximately straight in the aligned image. The purpose of the alignment was twofold: to
aid in the final 3-D segmentation and to allow for better visualization. The alignment was
based on the assumption that the retinal pigment epithelium was undisturbed, and that the
retinal profile underwent a low spatial-frequency distortion caused by the curvature of the
eye and patient motion during acquisition. Each scan was aligned by first finding boundaries
1, 5, and 6 simultaneously using an optimal graph search approach similar to that used
during stage II (described in more detail in later sections), but performed in 2-D. To ensure
smoothness, a least-squares spline was fit to boundary 6. The columns were then translated
so that this spline would be a straight line in the aligned image.

In the second step of this stage, each aligned image was registered to the first image in its
location set by exhaustively searching for the best whole-pixel translation (according to the
mutual information registration metric [18], but based on our experiments, other metrics
such as normalized cross correlation would work as well) to align each of its columns to the
corresponding target image column. The position of boundary 6 determined during the first
step was used as a guide to determine the range of translations to be tested for each column.
The registered images in each location set were averaged together to form the composite
image for that particular angular location. The purpose of averaging the images was to
obtain a representative scan of that location that had a higher signal-to-noise ratio than any
of the raw scans. An example of an individual scan and the corresponding 2-D composite
scan is shown in Fig. 6. The set of 2-D composite images (one for each angular location)
formed the 3-D composite image used in the next stage.

2) Overview of Stage II: Segmentation of Each 3-D Composite Image—In the
second stage, the six surfaces were found on the 3-D composite image. As a preprocessing
step, a speckle-reducing anisotropic diffusion method [19] was applied (Fig. 7). Surfaces 1,
5, and 6 were then simultaneously found using an optimal graph search approach
(transforming the segmentation problem into finding a minimum-cost closed set in a
geometric 3-D graph [13]). After the determination of surfaces 1, 5, and 6, the remaining
surfaces were found sequentially (allowing the utilization of other surface locations in the
cost functions) in the following order: surface 4, surface 3, and finally, surface 2. The graph
search approach guaranteed that the optimal feasible (satisfied smoothness and interaction
constraints) surfaces would be found with respect to the designed cost functions.

As the focus of this paper is on this 3-D segmentation stage, more details of the graph search
approach and cost functions used will be described in the next sections. In particular,
Section II-B will provide a more precise definition of the surface segmentation problem (the
optimization problem to solve), Section II-C will briefly describe how the graph search was
used to solve such an optimization problem, and Section II-D will describe the used cost
functions in more detail.
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B. Surface Segmentation Problem
The nature of the macular scans [Fig. 1(a)–(c)] made it natural to use a discrete cylindrical
coordinate system when working with each 3-D composite image (the z axis coincided with
the intersection of the six 2-D composite scans). The coordinates of each voxel could thus be
described with the triple (r, θ, z), where r reflected the distance of the voxel from the z axis,
θ reflected the angular location of the voxel (0, 30, 60, 90, 120, 150, 180, 210, 240, 270,
300, or 330), and z reflected the row of the voxel in the corresponding 2-D image. Note that
with this coordinate system, voxels in the left half of each 2-D image had a different θ value
than those in the right half (for example, for the vertical 2-D scan shown in red in Fig. 1(a)–
(c), voxels in the right half of the image had a θ value of 90 while those in the left half had θ
value of 270).

Each surface could be defined with a function f(r, θ), mapping (r, θ) pairs to z values.
Furthermore, a surface was considered feasible if it satisfied certain smoothness and surface
interaction constraints. In particular, a surface was considered feasible if:

• θ smoothness constraint: |f(r,θ + 30) − f(r,θ)| was less than or equal to Δθ for all
(r,θ), θ ≤ 300;

• circularity constraint: |f(r, θ) – f(r, 330)| was less than or equal to Δθ for all r;

• r smoothness constraint: |f(r + 1,θ) – f(r,θ)| was less than or equal to Δr for all (r,θ);

• constraint to connect the left and right halves of the 2-D scans together: |f(0,θ) –
f(0,θ + 180)| was less than or equal to Δr for (r,θ) pairs in which 0 ≤ θ ≤ 150;

• surface interaction constraint for each pair of surfaces f1 and f2: The distance
between the two surfaces was at least δl voxels and at most δu voxels [i.e., δl ≤
f1(r,θ) – f2(r,θ) ≤ δu for all (r,θ)].

