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Abstract

The human lungs are divided into five distinct anatomic compartments called the lobes, which are 

separated by the pulmonary fissures. The accurate identification of the fissures is of increasing 

importance in the early detection of pathologies, and in the regional functional analysis of the 

lungs. We have developed an automatic method for the segmentation and analysis of the fissures, 

based on the information provided by the segmentation and analysis of the airway and vascular 

trees. This information is used to provide a close initial approximation to the fissures, using a 

watershed transform on a distance map of the vasculature. In a further refinement step, this 

estimate is used to construct a region of interest (ROI) encompassing the fissures. The ROI is 

enhanced using a ridgeness measure, which is followed by a 3-D graph search to find the optimal 

surface within the ROI. We have also developed an automatic method to detect incomplete 

fissures, using a fast-marching based segmentation of a projection of the optimal surface. The 

detected incomplete fissure is used to extrapolate and smoothly complete the fissure. We evaluate 

the method by testing on data sets from normal subjects and subjects with mild to moderate 

emphysema.
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I. Introduction

THE human lungs are divided into five distinct anatomic compartments called lobes. The 

separating junctions between the lobes are called the lobar fissures. The left lung consists of 

the upper and lower lobes, which are separated by the left oblique or major fissure. The right 

lung consists of the upper, middle, and lower lobes: the upper and middle lobes are separated 

by the horizontal or minor fissure; the middle and upper lobes and separated from the lower 

lobe by the right oblique (major) fissure. It has been hypothesized that the fissures allow the 

lobes to rotate relative to one another to accommodate shape changes in the thoracic cavity 

[1], [2]. The branching patterns of the airway and vascular trees are closely related to the 

lobar anatomy. Although there are some exceptions, mainly in the case of incomplete 
fissures, each lobe is served by separate airway and vascular networks.
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Some pulmonary diseases are more prevalent in specific anatomic regions of the lung. For 

example, tuberculosis and silicosis are almost exclusively upper lobe diseases, while 

interstitial pulmonary fibrosis is more commonly present in the lower lobes. Pulmonary 

emphysema is commonly more severe in the upper lobes, but there is a rare genetic variant 

associated with alpha–1 anti-trypsin deficiency that is prevalent in the lower lobes. Thus, 

segmentation of the lobes and understanding the tissue and functional characteristics of the 

lobar parenchyma is clinically important for disease classification and may provide insights 

into the basic pathophysiology of lung disease.

Treatment selection, planning, and followup may also benefit from lobar analysis. For 

example, there are emerging therapies for emphysema that use full lobar exclusion via one-

way valves implanted into the airways. These therapies rely on identifying the airway and 

lobar distribution in CT images. In addition, it may be important to identify incomplete 

fissures, as it is believed that incomplete fissures may allow collateral ventilation between 

lobes that may compromise the lobar exclusion.

CT imaging can be used to study the lobar anatomy. A major challenge to the automatic 

detection of the fissures is the fact that the fissures have low contrast and variable shape and 

appearance in CT imagery, which sometimes makes it difficult even for manual analysts to 

mark their exact location. Usually, the fissures appear as a thin bright sheet, dividing the 

lung parenchyma into two parts (see Figure 1). But, as has been shown by Hayashi et al. [9], 

some pulmonary diseases can alter the appearance of the fissures on CT images. Also, for a 

significant fraction of datasets, a phenomenon called fissure disintegration is observed — 

fissure disintegration is the absence of the fissures at their expected location, leading to 

incomplete fissures (see Figure 1(a)).

Table I summarizes recent CT-based lobe segmentation studies. Previous approaches to lobe 

segmentation can be roughly divided into two classes: direct and indirect. The former 

approaches consist of methods that search for the fissures based on gray-level information 

present in the data, while the latter approaches consist of methods that use information from 

other anatomical structures to approximate the location of the fissures. Of the direct 

methods, Zhang et al. [4] presented a method for automatic segmentation of the oblique 

fissures using an atlas-based initialization procedure, followed by a two-step graph searching 

procedure to delineate the fissures. One drawback of the atlas-based initialization is the 

time-intensive atlas construction, which involves manually delineating the fissures on a 

number of subjects, and the computationally expensive deformation of the atlas fissures onto 

a template image. Wang et al. [5], proposed a method for segmentation of the fissures using 

a 2-D shape-based curve growing model. Their method involves a semi-automatic 

initialization, after which the oblique fissures are segmented in 2-D slices automatically 

using a Bayesian formulation influenced by both image data and similarity to a shape prior. 

Wiemker et al. [6] proposed an automatic segmentation approach based on 3-D filtering of 

the image data. The Hessian-matrix and structure-tensor based filters are used to enhance the 

fissures. More recently, van Rikxoort et al. [3] described a nearest-neighbor classifier 

approach to identifying voxels on the fissures. Since their method identifies fissure voxels, a 

post-processing step is needed to define a fissure surface separating the lobes.
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Among the indirect approaches, Kuhnigk et al. [7], proposed a method for the indirect 

estimation of the lobes, using information from the segmented vasculature. They presented a 

method for semi-automatic segmentation of the lobes using a watershed transform on a 

distance map of the vasculature. Their method required that the user manually place place 

markers on vessels to guide the segmentation. Their method is fast and interactive, with the 

ability to edit the results in real time. In a similar approach, Zhou et al. [8] reported a method 

based on the Voronoi division of the lungs using the lobar bronchi. In the related field of 

liver segment estimation, Beichel et al. [10] use the vasculature for a nearest-neighbor based 

partitioning of the liver.

