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Abstract
The diagnosis of cardiac disease using dual-isotope myocardial perfusion SPECT (MPS) is based
on the defect status in both stress and rest images, and can be modeled as a three-class task of
classifying patients as having no, reversible, or fixed perfusion defects. Simultaneous acquisition
protocols for dual-isotope MPS imaging have gained much interest due to their advantages
including perfect registration of the 201Tl and 99mTc images in space and time, increased patient
comfort, and higher clinical throughput. As a result of simultaneous acquisition, however,
crosstalk contamination, where photons emitted by one isotope contribute to the image of the other
isotope, degrades image quality. Minimizing the crosstalk is important in obtaining the best
possible image quality. One way to minimize the crosstalk is to optimize the injected activity of
the two isotopes by considering the three-class nature of the diagnostic problem. To effectively do
so, we have previously developed a three-class receiver operating characteristic (ROC) analysis
methodology that extends and unifies the decision theoretic, linear discriminant analysis, and
psychophysical foundations of binary ROC analysis in a three-class paradigm. In this work, we
applied the proposed three-class ROC methodology to the assessment of the image quality of
simultaneous dual-isotope MPS imaging techniques and the determination of the optimal injected
activity combination. In addition to this application, the rapid development of diagnostic imaging
techniques has produced an increasing number of clinical diagnostic tasks that involve not only
disease detection, but also disease characterization and are thus multiclass tasks. This paper
provides a practical example of the application of the proposed three-class ROC analysis
methodology to medical problems.
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Dual-Isotope myocardial perfusion SPECT (MPS) imaging using rest 201Tl chloride and
stress 99mTc sestamibi images has become one of the most commonly used clinical
protocols for MPS imaging. The diagnosis of cardiac disease using dual-isotope MPS is
based on the defect status in both the stress and rest images. It can be modeled as a three-
class task of classifying patients as having no, fixed, or reversible defects. Simultaneous
acquisition protocols for dual-isotope MPS imaging have gained much interest due to their
advantages including perfect registration of the 201Tl and 99mTc images in space and time,
increased patient comfort, and higher clinical throughput [1]–[4]. However crosstalk, due to
interactions in the body and imaging system as well as physical overlap of photopeaks with
acquisition energy windows, degrades the quality of both the rest and stress images.

Effectively evaluating a three-class diagnostic task requires three-class receiver operating
characteristic (ROC) analysis. To assess multiclass diagnostic performance, multiclass ROC
analysis methods are required. However, development of these methods has remained an
open theoretical problem since the introduction of binary ROC analysis in the 1950s [5], [6].
Motivated by the diagnostic problem of dual-isotope MPS imaging, we have previously
developed a three-class ROC analysis methodology that extends and unifies the decision
theoretic, linear discriminant analysis, and psychophysical foundations of binary ROC
analysis in a three-class paradigm [7]–[10].

The goal of this work was to assess the image quality of dual-isotope MPS images and to
perform a preliminary search for the optimal injected activity combination with respect to
the performance of a three-class diagnostic task.

I. BACKGROUND
A. Dual-Isotope MPS Imaging

In a typical dual-isotope MPS study, two sets of scans will be acquired, a stress scan and a
rest scan. In a typical dual-isotope protocol, a rest study is performed using 201Tl labeled
radiopharmaceutical when the patient is at rest, and thus the resulting image characterizes
the myocardial perfusion at rest.

Next, a stress study is performed using a 99mTc labeled agent such as 99mTc sestamibi
injected after physical exercise or administration of a pharmacological stressor. The
resulting stress image thus characterizes the status of myocardial perfusion under stress.

The stress and rest images are used together to identify three types of tissue: infracted tissue
where there is a defect, referred to as a fixed defect, in both the rest and stress images;
ischemic tissue, having a compromised blood supply under stress, where there is a defect in
the stress, but not the rest, image; normal tissue where there is no defect in either image.
Note that knowledge of the defect status in one of the two images is only sufficient to make
a partial diagnosis. The defect status of the rest image can be used to separate between a
fixed defect and normal or a reversible defect; the defect status of the stress image can be
used to separate between normal and a fixed or reversible defect. As a result, optimizing the
performance on the three-class diagnostic task cannot be performed simply by separately
optimizing the stress and rest images.

The diagnosis of cardiac disease using dual-isotope MPS requires both abnormality
detection and characterization. To be specific, patients are sorted into one of the three
categories as shown in Table I. In principle, the designation of class numbers is for the
purpose of applying ROC analysis; i.e., any class can be assigned as Class 1, 2 or 3.
However, in this particular problem, the class number assignments in Table I are more
natural, as explained in the discussion of [7].
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In one implementation of a simultaneous dual-isotope MPS acquisition protocol, the 201Tl
labeled radiopharmaceutical is injected at rest and, subsequently, 99mTc sestamibi is injected
at peak stress. Different from the separate acquisition protocol, in which the rest scan is
performed before the stress injection, both rest scan and stress scans are performed
simultaneously immediately after the injection of 99mTc under stress conditions. The stress
(99mTc) and rest (201Tl) images are simultaneously acquired in energy windows positioned
over the 201Tl and 99mTc photopeak energy windows. Photons emitted from 99mTc decays
can be scattered in the body or result in Pb x-ray fluorescence in the collimator and be
detected in the 201Tl photopeak energy window. In addition, 135 keV and 167 keV 201Tl
photons can be detected in the 99mTc energy window. The combination of these two
phenomena is referred to as crosstalk, and results in degradation of the two projection
images.