In essence, the smoothness constraints required the z values of neighboring surface points
(see Fig. 8) on a particular surface to be within a specified range (given by ±Δθ or ±Δr) and
the surface interaction constraints required the surface z values for a particular surface to be
within a specified range of the corresponding points on the other surfaces.

Given a cost function c(r, θ, z)that measures the unlikeliness that each voxel belongs on a
particular surface, the cost of a surface was defined as the summation of all voxel costs on
the surface. Similarly, the cost of a set of surfaces was defined as summation of all the
surface costs in the set. Consequently, the goal of the single surface detection problem (as
used for finding each of surfaces 4, 3, and 2 sequentially) was to find the feasible surface
with the lowest cost. The goal of the multiple surface detection problem (as used for finding
surfaces 1, 5, and 6 simultaneously) was to find the set of feasible surfaces with the lowest
cost.

C. Solving the Surface Segmentation Problem Using 3-D Graph Search
Each single and multiple surface problem was transformed into that of finding a minimum-
cost (nonempty) closed set in a corresponding vertex-weighted geometric graph as described
in [13] and [14]. Briefly, this involved first constructing a 3-D geometric graph for each
surface to be found (each node in this graph corresponded to a voxel in the original image).
Edges were added to the graph to enforce the feasibility constraints by ensuring that there
was a one-to-one correspondence between each feasible surface and a closed set in the
graph. Note that a closed set was a subset of the vertices of the graph such that no directed
edges left the set. In the case of detecting multiple surfaces simultaneously, additional edges
were added between the 3-D geometric graphs to model the surface interaction constraints.
These edges ensured that there was a one-to-one correspondence between each feasible
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surface set and a closed set in the overall graph. Next, the vertex costs were assigned so that
the cost of each surface set corresponded to the cost of the corresponding closed set (within
a constant). This ensured that the global minimum-cost surface set could be found by finding
the minimum-cost closed set in this graph. The minimum-cost closed set was then found by
computing a minimum s-t cut in a closely related graph.

D. Cost Functions
Clearly the defined cost functions were an important component in determining the desired
surfaces. In this work, the cost function for each surface was constructed from a linear
combination of base “intuitive” cost function terms so as to satisfy expected properties of
the surface. For example, it was expected that the first surface could be characterized by a
combination of the following two properties: 1) the presence of an edge with a dark-to-light
transition and 2) the lack of bright voxels above the surface. Correspondingly, the cost
function for the first surface was defined as a normalized combination of a signed edge
image (to favor the dark-to-light transition) and a cumulative image (created starting at the
top of the image so as to discourage the detection of surfaces for which there were many
bright pixels above the surface).

The cost functions for all of the surfaces followed the general pattern of having an edge-
based term (to either favor a dark-tolight transition or a light-to-dark transition) and one or
more regional- based terms (such as the cumulative image used in the cost function for
surface 1). Depending on the prior knowledge of the locations of other surfaces, regional
information used in this work generally was acquired from the locations illustrated in Fig. 9.
Because both surrounding surfaces of each surface were often not known (surface 2 was the
only surface for which the two surrounding surfaces were known) before designing its cost
function, it was common to only use regional information from a limited region surrounding
the surface [e.g., as in Fig. 9(a)–(b)].

More specifically, each of the surface cost functions was constructed from a normalized
combination of a set of the following terms.

• Signed edge term (using Sobel kernel) favoring a dark-tolight transition (used for
surfaces 1, 5, and 6).

• Signed edge term (using Sobel kernel) favoring a light-todark transition (used for
surfaces 2, 3, and 4).