Our approach to the lobar segmentation problem is to use the anatomical information 

provided by the segmentation and analysis of the airway and vascular trees to guide the 

segmentation of the fissures. We follow a two-step approach: in the first step an approximate 

fissure region of interest (ROI) is generated using the airway and vascular trees anatomical 

information; in a further refinement step, the fissures are accurately located using the 

available contrast information in the ROI. The algorithm is robust with respect to common 

variations in scan parameters such as X-ray dosage, lung volume, and CT reconstruction 

kernels, and has been applied to images of both normal and diseased subjects. We have also 

developed a fully automatic method to detect incomplete fissures, using a fast-marching 

based segmentation of a projection of the optimal fissure surface computed by the graph 

search. Once detected, the incomplete fissure can be used to extrapolate and smoothly 

complete the fissure surface.

II. Methods - Initial lobe segmentation

A. Overview

Figure 2 shows a flow diagram of the overall process, beginning with the segmentation of 

the lungs, airways, and vessels. The lungs are segmented from the original image using the 

automatic method reported in [11]. Airway tree segmentation and branchpoint labeling is 

done using the methods reported in [12] and [13]. The anatomically labeled airway tree is 

used to extract the sub-trees corresponding to each of the lobes. The segmented airway tree 

is then used to smooth the lung contours. The automatic pulmonary vessel segmentation 

method is based on the algorithm reported in [14]. Next, a distance map is computed on the 

segmented vasculature. The distance map is combined with the original image to form the 

input to the watershed transform. The watershed simulation proceeds and the basins are 

merged using markers automatically generated from the anatomically labeled airway tree. 

After the watershed analysis is completed, we obtain an approximate segmentation of the 

lobar fissures.

B. Interactive Watershed Transform (IWT)

The watershed transform is an important algorithm for image segmentation. In the watershed 

transform, a grayscale image is interpreted as a terrain, with the height of each point in the 

terrain given by its intensity in the grayscale image. In this context, a watershed transform 

identifies the minima, or basins, in the terrain, and the watersheds, or merges, separating the 
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basins. Vincent et al. [15] presented a fast algorithm for calculating watershed transforms 

using a simulation of the flooding of the image terrain from below.

Hahn et al. [16] proposed a two-step interactive watershed transform (IWT) based on the 

original algorithm by Vincent et al. The first, non-interactive step involves a sorting of all 

image voxels according to intensity, and processing them in the sorted order. A submersion 

simulation is performed by considering each voxel and its neighbors, and the output is a 

hierarchical decomposition of the image into basins and merges. In the second step a 

flooding threshold and manually-selected markers are used to merge the basins. This second 

step is very fast and can be repeated any number of times to refine the segmentation by 

adding or deleting markers.

C. Algorithm

The algorithm for an initial estimation of the lobar borders consists of the following main 

steps:

1. Smoothing of the lung contour: We use a 2-D morphological closing operation 

with a disk-shaped structuring element with a 2 cm radius on each transverse 

slice to produce a smooth lung boundary. This is done to fill in the indentations 

in the lung surface, and to attempt to connect the separate vascular sub-trees for 

each lobe at the mediastinal border. Figure 3 shows the lung contour on a 

transverse slice before and after smoothing.

2. Segmentation of pulmonary vessels: A simplified variant of the algorithm 

proposed by Shikata et al. [14] is used to segment the vessels. Shikata et al. use a 

two-step approach: a line-filtering of the raw data based on an eigen-analysis of 

the Hessian matrix calculated at multiple scales (1, √2, 2, 2√2 and 4 voxels), 

followed by a time-consuming vessel tracking approach to extract the small 

vessel segments which are missed in the first step. For our purposes the second 

step is not necessary and is undesirable because of the increased computational 

cost. In our case, the line-filtered result is thresholded to retain only voxels with 

line-filtered value less than -0.08, and then subsequently size filtered to remove 

all segments less than than 75 mm3. Figure 4(a)) shows an example of a vascular 

tree obtained using this approach.

3. Calculating a modified vessel distance map: As can be seen in Figure 4(a), the 

fissures are characterized by the sparseness of the vessel tree in the region 

surrounding them. This can be quantified by computing a distance map of the 

segmented vasculature, which should a have local maxima along the fissures. 

The airway segmentation can also included in the distance map computation. 

However, currently available airway segmentation algorithms are limited in terms 

of the number of generations segmented. Therefore the additional information 

gained by using the airways to mark the fissure region the fissures is small. In 

addition, we would also like to preserve the fissure contrast information that is 

available in the original image. Following the approach of [7], we create a 

modified distance map image by combining the distance map and the original 

image. Let I represent the original CT image data and let A and V represent the 
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image voxels that are identified as airway and vessel voxels during the airway 

and vessel segmentations. The modified distance map is calculated as follows:

• Offset the graylevels in the original image I so that the minimum CT 

value within the lung mask is 0.

• Find the brightest vessel voxel value, υmax, within V and the darkest 

airway voxel value, amin, within A.

• Compute a chamfer distance map image, D, on the vessel mask, using 

the standard 3×3×3 kernel [17]. The distance is computed from every 

background voxel to the nearest vessel voxel.

• Create the modified distance map O by combining the distance map 

image D and original image I:

where Iυ, Oυ, and Dυ are the voxel values at location υ in the input, 

output, and chamfer distance map images, and α is the scale factor used 

to combine the original image and distance map image; in this work we 

use a value of 10 for α.

• Using this construction, the airways and vessels are forced to 

correspond to minima (basins) of the graylevel topography and the 

fissures are near the watersheds separating these basins from one 

another. The markers placed on the vessels and airways will flood and 

fill the corresponding lobe, similar to the rising water analogy of the 

watershed transform.