Due to radiation dose concerns, the injected Tl activity is usually in the range of 2–4 mCi.
On the other hand, the injected 99mTc activity is typically in the range of 20–30 mCi
depending on the size of the patient. This injected activity level was selected for dual-
isotope MPS using sequential acquisition protocols to minimize the amount of crosstalk
from the 135 and 167 keV 201Tl photons. For these injected activity levels, the crosstalk
from Tl into the Tc energy window is so low that contamination of the rest image is a
relatively minor problem. However, rigorous optimization of the injected activities is
desirable to provide the best quality images for use in diagnosis.

As mentioned, one potential way to minimize the effects of crosstalk is to optimize the
injected activity of the two isotopes. Since the quality of the 201Tl is typically poor, we will
assume that it is kept fixed at the maximum allowed by radiation dose considerations.
However, even with only a single parameter to vary, we are still faced with a dilemma:
decreasing the 99mTc injected activity (IA) decreases the crosstalk contamination of the rest
(201Tl) image, and thus improves the rest (201Tl) image quality at the expense of noisier
stress (99mTc) images; similarly, increasing the 99mTc injected activity improves the stress
(99mTc) image quality at the expenses of more crosstalk contamination on the rest (201Tl)
images. In other words, we must consider the effect of injected activity on the quality of
both images. Therefore, full optimization and evaluation of simultaneous dual-isotope MPS
image quality requires analysis of a three-class diagnostic task, i.e., classifying the patient as
normal or having a reversible or fixed defect.

B. Binary ROC Analysis and Three-Class ROC Analysis
ROC analysis has solid theoretical foundations [11]–[19]. These foundations have resulted
in the wide applicability of binary ROC analysis in the past, and will continue to ensure its
prominence for the analysis of two-class problems. Much work has been done to extend
binary to three-class [12], [20]–[41]. We believe that the most useful extensions of
conventional binary ROC to multiclass ROC will be based on extensions of these theoretical
foundations.

Motivated by the medical diagnostic problem of dual-isotope MPS, we have developed a
three-class ROC analysis method [7]–[10]. The proposed three-class methodology has been
proved to extend and unify the decision theoretic [7], [8], linear discriminant analysis [9],
and psychophysical foundations [42] of conventional binary ROC analysis in a three-class
paradigm.

This three-class ROC analysis methodology has a decision theoretic foundation: it provides
decision variables and decision rules that maximize the expected utility by assuming that
incorrect decisions have equal utilities under the same hypothesis (the equal error utility
assumption) [7]. The proposed three-class decision model uses a pair of log likelihood ratios
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as the optimal decision variables that span the decision space, as shown in Fig. 1(a).
Sweeping the structure represented by the bold lines, termed the decision structure, across
the decision plane, and calculating the fractions of correct decisions under each hypothesis
maps out an ROC surface in the 3-D space spanned by the fractions of correct decisions in
each class, i.e., T1F, T2F, and T3F Fig. 1(b). Here, TiF represents the fraction of correct
decisions on class i when the truth is class i, and is termed the sensitivity for this class. We
have proved that the volume under three-class ROC surface (VUS) is a figure-of-merit for
three-class task performance [7].

We then investigated the proposed three-class decision model with respect to the decision
theoretic foundation [8]. In particular, we found that the proposed decision model 1)
maximizes the expected utility (MEU) under equal error utility assumption, 2) maximizes
the probability of making correct decisions according to (maximum correctness MC)
criterion, 3) satisfies the Neyman-Pearson (N-P) criterion in a sense that it maximizes the
sensitivity of one class given the sensitivities of the other two, and 4) the resulting three-
class ROC surface contains the maximum-likelihood (ML) operating point.

In order to further enhance the applicability of the proposed three-class ROC analysis
method, we developed a three-class mathematical observer, the three-class Hotelling
observer (3-HO), that computes optimal linear observer test statistics from a set of input
images [9]. The 3-HO uses only the first- and second-order ensemble statistics and
maximizes the signal-to-noise ratio (SNR) of the test statistics between each pair of the
classes simultaneously under certain data normality conditions (to be explained later).

We subsequently illuminated the psychophysical foundation of three-class ROC by proving
that VUS equals the percent correct (PC) in a three-class categorization procedure, i.e., VUS
= PC [42]. In the three-class categorization procedure, three objects randomly sampled from
each of the three distinct classes are presented to the observer at the same time. The observer
is instructed to categorize all three objects into the corresponding hypothesis. The observer
is said to make a correct decision when and only when all three objects are correctly
categorized. The relationship VUS = PC is true regardless of the decision variables used or
their distributions under different hypotheses. This relationship was first proved by Scurfield
[39]. In previous work, we proved this relationship using a different approach and carefully
pointed out that this relationship holds for continuous data; it has not been proven that this
relationship can be extended to discrete data [42]. Although this relationship does not
depend on the decision variables used, it does depend on the decision structure (defined by
the decision rules) used. Currently this relationship has only been proved for the decision
structure shown in Fig. 1. This relationship is analogous to the equivalence of the AUC and
percent correct on a two-alternative forced choice task in the binary case. In addition to
providing psychophysical meaning for the VUS, this property provides an alternative
method for calculating the VUS which is both more computationally efficient and more
amenable to statistical analysis [42].

