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Abstract
Decorrelation noise limits the ability of phase-resolved Doppler optical coherence tomography
systems to detect smaller vessels exhibiting slower flow velocities, which limits the utility of the
technique in many clinical and biological settings. An understanding of the statistical properties of
decorrelation noise can aid in the optimal design of these systems and guide the development of
noise mitigating strategies. In this work, the statistical properties of decorrelation noise are derived
from the underlying statistics of the coherent imaging system and validated through comparison
with empirical results and Monte Carlo modeling. Expressions for the noise distribution and the
noise variance as a function of relevant imaging system parameters are given, and the implications
of these results on both system and algorithm design are discussed.
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I. Introduction
Doppler optical coherence tomography (DOCT) techniques [1], [2] allow microvascular
imaging within the superficial 1–2 mm of highly scattering tissue. Applications of the
technology extend from diagnostic medicine [3], where changes in vascular function are
hallmarks of a broad range of diseases, to biological studies of vascular physiology in
disease models [4]–[13]. While pilot studies of DOCT in these areas have generally
confirmed its promise, they have fallen short of establishing clear clinical or biological
utility. In large part, this is due to limitations in the flow sensitivity of DOCT imaging that
prevent the reliable detection of small vessels exhibiting flow velocities below
approximately 500 μm/s.

Flow contrast in phase-resolved DOCT (PR-DOCT) [14], which is an optical analog of
Doppler ultrasound imaging, is derived from modulations in phase of light induced by its
reflection from moving scatterers within the bloodstream. These motion-induced phase
shifts are revealed by differencing two measurements of the same location acquired at two
time points. The accuracy of these measurements, specifically the phase noise level of these
measurements, determines the sensitivity of the system. Initial work on PR-DOCT imaging
utilized time-domain OCT techniques that require a mechanical rapid scanning optical delay
which due to poor repeatability introduced large errors. Through the adoption of Fourier-
domain techniques which eliminate the need for scanning optical delays [15], [16] these
instrumentation-based noises have been eliminated [17], [18]. Within this regime of
negligible instrumentation noise, if we assume that the two measurements to be differenced
can be made to sense exactly the same physical structure of the tissue, then any detected
phase shift between them in excess of that predicted by the signal-to-noise ratio (SNR) can
be attributed to motion of scattering sites within the sample. However, a number of
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mechanisms prevent repeated measurement of identical areas in the tissue. The resulting
displacements between these measurements decorrelate the detected phase signal, inducing a
phase difference, termed decorrelation noise, that degrades the flow sensitivity of the
system. The significance of this noise to the overall sensitivity of PR-DOCT systems has
been demonstrated empirically in a number of recent works [19], [20], and mitigating
approaches have been proposed [21]. However, despite its prevalence, a description of the
statistical properties of decorrelation noise has not been reported. Knowledge of these
properties can help to guide the optimal design of imaging systems and can influence the
design of algorithms deriving blood flow and associated vascular parameters from the phase
difference data. The aim of this work is first to derive these properties, and second to briefly
illustrate their implications in two aspects of the design of a PR-DOCT imaging system.

The organization of this work is as follows: Section II describes the origin of decorrelation
noise in PR-DOCT; Section III presents the derivation of its statistical properties; Section IV
validates these derivations through comparison with both empirical results and Monte Carlo
modeling; and finally Section V discusses the noise properties and its implications on
imaging performance.

II. ORIGINS OF DECORRELATION NOISE IN PR-DOCT
The operating principles of PR-DOCT have been described in detail in a number of prior
works [14], [17], [22], [23]. The principles relevant to this work are briefly summarized in
this section, and the reader is referred to the aforementioned references for greater detail.
OCT techniques allow the measurement of the complex reflectivity of a scattering sample as
a function of depth (z) coordinate. Scanning the imaging beam along a transverse (x)
dimension enables two-dimensional (x,z) mapping of the complex reflectivity. Conventional
OCT images are generated from the magnitude of the scattered signal and allow imaging of
tissue microarchitecture based on endogenous variation in scattering cross-sections. In PR-
DOCT, a second image highlighting the vasculature is derived from the phase of the
scattered signal. To generate this image, a series of measurements are acquired, and the
phase difference between these measurements is displayed [14]. The phase difference
between two complex reflectivity measurements is therefore the fundamental signal
parameter in PR-DOCT imaging.