4. 3-D watershed transform: We apply the watershed transform to the modified 

distance map image.

5. Lobar segmentation: The basins generated by the watershed transform are 

merged according to anatomically-defined markers. The markers for merging can 

be selected automatically from the anatomically labeled airway tree, and from a 

priori shape and orientation information about the fissures and the lungs:

6. Using a formal graph description of the airway tree, we extract the sub-tree for a 

given lobe by doing a breadth-first search from the corresponding lobar root (see 

Figure 4(b)). Once the sub-trees are extracted, we select the sub-tree centerline 

points as markers. Selection of markers from the vascular tree is based on the 

fact that airway and vascular branch segments are located near each other. We 

construct a 3-D window around each branchpoint of the lobar sub-tree and select 

all vascular voxels within the window as markers. The window dimensions used 

in our experiments are given in Table II.
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7. Additional markers can also be selected based on a-priori shape information 

about the fissures. For example, the most apical transverse slices in the data 

depict tissue that belongs to the upper lobes, so vessel voxels on those slices can 

be selected as upper lobe markers. On sagittal views, the oblique fissures are 

oriented at an approximately 45° angle (see Figure 1). We can mark three distinct 

points along a sagittal contour: the top most point, and the two points of highest 

curvature in the bottom left corner and the bottom right corner. Based on these 3 

points, we compute two lines which divide the lung into distinct upper and lower 

lobes segments. Vessel voxels lying in these segments are selected as markers for 

the corresponding lobes. The lines are chosen conservatively, away from the 

fissure location, so as to not select incorrect seeds and augment the seeds already 

selected using the airway tree.

Figures 9(b,e) show the segmented lobes overlaid on sample slices of the original CT data.

In a few instances, the markers selected using the method described above are not sufficient 

to segment the five lobes, in which case manually selected markers are needed. Figures 

5(a,b) show a typical instance where manual editing is usually necessary. As seen in Figure 

5(a), a vessel segment which belongs to the left upper lobe has been mislabelled due to its 

proximity to an airway segment belonging to the left lower lobe. The airway skeleton point 

within that segment is one of the automatic markers selected for the left lower lobe, which 

causes the spreading of its label to the adjacent vessels. By placing a single marker on the 

mislabelled vessel, the segmentation is corrected in this instance, as shown in Figure 5(b).

III. Methods - Fissure Refinement

A. Overview

The initial fissure segmentation described above is primarily based on the distribution of the 

vasculature rather than on the fissure grayscale information. As shown in Figures 9(b,e), 

even though the initial lobar border estimates are close to the actual fissure locations, they do 

not accurately follow the fissures as evinced by their lack of smoothness. This section 

describes the accurate segmentation of the oblique fissures by optimal surface detection 

using a 3-D graph search.

B. Optimal Surface Segmentation

In 2-D, optimal path detection using graph searching has been widely used in image 

segmentation and quantitative analysis. The extension in 3-D is finding the optimal surface 

through a geometric graph, where each vertex corresponds to a node in the graph. Recently, 

Wu et al. [18] proposed a polynomial time method for computing globally optimal surfaces 

in 3-D, using hard smoothness constraints. The problem is modeled as a weighted geometric 

graph, and the smoothness constraints are hard because they are enforced by the edge 

connectivity between the vertices. The optimal surface problem was shown to be equivalent 

to the well-known minimum closed set problem, which can be solved by computing a 

minimum s – t cut on a derived directed graph. The algorithm has polynomial time 

complexity. We use the implementation by Li et al. [19] for the fissure refinement.
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C. Algorithm: Oblique fissure refinement

The oblique fissure refinement algorithm consists of the following steps:

1. ROI definitions: Three ROIs are defined for the fissure refinement step: ROI1, 

ROI2, and LUNG (see Figure 6). Region ROI1 consists of all voxels in the lung 

mask that are a distance d1 or less from the initial fissure segmentation. Region 

ROI2 represents the set of likely fissure endpoints, and consists of all voxels 

outside the segmented lungs that are a distance d2 from the initial fissure 

segmentation. Region LUNG contains all other voxels in the lung mask. d1 and 

d2 are experimentally determined distance thresholds; we use d1 = 6 mm and d2 

= 4 mm in our work.

2. ROI rotation: To accurately locate the fissures, we find the optimal surface Yopt = 

f(x, z) on the graph defined by the bounding-box of ROI1.Each voxel in the ROI 

corresponds to a vertex in the graph. It is necessary to keep the graph Y 
dimension small in order to achieve reasonable runtimes for the graph search 

algorithm; as discussed in [19], the run-time of the algorithm is proportional to 

n2, where n is the number of vertices in the graph. As shown in Figure 1, the 

oblique fissure is oriented at approximately 45° relative to the Z (vertical) axis. 

We estimate this angle by using a least-squares fit of a straight line to the initial 

fissure segmentation as viewed on the middle sagittal slice. We then rotate the 

entire image by this angle along an axis parallel to the X axis, and passing 

through the center of the Y – Z plane of the lung bounding box.

Tri-linear interpolation is used during the rotation. In addition to rotation, we 

resample the image data onto an isotropic grid. If xi, yi, and zi are the original 

voxel dimensions, we define a new grid with voxel dimensions xo = yo = zo = 

min(xi, yi, zi). There are two advantages to isotropic re-sampling. First, in the 

case of thick-slice data, in which case zi may be more than double xi or yi, the 

resampling helps preserve the fissure contrast. Secondly, as described in Section 

VI-B, by increasing the resampled voxel size we can reduce the overall graph 

search runtime by reducing the graph size.