II. Application to Task-Based Image Quality Assessment
As the first medical imaging application of the proposed three-class ROC analysis
methodology, this study seeks the optimal injected activity combination in simultaneous
dual-isotope MPS imaging and provides an example for future medical applications of this
methodology. The sections will be organized to parallel the four key elements described in
[13] to provide a step-by-step description of the application of this methodology to task-
based image quality assessment to seek the optimal injected activity.
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A. Identification of the Task
We have described the diagnostic problem using dual-isotope MPS technique in the
Background section. Table I shows the definition of the three classes.

B. Knowledge of the Objects to be Imaged and the Imaging Process-MPS Data Generation
As the first rigorous medical application of the proposed three-class ROC analysis method,
we chose to use simulated images and mathematical observers for the following reasons.
First, computer simulations allow us to know exactly the true state of the simulated data,
which is essential in both binary and three-class ROC studies. Second, simulations can
provide a large number of images that can be used as inputs for mathematical observers. A
mathematical observer study has the advantage that it can provide figures-of-merit for many
more combinations of parameters than is practical (or possible) with human observer
studies. Finally, the large number of images and lack of inter-observer variability will
provide smaller confidence intervals and thus make it easier to rank methods and
parameters.

Having identified the task, in this study we generated, as described below, a population of
stress (99mTc) and rest (201Tl) images that realistically model the patient variations and the
imaging process.

1) Phantom Population Generation—We used a previously developed phantom
population [43], [44] based on the 4-D NCAT phantom [45] that realistically models
anatomical and organ uptake variations seen in clinical data. The phantom population
includes 24 NCAT anatomies with half male and half female. Anatomical variations in the
patient size, heart angle, size, and position, and lung volume were modeled based on those
observed in a patient population [46]. In addition, we modeled variations in perfusion defect
sizes and locations. The details of the phantom population generation are described in [44]
and [47]. The mechanism for modeling and producing variation in organ activity uptake are
described below.

2) Projection Population Generation—For each of the 24 anatomies, we separately
simulated projections of five organs (heart, lung, body, liver and kidney) [48]. These
projections were generated using a combined SimSET and angular response function (ARF)
simulation code [49], [50]. The ARF code provides an efficient way to model interactions in
the collimator such as Pb X-rays, an important source of crosstalk in 99mTc/201Tl dual-
isotope MPS imaging. For each organ of each anatomy, the 99mTc projection was simulated
using a 140keV photon energy and a 20% wide energy window centered on 140 keV;
the 201Tl energy window was 20% wide and centered at 70 KeV. We simulated seven
major 201Tl emission energies: 70.8, 68.9, 80.3, 167.4, 79.8, 82.6, and 135.0 KeV based on
the corresponding abundances. The effects modeled include attenuation, scatter in the body,
detector response, penetration and scatter in the collimator, and crosstalk contamination in
the 99mTc and 201Tl energy windows.

To generate a population of projection data that includes realistic variations in anatomy and
organ uptake, we then scaled and summed the organ projections for each anatomy to create
projections with variations in uptake ratios, count level, and defect contrast. The scaling
factors were used such that the resulting uptake ratios and count levels of 99mTc and 201 Tl
images were comparable to those in a population of 34 patients who underwent 99mTc stress
imaging and 50 patients who underwent201 Tl rest imaging, respectively. Defects at five
locations in the myocardium were simulated. The projection data were scaled to model three
different 99mTc:201Tl injected activity combinations: 24:3 mCi, 16:3mCi, and 8:3 mCi.
Projection data modeling a simultaneous acquisition protocol was generated by summing
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crosstalk from the simulation using one isotope into the corresponding energy window for
the other isotope. Triplets of projection data modeling the three diagnostic classes were
created by subtracting appropriately scaled defect projections from the appropriate set of no-
defect projection data. For each injected activity combination, we thus had 4320 pairs
of 99mTc/201Tl projection data (24 phantoms × 5 defect locations × 6 uptake ratio
combinations × 3 defect statuses, i.e., normal, reversible defect, and fixed defect × 2
acquisition protocols).

3) Reconstruction Generation and Post-Reconstruction Processing—We
reconstructed the 4320 pairs of 99mTc/201Tl images using the OS-EM reconstruction
algorithm with compensation for attenuation, detector response, and scatter (ADS) without
compensation for crosstalk contamination. For each stress (99mTc) image, we used 15
iterations with 16 updates per iteration; for each rest (201Tl) image, we used 15 iterations
with four updates per iteration. Reconstructed images for all iterations were saved for use in
finding the optimal number of iterations as described below.

The reconstructed images were then processed using standard post-processing methods
including reorientation, Butterworth filtering, and windowing to obtain short axis
(SA) 99mTc/201Tl image pairs. For each reoriented 3-D stress (99mTc) image, a 32 × 32
image centered on the heart and located at the centroid of the defect (or the same short-axis
slice in the corresponding defect-absent image) was extracted from the postprocessed short-
axis slices. The same short-axis slice in the corresponding rest (201Tl) image was also
selected. These 99mTc/201Tl SA image pairs served as the input for the three-class
mathematical observer studies. Fig. 2 shows an example of a triplet of dual-isotope MPS
objects.

C. Identification and Knowledge of the Observer That Will Perform the Task
Having identified the task and described the generation of the data, we will now describe the
observer used.

In [9], we developed a three-class channelized Hotelling observer (3-HO) and investigated
its properties. We showed that when the pairwise binary Hotelling templates satisfy the
linear relationship

(1)

where w⃗ij is the binary Hotelling template between classes i and j, the 3-HO maximizes the
SNR of the test statistics between each pair of the classes. Furthermore, when the data
follow a Gaussian distribution with equal covariance, the 3-HO estimates the three-class
ideal observer (3-IO) performance and maximizes the VUS.