Decorrelation noise results from the comparison of two reflectivity measurements acquired
at slightly displaced transverse locations. Constant velocity beam scanning along the x-
dimension, for example, induces a deterministic displacement between phase measurements,
and the resulting decorrelation noise has been termed beam-scanning noise [19], [20].
Meaningful displacements can additionally result from non-deterministic sources such as an
instability of the beam scanning mechanism. We have observed that, even with an
unscanned beam, the dithering of a stationary but actively controlled galvanometric mirror
induces decorrelation noise at limiting levels. In this work, we adopt the more general term
decorrelation noise to encompass all noise resulting from a comparison of measurements
acquired at displaced locations regardless of the specific mechanism inducing that
displacement. Through a number of empirical studies, it has been shown that the magnitude
of decorrelation noise exceeds all other noise sources over a range of operating parameters
that encompasses typical system configurations [19], [20].

Fig. 1 defines generally the parameters of a pair of beams yielding a single phase-difference
measurement. Although we assume Gaussian beam profiles in this work, the methodology
supports arbitrary beam profiles. The two beams are labeled beam A and beam B and result
in complex reflectivity measurements at a given depth denoted by the phasors ΓA and ΓB,
respectively. As a result of the coherent imaging properties of OCT, these measurements are
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known to follow a complex Gaussian distribution [24], [25]. The phase difference between
them, θ, is the parameter of interest and is illustrated in Fig. 2a. The aim of this work is to
derive the statistical distribution of this phase difference as a function of the fractional
displacement given by the ratio of the beam displacement, δx, to the beam (1/e) radius, ωo.

A few notes are appropriate before proceeding. First, in this work we are concerned with
measurements made within tissue and thus we assume that the reflected signals originate
from a large number of randomly positioned scatterers within a particular voxel. The
analysis is therefore not applicable to the imaging of highly organized samples with large-
scale (relative to the imaging resolution) spatial correlations in complex reflectivity, e.g., a
mirror. Second, because of phase wrapping ambiguities in the PR-DOCT measurement
process, the phase difference is a circular parameter and is meaningfully defined only over a
range of 2π necessitating the use of circular statistics [26]. Third, the statistical distributions
of the phase difference at limiting values of fractional displacement are known a priori: as
(δx/ωo) becomes increasingly large, the measurements ΓA and ΓB become fully uncorrelated
and the distribution of the phase difference should asymptote to a uniform distribution from
−π to π; as (δx/ωo) approaches zero, the measurements ΓA and ΓB become identical and the
distribution should asymptote to a delta function centered at zero.

III. DERIVATION OF DECORRELATION NOISE STATISTICS
We begin the derivation by reformulating the problem definition illustrated in Fig. 2a to a
form that is free of statistically dependent parameters. The beam B is decomposed into a
linear combination of beam A and a third beam C with profile EC(x,y) that is orthogonal to
beam A,

(1)

Because the OCT system is linear, the measured complex reflectivity ΓB resulting from
beam B can be likewise decomposed into two terms, each being associated with one of the
terms of the modal decomposition in Eq. 1,

(2)

The phasor ΓC is defined as the measured reflectivity associated with beam C. The squaring
of the coefficients cBA and cBC in this expression results from the modal coupling that
occurs both on illumination (i.e., the fraction of the illumination beam B that mode-matches
to beam A) and detection (i.e., the fraction of the beam A that mode-matches back into the
illumination/collection fiber that defines beam B). This is in agreement with a prior model of
OCT detection [27].

Expressions relating the coefficients cBA and cBC to the fractional displacement (δx/ωo) can
be found using mode-overlap integrals. Using the definition of the field profiles of beams A
and B implied by Fig. 1, the coefficient cBA is given as

(3)
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To find a similar expression for the coefficient cBC, we first note that the ensemble averaged
squared magnitudes of ΓA and ΓB are necessarily equivalent. Further, we are free to define
arbitrarily the relative scaling of the beam C and the coefficient cBC, i.e., we can reduce the
magnitude of EC(x,y) by ½ if the coefficient cBC is increased by a factor of 2. According to
our formalism, the measured reflectivity ΓC is associated with the beam C defined by
EC(x,y), and therefore scales with this beam profile. Thus, we must first define the scaling of
EC(x,y) to obtain a specific expression for cBC in Eq. 2. For simplicity, we assume that
EC(x,y) is defined such that all three measurements ΓA, ΓB, and ΓC have equivalent average
squared magnitudes. Under this condition, Eq. 2 implies that the coefficients satisfy

, where we have used the statistical independence of ΓA and ΓC that results from
the orthogonality of the profiles of their associated beams. In combination with Eq. 3, this
expression defines the coefficient cBC, and allows the measurement ΓB to be expressed as

(4)

where . Using Eq. 4, we can define the problem entirely by the statistically
independent parameters ΓA and ΓC. Fig. 2b illustrates this reformulation.