After rotation and resampling, we find the bounding-box for the label ROI1, as 

shown in Figure 8(a). The voxels of the bounding box define the vertices of the 

graph G, within which the optimal surface is computed.

3. Calculating the ridgeness map: On transverse slices the oblique fissure appears 

like a ridge in the gray-level topography of the lungs. To enhance the ridges and 

valleys in the image, we use the method MLSEC-ST (multilocal level set 

extrinsic curvature and its enhancement by structure tensors) [20]. It is a 

multilocal approach, based on eigen-analysis of the structure tensor. The 

eigenvector corresponding to the largest eigenvalue correspond to the dominant 

gradient vector in the neighborhood. Ridges are enhanced by using the difference 

in the eigenvalues, which is a measure of anisotropy. In this work, the gradients 

are calculated by convolution with a Gaussian of width 2 voxels, and a Gaussian 

of width 5 voxels was used for the structure tensor calculations. In addition, we 

note that the orientation of the eigenvectors around a ridge provides an estimate 
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of the orientation of the ridge. Therefore, using a priori knowledge about 

orientation of the structures which are being enhanced, an orientation sensitivity 

term D was included into the measure proposed by Lopez et al. [20]:

where θ is the estimated mean direction, O(x, y) is the direction of the 

eigenvector, and d is the standard deviation of the Gaussian distribution. Our 

implementation uses θ = 75° and d = 0.4. For computational efficiency we 

calculate the ridgeness map over all transverse (X – Y) slices; however a 3-D 

ridgeness calculation is also possible. Figure 8(b) shows a sample sagittal slice 

from the ridgeness map.

4. Calculating the cost function: The cost function image C used for computing the 

optimal surface is based on the ridgeness map, and is defined as follows:

where Cυ, Iυ, and Rυ are the cost function image, the original CT image, and the 

ridgeness image at voxel location υ. The ridgeness map is scaled to be of the 

same range as the CT image. Constants C2 and C3 are set to very high values to 

keep the search within the fissure ROI and C1 is set to a smaller value to cause a 

smooth transition of the optimal surface from the inside of the lung to the outside 

of the lung. In our work we use C1 = 100, C2 = 2000, and C3 = 1000.

5. Optimal surface calculation: We compute the optimal 3-D surface Yopt = f(x, z) 

within the graph G with vertex weights defined by the cost function image C. 

The algorithm proposed by Wu et al. [18] is used to calculate the optimal 

surface.

The optimal surface is a single voxel wide surface dividing the lung, while our 

final objective is to generate a labeled volume with separate labels for the upper 

and lower lobes. We use a fast breadth-first region growing technique as 

proposed by Silvela et al. [21] to grow and label the upper and lower lobar 

regions. Then the labels are rotated back to the original orientation using nearest 

neighbor interpolation.

Figures 9(c,f) show the results from the optimal surface graph search, based on 

the ROIs defined by the watershed segmentation results shown in Figures 9(b,e).

D. Algorithm: Horizontal fissure refinement

After performing the segmentation and refinement for the right oblique fissure, the right 

lung is divided into two components: the right lower lobe and the combined right upper and 

middle lobes. To refine the segmentation of the horizontal fissure, we find the optimal 
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surface Zopt = f(x, y), which divides the combined right upper plus right middle lobes into 

separate upper and middle lobes. The steps for finding the optimal surface corresponding to 

the horizontal fissure are similar to those for refining the oblique fissures. For most cases the 

angle that the horizontal fissure makes with the X – Y plane is small, and hence the Z 
dimension of the ROI bounding box is small enough so that a reasonable runtime is possible 

without rotation. We do, however, perform resampling to make the voxels isotropic. For the 

horizontal fissure we calculate the ridgeness measure on sagittal (Y – Z) slices of the image 

data because the ridge-like nature of the horizontal fissure is most evident on sagittal slices 

(see Figure 1(a)).

Figure 9(f) shows the segmented middle lobe resulting from the optimal surface graph-

search for the horizontal fissure. This result is based on the ROI defined by the watershed 

segmentation result shown in Figure 9(e).

IV. Methods -Incomplete fissure detection and fissure smoothing

A. Introduction

As mentioned in the introduction, there is interest in detecting and measuring incomplete 

fissures. Figure 1(c) shows a case with an apparent incomplete fissure. In this example, the 

fissure appears to be missing at some locations in the image, either due to the anatomic 

structure of the lobes or because of limitations in the imaging system. Our observations have 

been that incomplete fissures always occur on the mediastinal side of the fissure. The 

incompleteness of the fissure is accompanied by a fusion of the lung parenchyma from the 

adjacent lobes. As pointed out by Hayashi et al. [9], studies differ as to the how often the 

fissure is incomplete. Our own experience has been that in about 30-40% of the cases the 

major fissures appear incomplete, with an increased prevalence for incompleteness in the 

right oblique fissure compared to the left oblique fissure. We detect incomplete fissures by 

finding the subset of the optimal surface that is most likely to correspond to the true fissure.

B. Algorithm: Incomplete fissure detection

The basis of the incomplete detection method is the oblique fissure refinement method 

described in the previous sections.

We have observed that incomplete oblique fissures are incomplete towards the medial side of 

the lungs and exhibit good fissure-parenchyma contrast towards the outer border of the lung. 