In this study, the goal was to develop and apply an observer, the 3-CHO, which has the
potential to model human performance in a three-class task. This was done based on the
large body of previous experience in modeling human observer performance using the
binary CHO, e.g., [44], [47], [51]. In addition to its potential for modeling human observer
performance, the 3-CHO eliminates the computational difficulties that arise in applying the
3-HO directly to the SA images. These difficulties arise due to the requirement to estimate
the covariance matrix which, for the 2048 × 1 data vector containing the two 32 × 32 SA
images (stress and the rest), results in a 2048 × 2048 covariance matrix. Estimating the 3-
HO requires inverting this matrix, which, though computationally tractable, requires precise
estimation of the matrix, and thus a large ensemble of data vectors. In order to obtain a
covariance matrix that is invertible, a minimum of 2048+1 data vectors are required in the
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training ensemble. In this 3-CHO study, the SA images were first processed using
appropriate frequency domain channels. The channelized data vector ensemble, sometimes
referred to as feature vector ensemble, was then used to train and test the CHO just as the
original data vectors would have been used for the HO. The frequency domain channels
used have produced good correlation with human observer performance in previous binary
CHO studies [51], [52], and provide data reduction that drastically reduces the size of the
data vector ensemble needed to estimate the 3-HO.

1) Preparing the Feature Vector Population to be Processed, or “Observed”
by the 3-CHO—We are interested in comparing the image quality of 99mTc/201Tl rest/
stress images for different injected activity combinations. To make a meaningful
comparison, we grouped images according to their data treatments. Each data treatment
refers to a specific combination of injected activities, acquisition protocols, reconstruction
algorithms, iteration numbers, and postprocessing filter cutoff frequencies for
both 99mTc/201Tl images. Thus, a three-class dataset for each data treatment has 360 (24
phantoms × 5 defects × 6 uptake ratio combinations) triplets of 99mTc/201Tl rest/stress image
pairs representing the images from normal patients and patients with reversible and fixed
defects.

For each 99mTc/201Tl image pair, we denote the stress (99mTc) short-axis image vector as g⃗s
and the rest SA image vector as g⃗r. Both g⃗s and g⃗r are N × 1 vectors, where M equals the
total number of pixels on each image, i.e., TV = 32 × 32 = 1024. We stack the two image
vectors together to form a 2N × 1 image vector g⃗, i.e.,

(2)

Thus, a three-class dataset for each data treatment has 360 triplets of image vectors
representing the image pairs from normal patients, and patients with reversible and fixed
defects.

(3)

Since both stress and rest images were presented to the observer simultaneously, based on
our knowledge of binary defect-detection task [44], [47], [51], we propose the following
channel mechanism. First, the stress image and rest image of each patient are processed
using appropriate set of channels U = [u⃗1 u⃗2 … u⃗J], respectively, where J is the number of
channels. The feature vectors for both stress and rest images, v⃗s and v⃗r, are then stacked
together to form a feature vector v⃗ for data vector g⃗. Using these, the observer study is
performed using the feature vector v⃗ instead of the data vector g⃗.

This process can be expressed as shown in (3) at the bottom of the page, which is equivalent
to applying the channel matrix

(4)
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to the data vector, where 0⃗ is a zero column vector of N elements and N is the number of
pixels in the channel image, which is equal to the number of pixels in each SA image. The
feature vector v⃗ is given by

(5)

In the present study, four octave-wide rotationally symmetric frequency channels, described
in detail in [44], [47], [51], were used as the channels U. After applying (4), for each data
treatment, there were 360 triplets of feature vectors representing the rest/stress image pairs
from normal patients, and patients with reversible and fixed defects.

2) Properties of the 3-CHO—As described above, a 3-CHO can be treated as a 3-HO
applied to channelized data (feature) vector ensemble. Thus, (1) must be satisfied for the 3-
CHO to maximize the SNR of the test statistics between each pair of the classes
simultaneously, where w⃗ij is the binary Hotelling template between classes i and j computed
using the feature vector ensemble. Furthermore, when the feature vectors follow Gaussian
distributions with equal covariance, the 3-CHO estimates the log likelihood ratios and
maximizes the VUS. In the following, we describe the procedures used to check whether the
statistical properties of the three-class dual-isotope MPS feature vector ensemble meets
these conditions.

a) Checking the linear property of the three-class channelized dataset: We first tested
whether the data satisfy (1). A “three-template test” was developed to test the linearity. In
this test, w⃗13, w⃗23, and w⃗21 were first computed using the following:

(6)

(7)

and

(8)

where  is the mean feature vector of class i and Ki is the covariance matrix of ith class

feature vectors. In a 3-D space, we plotted all triplets , which
should be on the plane x − y = z, provided (1) holds. We fit the triplets

{( )} with a plane, and the error between the fitted plane and plane x − y
= z tells how well (1) holds.

b) Checking the normality of the three-class feature-vector population: To test whether
the two test statistics obtained using the two 3-CHO templates estimate the log likelihood
ratios, the normality of the set of feature vector {v⃗} was investigated as well as the
equivalence of the covariance matrixes. It is very hard to study the multivariate normality of
{v⃗} directly, while the statistical properties of the test statistics can be easily studied. The
test statistics are a linear transformation of the feature vector v⃗ and should be Gaussian
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provided the v⃗ follow a multivariate Gaussian distribution. The normality of the test
statistics is thus a necessary but insufficient to prove the normality of the feature vector.

c) Compare the covariance matrixes of the three classes: To assess the equivalence of the
covariance matrixes of the three classes, we simply compared them in terms of profiles of
the diagonal elements.