Next we introduce a rotated coordinate system (X′,Y′) such that the X′-axis is defined by
the angle of the phasor ΓA. The phase difference, θ, which is invariant upon such a
rotational transformation, is given by the phase angle of the phasor ΓB in this rotated
coordinate system, as illustrated in Fig. 2c. We can express the phasor ΓB in the rotated
coordinate system as

(5)

Solving for the distribution of the angle of this phasor from the known underlying
distributions of |ΓA| and ΓC reveals the distribution of the phase difference, θ.

As described above, both ΓA and ΓC follow circular Gaussian statistics defined by the two-
dimensional probability distribution function

(6)

where the x and y coordinates represent the real and imaginary components of Γ
respectively. The average squared magnitude of Γ is equal to the parameter . Noting that
the average squared magnitudes of ΓA and ΓC are equal to one by definition, the distribution

of the second term of Eq. 5 is therefore described by Eq. 6 with the parameter .
The coordinate rotation used to arrive at the expression of Eq. 5 introduces a functional
dependence on the magnitude of the measurement ΓA. The distribution of the magnitude of a
circular Gaussian variable described by Eq. 6 is given by a Rayleigh distribution [24], [25]
defined by the distribution function

(7)
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The distribution of the first term of Eq. 5 is therefore described by Eq. 7 with the parameter
μ2 = α2. The distribution of the phasor ΓB in the rotated coordinate frame can be derived
from these distributions of its constituent terms. Specifically, the distribution of ΓB is given
by the convolution of the distributions of its two terms [28],

(8)

where the convolution integral is evaluated only for x′>0 as a result of the one-sided nature
of the Rayleigh distribution (Eq. 7).

The following substitutions x = rcos(θ) and y = rsin(θ) recast this distribution into polar
coordinates,

(9)

Finally, integration over the radial dimension leaves the distribution as a function of only the
angle, θ,

(10)

Equation 10 defines the decorrelation noise distribution over the range from −π to π as a

function of the coefficient α defined by the fractional displacement, . Note that in
the limit of an infinite fractional displacement, the coefficient α approaches zero and the
distribution converges to a uniform distribution. Likewise, in the limit of no fractional
displacement, the coefficient α approaches one, and it can be shown that Eq. 10 approaches
a delta function centered at zero. Fig. 3 plots this distribution for three values of the
fractional displacement. It is immediately apparent from Fig. 3 that the distribution possess
significant power in its tails. The excess kurtosis [26], [28] of the distribution is a measure
of this property. Values near zero indicate similarity with normal distributions (or their
circular statistical analogs such as the wrapped normal or Von Mises [26] distributions)
wherein relatively little power exists in the distribution tails. Values greater than zero
indicate increasing power in the tails with corresponding narrowly peaked distributions
about the center. The excess kurtosis of the decorrelation noise distribution for fractional
displacements below 0.1 exceeds ~35, indicating that the tails play a more significant role
(relative to Gaussian noise) in determining the overall variance of the distribution. This
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property can be used to inform the choice of data processing and filtering algorithms (see
Section V).

IV. Validation
Validation of the derived decorrelation noise distribution presented in Eq. 10 is achieved
through comparison with both measured noise statistics and numerically simulated noise
statistics. These validating methods are described here.

A. Measurement of Decorrelation Noise Statistics
Noise levels were acquired using a phase-resolved optical frequency domain imaging
(OFDI) system. The system design and its ability to make phase-resolved measurements has
been reported previously [17], [29]. The OFDI system utilized a wavelength-swept
narrowband laser source with a 10 kHz repetition rate. The laser swept from 1215 to 1360
nm with a linewidth of ~0.17 nm. The system featured both balanced and polarization
diverse detection. A 1% tap coupler in the sample arm was used to generate a continuous
phase recalibration signal that allowed phase variations due to timing jitter to be removed,
resulting in SNR-limited phase measurements absent decorrelation noise [17] Beam
scanning was achieved with a high-speed galvanometer (Cambridge Technology 6220H, 5
mm mirror) driven by the analog output of the acquisition board. To prevent digitization
errors from affecting beam scanning, the analog voltage waveform used to drive the
galvanometer was generated over the board’s full range (12 bits) and subsequently
attenuated to the desired amplitude by a variable voltage divider. A focused beam diameter
(intensity 1/e2) of 24 μm was used. Doppler processing of the images followed established
techniques [17], [18], [30]. Bulk motion artifacts were removed by subtracting from each
depth line in the Doppler image its measured median phase shift [31]. The phase differences
at each depth from each polarization channel were recorded. Noise measurements were
obtained by imaging a homogeneous rubber scattering phantom. Imaging was performed
over a transverse field of view (FOV) of 3.8 mm, and phase differences were calculated
between adjacent Alines. The number of A-lines per frame was varied to modify the
fractional displacement. Noise was measured in a region of interest extending from 170 μm
to 500 μm in depth and encompassing the center 85% percent of the image to exclude
artifacts resulting from either galvanometer flyback or from specular reflections at the
phantom surface. Measurements from a single polarization channel were used. Fig. 4(a–b)
presents reflectivity and phase difference images over a subset of the ROI over which
statistics were measured.