This is evident in Figure 1(c). Therefore, the fissure should form a sheet of points of high 

ridgeness that is attached to the outer border of the lungs. Further, we have observed that 

eigenvectors in the neighborhood of a good contrast fissure are all oriented in similar 

directions, which is a direct result of the smoothness of the fissure. Therefore, the visible 

fissures are homogeneous with respect to two properties: the ridgeness value and the 

orientation of the eigenvectors. The homogeneity of the eigenvector orientation implicitly 

takes care of the smoothness of the detected fissure.

As described earlier, the oblique fissures are detected as the optimal surface Yopt = f(x, z). 

This formulation allows a one-to-one projection of the optimal surface voxels onto the X–Z 
plane. A number of image properties associated with the optimal surface can be projected in 
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this manner. Figures 10(a) shows the graph search cost function values projected from the 

optimal surface onto the X – Z plane. The figure shows one large homogeneous dark region 

(low cost, high ridgeness) corresponding to the visible fissure segments, and a bright noisy 

region in the upper right corner of the cost projection image representing a region of where 

the fissure refinement is unreliable, corresponding to the incomplete part of the fissure. 

Hence, the incomplete fissure detection problem in 3-D can be posed as the 2-D 

segmentation of the homogeneous dark region in the cost function image.

Since the homogeneity of the ridgeness and eigenvector orientations imply that the gradients 

for both of these values should be low along the fissure and high across the boundary, a 

front-propagation approach where the speed of propagation is inversely related to these 

gradients is suited to this segmentation task. Fast marching methods for front-propagation, 

first proposed by Sethian [22], are appealing because of their robustness to topological 

changes and their computational efficiency. In the context of incomplete-fissure detection, 

there are three main aspects to applying the fast marching approach:

1. Seed selection: A set of seeds within the visible fissure region must be selected. 

The front will propagate outwards from these seeds. To select seeds, we first 

threshold the cost function projection image and keep only the dark pixels. Next 

we extract the largest 8-connected region in the thresholded image; the actual, 

yet incomplete, fissure will be a subset of this region. Finally, we choose pixels 

near the outer lung border that belong to this thresholded component to form the 

set of seeds (see Figure 11(a)).

2. Front propagation: The front is propagated from the seed points with a speed that 

is defined as:

(1)

where ∇Rσ and ∇Aσ are the gradients of the ridgeness image and the eigenvector 

orientation image, respectively. The gradients are computed by convolving with 

the derivative of a Gaussian with a standard deviation σ. α and β are the weights 

associated with the two components of the speed term. This formulation ensures 

that the front slows down at regions where either of the two gradients is large. In 

our experiments, we used σ = 2 voxels and α = β = 0.0075.

3. The output of the fast-marching algorithm is an image with the propagating front 

arrival times at each pixel. The segmentation result is generated by thresholding 

this image, with a suitable value Tthresh, so that only pixels with arrival times less 

than Tthresh are retained. An empirically determined threshold Tthresh = 2000 

time steps was used in all our experiments.

The segmentation generated by the above method has some small holes inside it, 

corresponding to the bright regions inside the homogeneous dark region. A 2-D hole-filling 

postprocessing step was performed on the segmented image, to generate the segmentation as 

shown in Figure 11(b). After the detection of the incomplete fissure in the projection image, 
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the segmented result is back-projected onto the optimal fissure surface, as shown in Figure 

12(b).

C. Algorithm: Fissure extrapolation

After detecting the visible parts of the fissure, our final objective is to complete the 

incomplete fissure smoothly with an anatomically plausible extrapolation. For a function f in 

two dimensions, the total squared curvature is given by

(2)

where ∇2 is the Laplacian operator and S is the surface containing f. For the case of the 2-D 

function z passing through the data points zi, i = 1, …, N, it has been shown that a linear 

combination of the biharmonic Green's functions ϕ(x) = |x|2log(|x| – 1), centered at the data 

points, gives rise to the minimum curvature biharmonic spline interpolation technique, as 

shown in [23]. This biharmonic spline interpolation technique gives a smooth extrapolation 

outside the convex hull of the point set.

The detected incomplete fissure points (e.g., see Figure 12(b)) are used as anchor points 

needed for the spline interpolation. As illustrated in Figure 4(b), additional anatomical 

landmarks in the form of airway-tree branchpoints are also used as anchor points. Figure 13 

shows the branchpoints EndRMB and EndLMB, which correspond to the end points of the 

right main bronchi and left main bronchi segments respectively. As can be seen in this 

figure, the fissures show a general tendency of being directed towards these anatomical 

landmarks. Using these anchors ensures that the spline interpolation does not generate a 

surface which is too far off the expected anatomical location. Figure 14 shows an image with 

an incomplete fissure, and the corresponding watershed segmentation and extrapolated 

smoothed fissure.

V. Experimental methods

The lobar segmentation algorithms were assessed in two different experimental conditions: 

(1) images of normal volunteers taken at different lung volumes and with different 

reconstruction filters; and (2) clinical images of mild to moderate emphysema subjects. All 

studies involving humans were gathered under a protocol approved by The University of 

Iowa institutional review board. All images were acquired on a Siemens Sensation 64 multi-

detector CT scanner (MDCT) (Siemens Medical Solutions; Malverne, PA). Reconstructed 

slice thicknesses ranged from 0.6 to 1.2 mm. The computer used for all of the experiments 

was a 1.6 GHz AMD Athlon workstation with 2 GB RAM.

A. Images of Normal Volunteers

Data from 12 normal subjects was used to assess lobar fissure segmentation accuracy. The 

average age was 30 years, and included 5 males and 7 females. For each subject volumetric 

images covering the thorax were gathered at total lung capacity (TLC) and functional 
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residual capacity (FRC) at approximately 100 mAs. Image reconstructions were performed 

using a soft (B/B30) and hard (D/B50) reconstruction filter from a single acquisition. 