3) Performing the 3-CHO Study—After generating the three-class feature vector
ensemble for each data treatment, we used half the population to train the 3-CHO. In this
training procedure, two three-class Hotelling templates used were w⃗13 and w⃗23 as expressed
in (6) and (7), respectively. The 3-CHO was then tested using the remaining half of the
feature vector ensemble to produce an ensemble of test statistic pairs.

D. Figure-of-Merit Provided by Three-Class ROC Analysis
Having obtained the 3-CHO decision plane using the feature vectors from each data
treatment, we applied the proposed three-class ROC analysis method and obtained the
volume under surface (VUS) value for each data treatment using the approach described in
[10]. This VUS value served as the figure-of-merit to quantify the task performance for the
corresponding data treatment.

III. Experiments and Results
The major purpose of the present paper was to develop a framework for three-class task-
based dual-isotope MPS image quality assessment using simulations studies. Thus, instead
of performing a comprehensive evaluation and optimization over all possible data
treatments, we investigated a few data treatments and will describe the results from two
experiments below. The first experiment was 3-CHO study for a single data treatment. In
this experiment, we focused on application of a 3-CHO and demonstration of the resulting
three-class ROC decision space as well as the ROC surface. The second experiment
compared task performance as measured by the 3-CHO and binary CHO performance for
different 99mTc/201Tl injected activity combinations. The purpose of the second experiment
was to demonstrate the three-class methodology is essential for optimizing the
injected 99mTc in dual-isotope 99mTc/201Tl MPS.

A. 3-CHO Study
In this section, we show results from a 3-CHO study using the data treatment whose
parameters are shown in Table II. The parameters shown might not be globally optimal.
However, they were chosen based on our previous knowledge of the optimal parameters for
binary observer performance.

1) Results of the Three-Template Test—Fig. 3 shows the result of the three-template

test for this data treatment. After plotting ( ) for each feature vector in
the 3-D space, we rotated the space three dimensionally. In a certain orientation, all points
align in one straight line as shown in Fig. 3(a), indicating all the points are located on one 2-
D plane in the 3-D space; Fig. 3(b) shows only 10 triples of data for a clearer view. This
demonstrates the linear dependence of the three templates, as described in (1).

To quantify how well the experimental plane fits the theoretical plane x − y = z, we then

fitted the triplets of  with a plane of the form x + by + cz + d =
0 using linear least square fitting techniques. We also calculated the root mean square
residual error (RSMRE) between the fitted plane and the ideal plane. This error is defined as
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(9)

where L is the total number of triplets. These results demonstrate how well the estimated
templates satisfy (1). In particular, Table III demonstrates that the root mean square residual
error is 0.2769 when we pool the triplets from all three classes together. This means that, for
each triplet, the mean square error in the z direction is 0.2769. Compared with the data range
in z direction, i.e., the maximum and the minimum of zi, which are 0.8141 and 8.9331, the
error 0.2769 is relatively small (< 0.3, or < 3.5% of the data range) and the parameters
defining the plane are close to ideal values. We thus concluded that these data satisfy (1)
very well.

2) Statistical Properties of the Simulated Dual-Isotope Data—Next, we tested the
normality and compared the covariance matrixes of the test statistics of the data to see
whether the 3-CHO estimates the log LRs. Figs. 4–6 show the histograms of the two-class
test statistics for each pair of the classes. We then tested whether these distributions are
consistent with Gaussians distributions. To do so, we used the Jarque-Bera test to check the
normality of each of the test statistic distributions. The null hypothesis for these tests was
that the data were normally distributed with unspecified mean and variance; the alternative
hypothesis was that the data were not normally distributed. We found that the binary
Hotelling test statistics in every pairwise comparison follow normal distribution at a level of
P = 0.01, as demonstrated by Tables IV–VI.

Fig. 7 shows comparisons of the covariance matrixes of the three classes. A profile is drawn
along the diagonal on the three covariance matrixes. As can be seen, the covariance matrix
for data from the normal class has a bigger magnitude than that of the other two classes at
the fourth element. However, the overall trends of the magnitude of the diagonal elements
are very similar among the three classes.

3) Decision Plane and ROC Surface of Simulated Data—We have shown that the
data satisfy (1) reasonably well, and therefore the 3-CHO can be applied to these data to
maximize the SNRs of each pair of the classes simultaneously. The normality and
equivalence tests suggest Gaussian distributed data with similar covariance matrixes, thus
we conclude that the 3-CHO provides a reasonable estimate to the log likelihood ratios.
However, since the agreement of the three-template test and covariance matrixes is not exact
and has no tests of statistical significance have been performed, it is difficult to quantify
how well the 3-CHO estimates the log likelihood ratios.

By applying the three-class decision model and 3-CHO to the simulated dual-isotope data,
we obtained the decision planes and the corresponding ROC surface. Fig. 8 shows the
decision plane with a scatter plot of the pairs of test statistics for each class; Fig. 9 shows the
corresponding three-class ROC surface. We fitted the test statistic distributions of each class
with bivariate Gaussian distribution, and then mapped out a three-class ROC surface based
on the fitted distributions, as shown in Fig. 10. The volume under surface value (VUS) of
the fitted surface is 0.704, suggests good classification performance in comparison with the
degenerate (pure-guessing) VUS of 1/6 (0.167).