• Summation of pixel intensities in a limited region [Fig. 9(a)] above each potential
surface voxel to encourage favoring surfaces with dark regions above surface (used
for surfaces 5 and 6).

• Negated summation of pixel intensities in a limited region [Fig. 9(a)] above each
potential surface voxel to encourage favoring surfaces with bright regions above
surface (used for surface 2).

• Summation of pixel intensities in a limited region [Fig. 9(b)] below each potential
surface voxel to encourage favoring surfaces with dark regions below (used for
surface 3).

• Negated summation of pixel intensities in a limited region [Fig. 9(b)] below each
potential surface voxel to encourage favoring surfaces with bright regions below
(used for surfaces 5 and 6).

• Cumulative term acquired starting at the top of the image and accumulating
downwards [Fig. 9(c)] to discourage finding surfaces with bright pixels above the
surface (used for surface 1).
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• Cumulative term acquired starting from the known boundary below and
accumulating upwards [Fig. 9(d)] to discourage finding surfaces with bright pixels
below the surface (used for surface 4).

• Chan-Vese [20] inspired term that attempted to minimize the intensity variances
surrounding the surface. A priori estimated means of the two regions separated by
the surface were computed from a region surrounding each known surface (as
shown in Fig. 9(e) with the lighter intensity region indicated by a dashed line).
Because the best use of this term required the prior location of the two surrounding
surfaces, only surface 2 used this term.

III. EXPERIMENTAL METHODS
The algorithm was tested on fast macular scans from 12 subjects with unilateral chronic
anterior ischemic optic neuropathy. Note that the unilateral nature of the disease meant that
we had data for 24 eyes, 12 of which were affected by optic neuropathy, 12 of which were
not. In almost all cases (21/24 eyes), six repeated series were used to create the 3-D
composite image for each eye. (Each of the remaining three eyes used fewer than six
repeated series to create the 3-D composite image.) The resulting 24 3-D composite images
were each comprised of six composite 2-D scans (144 total composite 2-D scans) of size 128
× 1024 pixels. The corresponding reported physical width and height of the 2-D raw scans
(and thus also the composite scans) was 6 mm × 2 mm, resulting in a pixel size of
approximately 50 µm (horizontally) × 2 µm (vertically).

Based on our prior expectations of maximum change in surface shape, the smoothness
constraints (in pixels) for use in the graph search were set as follows: Δr = 10 for surface 1,
Δr= 5 for surface 2, Δr = 2 for surface 3, Δr = 5 for surface 4, Δr = 5 for surface 5, Δr =5 for
surface 6, and Δθ = 10 for all surfaces. The surface interaction constraints used in the
simultaneous segmentation of surfaces 1, 5, and 6 were set as follows: δl = 50/δu = 800 for
the allowed minimum/maximum distances between surfaces 1 and 5 and δl = 10/δu = 50 for
the allowed minimum/maximum distances between surfaces 5 and 6. Surface interaction
constraints for the sequential detection of each interior surface were incorporated by
modifying the cost functions to have a high value outside a feasible region defined based on
the location of the previously determined surfaces (e.g., the previously determined surfaces
for the detection of surface 4 were surfaces 1 and 5).

For validation purposes, one raw scan from each eye was independently traced by three
human experts with the average of the three tracings being used as the reference standard.
Experts were masked as to the clinical status of the scanned eye. The experts did not attempt
to trace borders that they did not consider visible. The algorithmic result on the
corresponding composite 2-D scan was converted into the coordinate system of the raw scan
(undoing alignment/registration) and the mean signed and unsigned border positioning
errors for each border were computed (the middle 30 pixels were not included to exclude the
fovea because not all layers were visible in this region). The signed and unsigned border
positioning errors were also computed between the observers in the following ways:

• observer 1 versus observer 2;

• observer 2 versus observer 3;

• observer 1 versus observer 3;

• observer 1 versus the average of observers 2 and 3;

• observer 2 versus the average of observers 1 and 3;

• observer 3 versus the average of observers 1 and 2.
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Standard deviations (over images) were also computed.