Considering all combinations of subjects, lung volume, and filter, 48 data sets were available 

in all. The automatic lobar segmentation algorithm was applied to each of these data sets.

B. Images of Subjects with Emphysema

Seventeen clinical data sets with mild to moderate emphysema were used to assess the 

performance of the proposed segmentation method in the presence of lung disease. The 

average age was 44 years, and included 12 males and 5 females. Each case was read by a 

radiologist to confirm the presence of emphysema. The fraction of lung voxels below -950 

HU was measured to assess the severity of emphysema: nine subjects had less than 5% of 

the voxels below the cutoff, five subjects had 5 to 10% voxels below -950 HU, and one 

subject fell in each of the ranges 15-20%, 20-25%, and 30-35% below the threshold. All 

datasets were acquired at TLC and reconstructed with the B kernel. The lobar segmentation 

algorithm was applied to each of the 17 data sets.

C. The Gold Standard

To validate performance in the normal and emphysematous data sets, the automatic 

segmentation results were compared with a manually defined gold-standard. A human image 

analyst manually traced all the three fissures for each of the 29 cases, marking the fissures as 

continuous curves on 2-D cross sections. For the right and left oblique fissures, the tracing 

was done on transverse slices. For the horizontal fissure, the tracing was performed on the 

sagittal slices because the sagittal view gave the best contrast. Because of the large size the 

MDCT datasets (typically around 600 slices), the analyst only traced the fissures on every 

fifth slice.

As we have mentioned before, in a significant fraction of datasets the fissures are 

incomplete. The fissures are not visible beyond a point, and establishment of a ground-truth 

is difficult. Therefore, the analyst was instructed only to trace the fissures in regions that 

they were visible, and to not attempt to extrapolate (or interpolate) regions of missing or 

incomplete fissures. Since the manual tracing may only be available for the visible portion of 

the fissure, while the automatic segmentation must span the entire width of the lung, the 

distance measure used for validation computes the minimum distance of a point on the 

manual segmentation to a point on the automatic segmentation. This strategy may 

underestimate the segmentation error if the automatic result deviates far from the manual 

result.

1) Assessing Segmentation Accuracy—Fissure positioning accuracy was assessed by 

computing the mean, RMS, and maximum distances between the manually-defined fissures 

and the computer-defined fissures. For each voxel on the manually-defined contour, the 

minimum distance to the computer-defined contour was computed as
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where ( ) is the manually-defined contour voxel location and ( ) is a computer-

defined contour voxel location. The mean, RMS and maximum distances to the manually-

traced contours were computed using the following equations:

where l is the number of points on the manually-defined contour.

D. Subjects with incomplete fissures

The segmentation results with fissure extrapolation, in the case of incomplete oblique 

fissures, were visually evaluated by an experienced chest radiologist. The radiologist 

evaluated 10 segmented data sets using the following numeric scoring system:

• 5 = excellent segmentation and extrapolation of the fissures,

• 4 = one segmentation error; an extrapolated fissure crossed a vessel or passed 

through a hilar vessel,

• 3 = two segmentation errors; an extrapolated fissure crossed a vessel and passed 

through a hilar vessel,

• 2 = numerous segmentation errors, usefulness of segmentation in doubt,

• 1 = unusable segmentation.

E. Effects of interpolated image resolution on runtime and segmentation accuracy

As mentioned in Section III-C, runtime depends on the graph size during the fissure 

refinement step. We performed an experiment to examine the tradeoffs between runtime and 

accuracy during the optimal surface detection step. For each of the 12 normal TLC/B data 

sets, we segmented the right oblique fissure three times, corresponding to three different 

interpolated image resolutions. If we let xi, yi and zi be the original voxel dimensions, the 

interpolated voxel dimensions in the rotated image are xo = yo = zo = F · min(xi, yi, zi), 

where F is the resolution scaling factor. We considered F = 1.0 (original resolution), F = 1.2, 

and F = 1.4. For each of these conditions we calculated the segmentation runtime and the 

segmentation accuracy compared to the manual analysis.

VI. Results

A. Normal and emphysematous subjects

Table III summarizes the segmentation errors for each of fissures, for each lung volume, and 

for each reconstruction filter, averaged across all 12 normal data sets. Figure 15 shows the 

segmentation errors for each of the individual data sets for the case of TLC and filter B for 
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the right oblique fissure. For the clinical images of the subjects with emphysema, Table IV 

shows the mean (± standard deviation) of the RMS and mean distances averaged over all 17 

datasets.

One normal data set (subject 7) could not be analyzed at full resolution because the graph 

search ran out of memory. To resolve this, we set F = 1.2 during the fissure rotation and 

interpolation step to downsample the data to a more manageable size for this one case. For 

the 12 normal datasets at TLC reconstructed with the B kernel, three of the twelve cases 

required one or two seed points to correct the IWT segmentation. For the 17 emphysema 

cases, four of the cases needed one or two seed points to achieve an acceptable 

segmentation.

B. Effects of interpolated image resolution on runtime and segmentation accuracy

Table V shows the resulting graph sizes for the fissure ROIs, the runtime for the optimal 

surface search, and the RMS error between manually-defined and computer-defined fissures 

for each of the three resolution factors F. The entry marked with an asterisk for subject 7 at 

resolution factor F = 1.0 are because the graph search ran out of memory during the optimal 

surface detection at full resolution.