B. Application of Three-Class Methodology to the Preliminary Evaluation and Optimization
of Simultaneous Dual-isotope MPS

In the previous sections, we have described a 3-CHO study that produced a VUS value for a
particular data treatment. To demonstrate the three-class methodology is essential for
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optimizing the injected 99mTc in dual-isotope 99mTc/201Tl MPS, in this section, we will
compare task performance as measured by the 3-CHO and binary CHO performance for
different 99mTc/201Tl injected activity combinations. The data treatments in Fig. 7 will be
used for both simultaneous acquisition and separate acquisition.

1) Separate Acquisition—We first studied the case of separate acquisition of the stress
and rest images, i.e., where there is no crosstalk between the two images.

We performed two kinds of binary observer studies. In the first study, we pooled the defect-
absent stress (99mTc) images from normal class and defect-present stress images from the
reversible classes together, and then investigated the image quality of the stress images;
similar investigations were performed for the rest (201Tl) images using the defect-absent rest
images from the normal classes, and defect-present rest images from the fixed defect class.
The results are shown in Fig. 11. Increasing the 99mTc injected activity while keeping
the 201Tl injected activity unchanged results in an improvement of stress (99mTc) image
quality, as measured by the AUC value obtained from the stress images. The rest (201Tl)
image quality, on the other hand, remains unchanged. As a result, we see the overall image
quality, as measured by the VUS value, improves with the increase of 99mTc injected
activity, just as one would expect for a separate acquisition protocol.

The second binary observer study involved pairwise comparisons between each pair of
classes, i.e., the AUC values for normal versus reversible defect classes, reversible versus
fixed defect classes, and normal versus fixed defect classes. This is because we are
considering the stress/rest imaging, the rest and stress images are usually interpreted
simultaneously. Fig. 12 shows a comparison of pairwise binary observer performance with
three-class observer performance for separate acquisition. As the 99mTc injected activity
increases, the quality of the (99mTc) stress image quality should improve due to reduced
noise, and the 201Tl rest image quality should remain unchanged. We can see this behavior
in the pairwise three-class data. For these data, the only pair of classes where the rest image
has a defect in one class and no defect in the other class is for patients with reversible versus
fixed defects. In this case, the change in noise in the stress image should have no impact on
the ability to separate these classes. This is just what is observed: the AUC does not change
as the 99mTc injected activity is increased. On the other hand, there are two pairs of classes
where the stress image has a defect in one class and no defect in the other class: normal
versus fixed and normal versus reversible. In the latter case, there is no change in the defect
status in the rest image, so we might expect the reduction in noise to have a more
pronounced effect on the ability to separate these two classes. However, even for normal
versus fixed, the reduced noise in the stress image should make it easier to detect the stress
defect and thus easier to perform the classification. Again, this is just what is observed in
Fig. 12. For the full three-class task we would expect that improving the stress image quality
should improve performance on the three-class task. Again, this is what is observed in Fig.
12. Thus, the changes in VUS and AUC make intuitive sense for the case of separate
acquisition.

2) Simultaneous Acquisition—We now turn to the case of simultaneous acquisition. In
this case, we expect that increasing the injected 99mTc activity will improve stress image
quality. However, it will increase the crosstalk in the rest image and thus degrade rest image
quality. It is reasonable to expect that there will be an optimal injected activity. Similar to
the separate acquisition, we performed two binary observer studies, and compared the
results with the three-class observer study.

The first binary observer study uses pooled defect images, just as described for the separate
acquisition case. The results are shown in Fig. 13. Increasing the 99mTc injected activity
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while keeping the 201Tl injected activity unchanged results in an improvement of stress
(99mTc) image quality, as measured by the AUC value of the stress images. The rest (201Tl)
image quality, however, was degraded due to the increased crosstalk. Thus, the binary
observer studies using the stress and rest images do not provide a way to optimize or select
an appropriate injected activity combination. However, the VUS value obtained from three-
class ROC analysis provides evidence of the existence of an optimum.

Fig. 14 shows a comparison of pairwise binary observer performance with three-class
observer performance for simultaneous acquisition. For the case of the pairwise binary
classification, performance for reversible versus fixed degrades with increasing 99mTc image
quality, as the increased crosstalk makes it more difficult to see the defect to the rest image.
However, the ability to distinguish between normal and reversible defects improves. This is
because the reduced stress image noise makes it easier to see the stress defect; the crosstalk
in the rest image is irrelevant since there is no difference in rest defect status between these
two classes. However, for the case of normal versus fixed, there seem to be an optimal
injected activity. The change of VUS value with the injected activities also suggests there is
an optimal injected activity. Thus, we see that, using only pair-wise binary classification
performance, we are unable to unambiguously find the optimal injected activity as the data
from the pairwise binary tasks provides contradictory information. On the other hand, the
three-class data provides evidence of the existence of an optimum and, with finer sampling
of the injected 99mTc activity, could be used to locate the maximum.

Both Figs. 13 and 14 show that with the VUS only varies slightly with an increase of
injected 99mTc activity, in contrast to the larger changes in AUC values. This suggests that
the three different injected activity combinations provide similar image quality. Given the
fact that 24mCi99mTc is used clinically, this study suggests that the patient 99mTc injected
activity can be significantly reduced without jeopardizing the overall image quality.