In addition, in order to compute an example clinically meaningful measure, the mean
thickness (again, not including the middle 30 pixels to exclude the fovea) of layers defined
from the first border to each of the remaining borders was computed using the algorithm and
each observer. The average thicknesses computed from the three observers was used as a
reference standard and the absolute differences between the algorithmic thicknesses and
reference thicknesses were computed. Furthermore, absolute thickness differences were
computed between the observers using the same cases as was done for computing the border
positioning errors.

Finally, thickness differences between the affected and unaffected eyes were computed
based on the 3-D algorithmic results. In particular, we computed the thickness of the inner
retinal layer assumed to contain the ganglion cells (from surface 1 to surface 3 in Fig. 3:
NFL+GCL+IPL) and the thickness of the remaining outer layers (from surface 3 to surface 6
in Fig. 3). We also computed the total retinal thickness. (In all cases, the middle 30 pixels
were not included to exclude the fovea.) Paired t-tests were used to test for significant
thickness differences (p values < 0.05 were considered significant).

IV. RESULTS
Our approach successfully segmented all six intraretinal surfaces in the set of 24 AION OCT
images (there were no segmentation failures). While local inaccuracies existed and their
quantitative assessment is given below, they were minor and no manual editing of the
segmentation results was performed prior to the subsequent quantitative analysis. Table I
and Table II summarize the computed border position errors. Table III and Fig. 10
summarize the thickness difference results. The border positioning errors and thickness
differences between the algorithm and the reference standard were very similar to those
computed between the observers. For example, the algorithm’s overall unsigned border
positioning error was 6.1 ± 2.9 µm, while the overall observer error averaged 6.9 ± 3.3 µm
(ranging from 5.5 ± 3.0 µm for observer 2 versus the average of observers 1 and 3 to 8.2 ±
3.8 µm for observer 1 versus observer 3). In terms of thickness differences, the smallest
errors for both the algorithm and the observers were for the layer defined by surfaces 1 and 5
(2.2 ± 1.8 µm for the algorithm and an average of 2.2 ± 1.9 µm for the observers), while the
largest errors for the algorithm were for the layer defined by surfaces 1 and 6 (6.2 ± 3.9 µm).
(However, note that surface six was also the surface displaying the largest bias based on the
signed border positioning errors.) The largest thickness differences between the observers
were for the layer defined by surfaces 1 and 4 (overall average error of 8.2 ± 4.5 µm, which
is larger than the algorithm’s error of 4.8 ± 4.7 µm for this layer). Three example results
(reflecting the best case, the median case, and the worst case according to the overall
unsigned border positioning error) are shown in Fig. 11. The mean intraretinal layer
segmentation time (after alignment/registration) was 4.1 ± 0.9 min (using a Windows XP
workstation with a 3.2-GHz Intel Xeon CPU).

A summary of the resulting thickness values for the affected and unaffected eyes of each
subject are shown in Fig. 12. The inner retinal layer thickness for the affected eye was 24.1
µm smaller on average than for the unaffected eye (or about 21%, statistically significant, p
< 0.001), while the outer retinal layer thickness was 3.7 µm larger on average (not
statistically significant, p = 0.14). The total retinal thickness for the affected eye was 20.4
µm smaller on average than for the unaffected eye (or about 7%, statistically significant, p <
0.001). Thus, it was the thickness of the inner layers that showed the largest difference
between the affected and unaffected eyes.
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V. DISCUSSION AND CONCLUSION
As indicated by the reported quantitative results, our method performed very well overall,
based on two different and independent error metrics. First, comparing the performance of
the algorithm to the border tracings by human experts showed that the method’s mean
unsigned border error of 6.1 ± 2.9 µm compared favorably to that between all three paired
comparisons of human observers (ranging between 7.0 ± 3.5 and 8.2 ± 3.8 µm), and
performed better than two out of three comparisons of a single human expert against the two
others (6.5 ± 3.2, 5.5 ± 3.0, and 7.0 ± 3.0 µm). Second, the estimates of the inner retinal
thickness by our method in these patients with unilateral AION was able to correctly
identify the affected eye in 12/12 cases. In addition, as also suggested by others, our results
further support the clinical utility of segmenting individual retinal layers in the macula. This
is in contrast to the standard clinical practice of only determining the total retinal thickness.
In the studied AION patients, the total retinal thickness showed an average difference of
20.4 µm (7%). Notably, the thickness of the inner retina showed a larger average difference
of 24.1 µm (21%) and may be a better assessment factor for early disease detection and
quantification.