The table shows that the RMS error increases with increasing voxel size. On the other hand, 

the reduction in the graph-size leads to a very marked reduction in the runtime. A runtime 

reduction of approximately 75% is observed by using a resolution factor of 1.4.

In Figure 16 we fit a least-squares regression line to the data in Table V, plotted against the 

graph size. The data for subject 6 and subject 8 at resolution factor 1.0 were excluded from 

the analysis, as these cases had at least one very incomplete fissure and appeared to be 

outliers compared to the general pattern observed within the remaining data. The R2 value 

for the regression line was 0.87, which indicates a good fit. The corresponding regression 

equation (t = 5 * 10−6D – 7.1237 seconds, where D is the graph size X×Y×Z) can be used to 

predict the runtime for the fissure segmentation process.

C. Incomplete fissure detection and extrapolation

The incomplete fissure segmentation results were evaluated by an experienced radiologist 

using the scoring system defined in Section V-D. Out of the 10 data sets evaluated, four data 

sets were scored as a 5 (“excellent”), four data sets were scored as a 4 (“one error”), and two 

data sets were scored as a 3 (“two errors”). These results indicate that for these cases the 

incomplete fissure extrapolation provides a segmentation that is anatomically plausible.

VII. Discussion

The comparison between manually-traced and computer-generated fissures shows a good 

agreement for the normal data sets, with mean RMS errors less than 2.7 mm across all 

combinations of fissure, lung volume, and reconstruction kernel. The experiments with 

emphysematous subjects also show good agreement between the computer-based and 

manually-traced results, with RMS errors comparable to those for the normal subjects. 

However, the number of normal and emphysematous test cases used in this study is fairly 
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small, and may not be completely representative of the general population. Further, it should 

be noted that the majority of the emphysematous subjects had only mild emphysema, with 

only a few subjects showing more severe emphysema. In subjects with severe emphysema, 

the presence of large bullae adjacent to the fissures, or very distorted airway and vascular 

structures, can lead to erroneous results. In the case of diseases which cause increased 

opacity of the lung parenchyma, like pneumonia, the lung segmentation may be unreliable 

and the fissure contrast can be reduced, both of which will adversely affect the fissure 

segmentation result.

Numerically, these results are similar to those obtained using the atlas-based method of 

Zhang et al. [4], and slightly worse than the semi-automatic approach of Wang et al. [5]. 

However, our method is faster than the atlas-based approach [4], and has the considerable 

advantage of being able automatically segment the horizontal fissure, which is not possible 

with the methods of [4] and [5]. The accuracy of our method, as indicated by the distance 

errors, should provide reliable quantitative measures such as lobar volumes, lobar tissue 

histograms, and other lobe-by-lobe measurements.

The gold standard manual segmentations for these experiments were provided by a single 

trained image analyst. All segmentations were subsequently reviewed by the authors for 

accuracy and judged acceptable. The differences between the manually-segmented and 

automatically-segmented fissures should be interpreted in light of the expected intra-

observer and inter-observer variabilities for this task; the manual segmentation task is 

especially difficult and subjective for the horizontal fissures and for the cases with 

incomplete fissures.

Since the segmentation errors were evaluated by measuring distances from the manual 

segmentation to the automatic segmentation, the performance may be biased toward the 

optimistic. Further, since the manual analyst only traced high confidence fissures, more 

difficult fissure regions might have been excluded from the error calculations, further biasing 

the results toward the optimistic. The algorithm itself and the associated algorithm 

parameters were developed and adjusted using a large database of image data from normal 

volunteers. The 12 normal testing data sets were randomly selected from this same pool, so a 

small optimistic bias in the results for the normal subjects may also be present because some 

of the testing data may have been evaluated during the development stage.

While the boundary positioning errors are on the order of 1 to 2 mm RMS, maximum errors 

on the order of 1 to 2 cm are shown in Table 15 for the right oblique fissure in normal 

subjects, and these errors are typical for the other fissures and for the emphysematous 

subjects. Figure 17 shows an explanation of these errors; part of the fissure closely parallels 

the heart boundary and the optimal surface detection does not follow the fissure all the way 

to its end point, but instead, jumps to the heart boundary. Since only a small fraction of the 

fissure surface is parallel to the heart boundary, this segmentation error is not likely to have 

an appreciable affect on lobar volume calculations. It may be possible to address this 

problem by changing the parameters C1, C2, and C3 in the cost function Cυ, or by changing 

the relative weighting between the intensity and ridgeness terms in the Cυ calculation.
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Occasionally, the initial lobar segmentation step based on the IWT needed manual 

intervention in the form of additional seed points placed on mislabelled vessels. Usually, this 

was associated with incomplete fissures where vessel segments cross over from one lobe to 

another. The re-segmentation with additional markers can be performed in near real-time, 

which is a major strength of the IWT. From our experiments, 20 to 25% of the cases require 

some manual seed selection to correct the vessel-guided segmentation. We estimate that the 

manual interaction to review the initial segmentation results and specify a seed point takes 

about 30 seconds.

Without specific attention to parallelization, a single-threaded implementation of the process 

shown in Figure 2 takes 10 to 12 minutes on a 1.6 GHz AMD Athlon workstation. 

Parallelization can be easily achieved, for instance, in the parallel segmentation of the left 

and right oblique fissures. For comparison, we estimate that it takes a human analyst about 

20 to 30 minutes to trace one oblique fissure on every slice of a CT image, so a complete 

manual analysis including all three fissures would take approximately 60 to 90 minutes.