As shown in both Figs. 13 and 14, the error bars on the VUS are relatively large compared
with the differences between the VUS values. This is due to the inclusion of anatomical and
uptake variations in the projection population, which are included to increase the clinical
relevance, and the relatively small number of cases in each class. More cases, as well as
more injected activities, are needed in a future study to more definitively locate the optimal
injected activity. In addition, more sophisticated methods for performing hypothesis testing
that model case sample correlations are needed to investigate the statistical power of three-
class ROC methodology.

IV. Discussion
A. Equal Error Utility Assumption

Our proposed three-class ROC analysis method was derived based on decision theory by
maximizing the expected decision utility and assuming that incorrect decisions have equal
utilities under the same hypothesis (equal error utility assumption). Consequently, one might
wonder whether three-class ROC analysis is applicable to dual-isotope MPS since incorrect
decisions might have quite different utilities (or consequences) under the same hypothesis.
For example, when the patient has a fixed defect, mistaking him or her for normal will result
in no therapeutic interventions, while mistaking him or her for having a reversible defect
might potentially result in referral for a needless and ineffective revascularization procedure.
Apparently, the consequences, and thus the utilities, of the two types of false decisions given
the same hypothesis are not equivalent. As a result, the usefulness of the proposed three-
class ROC methodology for this application is brought into question.
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However, as described in the previous section, we have demonstrated the optimality of the
proposed three-class ROC methodology with respect to four decision criteria, namely MEU,
MC, N-P, and ML criteria [8]. In this case, we appeal to the N-P criterion to justify the use
of the proposed three-class ROC analysis method for this particular medical application [9].
Although N-P applied to the sensitivities and MEU with the equal error utility assumption
result in the same three-class ROC surface, they are two distinct decision criteria and it is
difficult to relate the set of parameters that define a given operating point on the ROC
surface. In other words, each operating point on the ROC surface has an N-P explanation.
No knowledge of utilities or prevalences is needed to find this operating point, though there
is an implicit set of utilities and prevalences that are defined for each such operating point.
The argument provided below is not unique to the three-class ROC research, but very
similar to the argument between the Bayesian and Frequentist schools of thoughts in
decision making.

In particular, in the diagnosis of coronary artery disease, the doctor might want to be very
sensitive to finding both fixed and reversible defects. This is based on the doctor’s general
knowledge about the utilities and prevalence for these classes and this knowledge can be
quite incomplete, which is most of the case in clinical practice. Given this prior knowledge,
the doctor might specify two desired sensitivities for detecting reversible and fixed defects.
It is likely easier for a doctor to specify the two desired sensitivities than to assign numerical
utilities to all the possible decision outcomes. The optimal thing to do in terms of
maximizing the sensitivity for normal patients given the sensitivities for fixed and reversible
defects is to use the proposed three-class decision model. The three-class ROC surface
resulting from application of the model describes the maximum sensitivity for normal
patients for any such operating point described in terms of sensitivities for fixed and
reversible defects.

While the proposed ROC methodology might not maximize performance for all
combinations of utilities and prevalences, in practice, it is unlikely that it would be possible
to know the exact prevalences and utilities for all decisions. It is more reasonable to believe
that a physician could specify a set of acceptable sensitivities for two of the classes based on
his incomplete knowledge of utilities and disease prevalences. Thus, we argue that
optimizing the injected activity using the proposed three-class ROC methodology is likely to
provide operating points that will sufficiently optimal for clinical practice.

As a task-based assessment method, ROC analysis summarizes the classification of a
particular observer on a particular clinical task. Since the observers, e.g., doctors or
computer aided diagnosis software, do not have access to the complete and exact
information about the prior parameters required for MEU, they cannot apply the MEU
criterion in practice. In other words, “even if we analysts could handle that many numbers,
we could hardly expect future image readers to adjust so large a number of response biases
to near-optimal settings. Even computer-aided diagnostic systems, would experience
difficulty with that many quantities” [19].

Despite the above reasons that the proposed three-class methodology might prove adequate
for optimizing clinical tasks, this remains to be demonstrated. Ultimately, this method
should be compared and contrasted with a fully general three-class ROC analysis
methodology, assuming there is one exists. However, in the meantime, the proposed
methodology is arguably the most theoretically rigorous and relevant available, and its use is
thus justifiable for the proposed application.
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B. Limitations and Future Study
We have proposed a three-class ROC analysis that, although not fully general in a maximum
expected utility sense, is general in a sense that it extends and unifies decision theoretic,
linear discriminant analysis and psychophysical foundations of binary ROC analysis in a
three-class paradigm. This pilot study demonstrates the feasibility of applying this method to
a clinically relevant problem.

As the first medical application of the proposed three-class ROC analysis, this study has
several limitations, which will be addressed in future research. First, partly due to the lack of
sophisticated statistical methods for three-class ROC analysis, the statistical analysis in this
pilot study is not ideal. Developing statistical analysis methods for significance testing,
power prediction and quantifying the linearity of the data statistics are areas that deserve
future attention. Second, the 3-CHO implemented in this work is a natural extension of a
binary CHO that has been shown to predict human observer performance in MPS images.
However, there is no guarantee that this correlation will hold for the three-class task
investigated here. Future research thus involves validating this model observer as well as the
corresponding data analysis methods. Third, as mentioned before, the error bars on the VUS
values in both Figs. 13 and 14 are relatively large compared with the differences between
the VUS values. Thus a larger number of cases will be employed in future follow-up studies
that aim to more definitively and precisely find the optimal injected activity combination.
Finally, as future research, we will apply the proposed three-class ROC analysis to
comprehensively evaluate and optimize the various compensation methods used in dual-
isotope MPS.