It is also important to recognize some of the limitations of using this approach. One example
is that in some cases, a specific surface may not visible on the images (e.g., surface 2 in
some of our data). In such cases, the multisurface detection algorithm attempts to find all
surfaces even if some of them are not present. A human observer, on the other hand, is able
to indicate that the surface is not visible. Of course, having an undetectable surface does not
necessarily imply that the corresponding layer is missing, as the ophthalmic community is
still in the process of learning the precise anatomical correspondence of the visible OCT
layers. In addition, the images may be too noisy to resolve the layer boundaries in some
cases. Nevertheless, in such cases of an undetectable surface, it would be important for a
human to review the segmentation data and not use the identified surface corresponding to
missing image features.

While others have presented automated 2-D approaches for the segmentation of intraretinal
layers in OCT images [4], [7], to our knowledge, this the first reported approach for the
automated 3-D segmentation of intraretinal layers. Having such a 3-D approach that takes
advantage of 3-D contextual information will be especially important when segmenting
more densely acquired OCT images, such as those resulting from truly 3-D spectral-domain
systems. For example, when three-dimensionally segmenting sets of 2-D macular time-
domain OCT images, the smoothness constraint between radial slices (i.e., Δθ) must be set
to a large enough value to allow for the increasing distances between slices as you move
towards the periphery. Because these increasing distances do not occur in spectral-domain
OCT images, the interslice constraints can serve a more prominent role. In applying this
approach to spectral-domain images, one can also more appropriately use 3-D methods for
computing cost functions. For example, in this work, we applied a 2-D spectral reducing
anisotropic diffusion filter as a preprocessing step because of the sparse sampling of the
data. When segmenting spectral-domain OCT images, a 3-D speckle-reducing anisotropic
diffusion (SRAD) approach could more appropriately be applied.

In addition, this work reports performance and application of a novel method in which a 3-D
graph search approach was employed to find so many interrelated layers for the first time.
Theoretically, the graph search would be capable of simultaneously finding as many layers
as desired. However, when identifying multiple layers simultaneously, the cost functions for
all surfaces must be specified upfront. We have found that a divide-and-conquer approach is
preferred, whereby some cost functions are designed by allowing the use of previously
found surfaces. Thus our strategy led to first simultaneously finding three “easier” surfaces,
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followed by sequentially finding the remaining surfaces in an effort to best utilize a priori
information in the cost function design. We have also recently explored extending the graph
search approach itself so that true regional information can be included in the cost functions,
thus allowing the simultaneous detection of surfaces optimized over regional layer
properties [21]. This extension has also allowed us to automatically detect an additional
layer (seven surfaces instead of six).We have also explored extending the graph search to
allow for varying constraints [22], so that more precise surface feasibility constraints
(learned from examples) can be specified.

In any optimization approach, the cost function design influences the method’s behavior and
performance. While the best way to design cost functions is to perform its optimization in an
independent set of images for which ground truth is available, cost functions in this work
were designed experimentally and intuitively based on a visual inspection of OCT images
from a variety of diseases. As such, the cost functions were not AION-specific and were not
optimized in any way with respect to the AION datasets analyzed in this work.