VIII. Conclusion

We have presented an automatic method for the segmentation of the lobar fissures on chest 

CT scans. The method uses the interactive watershed transform, calculated on a vessel 

distance map, to obtain an initial segmentation. The initial segmentation is refined using 3D 

optimal surface detection on a ridgeness map. We have tested the method on images from 12 

normal and 17 emphysematous subjects and compared the computer results to the results 

obtained by manual analysis. The resulting lobar segmentations can be used to report image-

based measurements, such as mean lung density, on a lobe-by-lobe basis.
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Fig. 1. 
(a) Sagittal slice from the right lung showing the right oblique and horizontal fissures — the 

horizontal fissure is oriented horizontally, while the oblique fissure is tilted away from the 

vertical axis, (b) sagittal slice from the left lung showing the left oblique fissure, (c) 

transverse slice from a different data set that shows an incomplete right oblique fissure.

Ukil and Reinhardt Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Flow diagram of the fissure segmentation process. First, the lungs, airways, and vessels are 

detected. Using this anatomic information, an approximate fissure ROI is estimated. This 

ROI is refined using image grayscale information.
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Fig. 3. 
Lung contour (a) before smoothing, (b) after smoothing.
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Fig. 4. 
(a) Volume rendered vascular tree showing the relationship between the vascular tree and the 

lobar boundaries; (b) Anatomically labeled airway tree (from [13]) showing lobar sub-trees. 

The airway branchpoints TriLUL, LLB6, TriRUL, RB4 + 5 and TriEndBronInt correspond 

to the left upper lobe, left lower lobe, right upper lobe, right middle lobe and the right lower 

lobe, respectively.
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Fig. 5. 
(a) mislabelled vessel in left upper lobe, (b) segmentation after manual interaction.
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Fig. 6. 
Fissure ROI for left oblique fissure.
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Fig. 7. 
Angle of rotation of the ROI.
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Fig. 8. 
Sagittal plane from bounding box showing (a) Rotated ROI, (b) Ridgeness map.
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Fig. 9. 
(a,d) CT data, (b,e) Watershed segmentation, (c,f) Optimal surface detection.
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Fig. 10. 
(a) Projection images corresponding to cost values, (b) Transverse slice from the same 

dataset showing incomplete right oblique fissure.
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Fig. 11. 
Projection images corresponding to incomplete left oblique fissure: (a) Cost values (the red 

arrow denotes selected seeds), (b) Segmentation result.
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Fig. 12. 
(a) Transverse slice showing incomplete fissure, (b) Detected incomplete fissure obtained 

after analyzing the cost projection image.
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Fig. 13. 
(a) Transverse slice from right lung showing the branchpoint EndRMB, (a) Transverse slice 

from left lung showing the branchpoint EndLMB.
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Fig. 14. 
Incomplete fissure: (a) Original data set. (b) Watershed segmentation. (c) Extrapolated 

incomplete fissure.
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Fig. 15. 
Mean, RMS and maximum distances between manually-defined and computer-defined 

fissures for the right oblique fissure in normal datasets at TLC reconstructed with the B 

kernel. The last two columns for (a) show the mean ± standard deviation of the distances 

calculated over all datasets.
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Fig. 16. 
Regression line for runtime of graph search versus graph size.
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Fig. 17. 
Case illustrating a large maximum error due to failure to track fissure paralleling heart 

boundary. (a) Original data set with fissure marked with arrows. (b) Manual tracing. (c) 

Automatic segmentation.
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Table I

High-resolution CT based studies on automatic lobar fissure segmentation.

Authors Reported Results Comments

van Rikxoort et al. [3] 95% classifier accuracy direct, voxel classifier, needs post-processing steps to define lobar surfaces

Zhang et al. [4] 1.96 mm mean RMS error direct, atlas-based, computationally intensive, horizontal fissure semi-automatic

Wang et al. [5] 1.01 mm average distance error direct, shape-based, semi-automatic, oblique fissures only

Wiemker et al. [6] no validation direct, 3-D sheet filtering

Kuhnigk et al. [7] no validation indirect, watershed transform based, semi-automatic

Zhou et al. [8] no validation indirect, Voronoi division based
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Table III

Mean of RMS, mean and maximum distance errors, averaged across 12 normal datasets.

Fissure RMS (mm) Mean (mm) Max (mm)

TLC with B kernel

left oblique 2.31 ± 1.72 1.15 ± 0.16 24.06

right oblique 1.57 ± 0.17 1.25 ± 0.16 12.70

right horizontal 1.63 ± 0.99 0.96 ± 0.40 9.46

TLC with D kernel

left oblique 1.81 ± 0.58 1.12 ± 0.30 19.84

right oblique 1.57 ± 0.17 1.26 ± 0.14 11.99

right horizontal 1.43 ± 0.57 0.91 ± 0.22 8.64

FRC with B kernel

left oblique 2.70 ± 1.19 1.50 ± 0.32 23.79

right oblique 2.41 ± 0.58 1.67 ± 0.36 19.90

right horizontal 2.11 ± 1.94 1.23 ± 0.81 11.49

FRC with D kernel

left oblique 1.71 ± 0.60 1.06 ± 0.21 17.28

right oblique 1.88 ± 0.48 1.30 ± 0.29 19.70

right horizontal 2.31 ± 2.18 1.37 ± 1.03 10.05
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Table IV

Mean of RMS, mean and maximum distance errors, over 17 datasets with mild to moderate emphysema.

Fissure RMS (mm) Mean (mm) Max (mm)

left oblique 1.86 ± 0.64 1.12 ± 0.30 17.28

right oblique 2.04 ± 0.66 1.17 ± 0.21 19.70

right horizontal 1.50 ± 0.43 0.94 ± 0.23 10.05
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