V. Conclusion
This paper presents the first medical application of a previously-proposed three-class ROC
analysis method. We have presented a step-by-step description of a set of methods that are
critical to conducting a three-class ROC study. We compared results of binary pairwise
binary ROC studies with more compressive three-class study, and demonstrated the
necessity of three-class ROC in evaluating a three-class diagnostic task.

In particular, we applied this method to the problem of optimizing 99mTc injected activity in
simultaneous dual-isotope MPS imaging. We have shown that binary ROC analysis is not
enough for the evaluation and optimization of simultaneous dual-isotope MPS imaging.
Considering the three-class nature of simultaneous MPS imaging provides a more general
framework for evaluation of MPS imaging systems and algorithms, and, in some cases, is
essential for its evaluation and optimization.

The data suggest an optimal injected activity of between 8 and 24mCi99mTc for the stress
study with a fixed 3mCi201Tl injected activity for the rest study. However, further
investigation is warranted to find this optimum more accurately and precisely. In addition,
the change in VUS values was not large as the 99mTc activity was increased from 8 and 24
mCi in simultaneous acquisition. This suggests that there is the potential to reduce the
injected 99mTc without jeopardizing the overall image quality.

Finally, this paper provides a practical example of applying this three-class ROC analysis
method to medical problems. We believe that the availability of these methods and a
practical example of how to use them will elicit more medical applications of multiclass
ROC analysis and more methodological investigations of the multiclass classification
problem.
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Fig. 1.
(a) Decision space of the three-class ROC analysis. Differently shaded ellipses represent the
decision variable distributions of the three classes, (b) Example of the three-class ROC
surface.
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Fig. 2.
Example of a triplet of dual-isotope MPS images (white arrow indicates the location of the
defect).
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Fig. 3.
Result of three-template test for the data treatment in Table II. At one orientation, all points

align in a line, suggesting a plane in the 3-D space, (a)  triplets

from all 360 triplets of feature vectors, (b) ( ) triplets from only 10
triplets of feature vectors for a clearer view.
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Fig. 4.
Histographs of the binary test statistics between Normal class and Reversible class.
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Fig. 5.
Histographs of the binary test statistics between Normal class and Fixed class.
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Fig. 6.
Histographs of the binary test statistics between Reversible class and fixed class.
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Fig. 7.
Pofiles of the diagonal of the covariance matrixes.
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Fig. 8.
Dcision plane obtained for simulated dual-isotope MPS images.
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Fig. 9.
ROC surface obtained for simulated dual-isotope MPS images, where VUS = 0.703.
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Fig. 10.
ROC fitted surface obtained for simulated dual-isotope MPS images, where VUS = 0.704.
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Fig. 11.
Comparison of binary observer performance of stress (99mTc) and rest (201Tl) images with
three-class observer performance for separate acquisition.
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Fig. 12.
Comparison of pairwise binary observer performance with three-class observer performance
for separate acquisition.
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Fig. 13.
Comparison of binary observer performance of stress (99mTc) and rest (201 Tl) images with
three-class observer performance for separate acquisition.
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Fig. 14.
Comparison of pairwise binary observer performance with three-class observer performance
for simultaneous acquisition.
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TABLE I

Three Classes in the Simultaneous Dual-Isotope MPS imaging

Class 1 Class 3 Class 2

Normal Reversible defect Fixed defect

99mTc (stress) No* Yes** Yes

201Tl (rest) No No Yes

*
No denotes for defect absence

**
Yes denotes for defect presence
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TABLE II

Data Treatment Used in This 3-CHO Study

Acquisition strategy: Simultaneous (with crosstalk contamination)

Injected activity Reconstruction method Iteration Cutoff frequency

Stress (99mTc) 8mCi OSEM-ADS 13 0.22/pix

Rest (201Tl) 3mCi OSEM-ADS 11 0.30/pix
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TABLE IV

Normality Test of the Test Statistics in the Binary ROC Analysis Involving Normal Class and Reversible
Class

H* (P=0.01) P

Normal 0 0.188823

Reversible 0 0.023157

*
H=0 Do not reject the null hypothesis at significance level P=0.01

*
H=1 Reject the null hypothesis at significance level P=0.01
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TABLE V

Normality Test of the Test Statistics in the Binary ROC Analysis Involving Normal Class and Fixed Class

H* (P=0.01) P

Normal 0 0.328528

Fixed 0 0.902211

*
Same as in Table 4.
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TABLE VI

Normality Test of the Test Statistics in the Binary ROC Analysis Involving Reversible Class and Fixed Class

H* (P=0.01) P

Reversible 0 0.798496

Fixed 0 0.555546

*
Same as in Table 4.
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TABLE VII

Data Treatment Used in This Experiment

Acquisition strategy:

Simultaneous (with crosstalk contamination)

Separate acquisition

Injected Activity Combination Reconstruction method Iterations Cutoff frequency

Stress (99mTc) 8mCi OSEM-ADS 10 0.20/pix

Rest (201Tl) 3mCi OSEM-ADS 10 0.22/pix

Stress (99mTc) 16mCi OSEM-ADS 10 0.20/pix

Rest (201Tl) 3mCi OSEM-ADS 10 0.22/pix

Stress (99mTc) 24mCi OSEM-ADS 10 0.20/pix

Rest (201Tl) 3mCi OSEM-ADS 10 0.22/pix
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