In summary, we have presented an automated 3-D approach for the segmentation of
intraretinal layers on macular OCT images, thus enabling the separate computation of
individual layer properties, such as thickness. Having separate layer properties will be
especially important in cases in which a retinal disease affects the individual layers
differently (e.g., one layer may thin due to neuron loss, while another one may thicken due
to the presence of fluid). In addition, it will aid in clinical studies designed to pinpoint which
layers are actually altered during disease processes.
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Fig 1.
Schematic view of the macular (a–c) and circular (d–f) scanning protocols on time-domain
OCT systems. (a) Scans in macular series on the right eye. (N = nasal; T = temporal.) (b)
Scans in macular series on the left eye. (c) Visualization of acquired macular scans for one
eye in 3-D. Each color represents a different 2-D scan. (d) Scans in peripapillary circular
series on the right eye. (e) Scans in peripapillary circular series on the left eye. (f)
Visualization of acquired circular scans for one eye in 3-D.
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Fig 2.
Example six raw scans in a macular scan series. Note that the colored borders correspond to
those found in Fig. 1(a)–(c)
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Fig 3.
Example composite image with labeled intralayer segmentation and 3-D visualization of
three surfaces (top and bottom of images have been cropped to aid in visualization). (a)
Composite image. (b) Six surfaces (labeled 1–6) and five corresponding intralayers (labeled
A–E). The anatomical correspondence is our current presumption based on histology and
example images from higher-resolution research OCT scanners [12]: (A) NFL (nerve fiber
layer), (B) GCL + IPL (ganglion cell layer and inner plexiform layer), (C) INL+OPL (inner
nuclear layer and outer plexiform layer), (D) ONL + IS (outer nuclear layer and
photoreceptor inner segments), (E) OS (photoreceptor outer segments). (c) Example 3-D
visualization of surfaces 1, 3, and 4.
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Fig 4.
Overview of segmentation steps for the data associated with one eye. First, each individual
scan was aligned so that the RPE (boundary 6) was approximately horizontal in the image.
Second, images from each location were registered and averaged to form a composite image.
Finally, the intralayer surfaces were determined using a 3-D graph-search approach. All
steps were performed automatically.
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Fig 5.
Individual scan alignment (top and bottom of images have been cropped to aid in
visualization).
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Fig 6.
Comparison between an individual scan and a 2-D composite scan (top and bottom of
images have been cropped to aid in visualization). (a) Individual scan. (b) Composite scan.
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Fig 7.
Example of using a SRAD method as a preprocessing step (top and bottom of images have
been cropped to aid in visualization). (a) Composite scan. (b) Composite scan after
application of the SRAD method.
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Fig 8.
Schematic view of neighbor relationship for 3-D macular OCT segmentation. The edges
indicate neighborhood connectivity of one “column” of z values at a (r; θ) pair to another.
For each edge shown, smoothness constraints existed between corresponding voxel z
columns for the two (r; θ) pairs connected to the edge. (a) Base graph using cylindrical
coordinates. (b) Base graph using unwrapped coordinate system (as might be stored in the
computer).
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Fig 9.
Some examples for where the image information comes from in a regional cost function
term. Dark borders represent surrounding surfaces (may not be known) of the surface for
which the cost function term is being defined. In cases for which an upper or lower
surrounding surface does not exist (i.e., the first and last surfaces), the corresponding dark
border represents the boundary of the image.
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Fig 10.
Bar chart of mean thickness differences (error bars reflect standard deviations).
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Fig 11.
Three example results reflecting the best, median, and worst performances according to the
overall unsigned border positioning error. (a) Best case composite image. (b) Best case
composite image with segmented borders. (c) Best case composite image with average
manual tracing. (d) Median case composite image. (e) Median case composite image with
segmented borders. (f) Median case composite image with average manual tracing. (g)
Worst case composite image. (h) Worst case composite image with segmented borders. (i)
Worst case composite image with average manual tracing.
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Fig 12.
Summary of thickness values based on our intraretinal layer segmentation approach. The
thickness differences between the affected and unaffected eyes were largest on average for
the inner retinal layer. Inner layer used in (a) contains the retinal ganglion cells and axons.
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