B. Monte Carlo Simulation of Decorrelation Noise Statistics
A Monte Carlo model of decorrelation noise was developed as a second validating method.
This model follows the problem definition of Fig. 1 and prior models of OCT detection [27].
The scattering of the sample as a function of x-coordinate is represented by an array of
random complex variables, Ri, with real and imaginary components uniformly distributed
over [−1,1]. The beam (field) profile array, Ei, is Gaussian in shape, and generated over n
points falling to 1/e5 at the edges. The complex reflectivities, ΓA and ΓB, were calculated
according to

(11)
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where Δ is an integer that defines the shift of beam B relative to beam A, and the array R is
generated with (n+Δ) elements. Fig. 4c illustrates this procedure. Each randomly generated
array R yields a pair of complex reflectivities ΓA and ΓB and a single phase difference, θ =
angle(ΓAΓB

*). Repeating this process for N arrays generates a distribution of phase
differences. Because of the high Kurtosis in the form of the decorrelation noise distribution,
accurate measures of the distribution required large values of N. In this work, a value of 1 ×
106 was used for both parameters n and N.

C. Comparison of Analytic, Measured, and Monte Carlo Noise Distributions
To validate the distribution of Eq. 10, decorrelation noise was measured and simulated as
described in sections IV.A and IV.B for fractional displacements of 0.078 and 0.156.
Histograms of the resulting noise were normalized by the total sample count and histogram
bin width to express the probability density in units of (1/radians) matching that given by
Eq. 10. Fig. 5 plots the analytic, measured, and Monte Carlo noise distributions for these
fractional displacements showing excellent agreement between all methods.

V. Discussion
As discussed earlier, knowledge of the specific properties of a dominate noise source can
guide the optimal design of an imaging system and influence the selection of signal
processing and noise filtering algorithms. In this section, we present two such examples
along these lines. First, we use these statistics to guide the selection of the fractional
displacement, which generally involves a compromise between the need for (i) rapid
imaging enabled by larger fractional displacements and (ii) high sensitivity that requires
smaller fractional displacements. Using Eq. 10, we can quantify the magnitude of
decorrelation noise as a function of the fractional displacement,

(12)

This integral can be evaluated straightforwardly using numerical integration. We note that
the noise magnitude predicted by Eq. 12 conflicts with a previously reported expression [19]
but agrees both with measured and simulated noise magnitudes. To illustrate the utility of
Eq. 12 in the design of an imaging system, we follow the method of [19] which examines
the relative magnitude of decorrelation noise to that resulting from the SNR limit. In Fig. 6,
the fractional displacement (lower y-axis) is plotted as a function of its resultant noise

magnitude. Note that, for large displacements, the noise magnitude asymptotes to 
radians - the standard deviation of a uniform distribution over the range [−π,π). Below
fractional displacements of approximately 10%, the noise follows an approximately linear
dependence on displacement. Also plotted in Fig. 6 is the SNR (upper y-axis) required to
achieve a given noise magnitude in the absence of decorrelation noise. This relationship
[19], [32] is approximated by 〈Δθ2〉 ≈ SNR−1. Although this expression is inexact because
it neglects the circular nature of the phase difference, simulations indicate the error in its
predicted RMS noise magnitude is less than 3% for SNRs exceeding 10 dB. If we assume an
SNR of light scattered from vessels of interest ranging from 15 dB to 30 dB, typical for
vessels located at a depth of ~500 μm, one can see from Fig. 6 that fractional displacements
less than 0.064 and 0.009 respectively are required to maintain nearly SNR-limited
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performance. These fractional displacements along with the focused beam size and system
A-line rate determine maximum imaging speeds such that decorrelation noise remains at or
below SNR-limited performance levels.

As a second example, we use the specific distribution of decorrelation noise described by
Eq. 10 to quantify the performance of three simple filtering approaches commonly applied
in Doppler imaging to reduce noise. An examination of the distribution presented in Fig. 3
highlights the high kurtosis of this noise, suggesting that relatively few samples of large
deviation from the mean disproportionately affect the overall noise performance, and that
filtering approaches with outlier rejection properties are well matched to decorrelation noise.
We analyzed the performance of straightforward mean and median filters (applied directly
to the phase difference data), and an amplitude weighted mean filter that weights each phase
difference by a power of the amplitude of one of the component signals, |ΓA|k. Using the
numerical model, filters were applied to decorrelation noise samples of size n = [3, 10, 20,
30, 40], and the residual error of each was recorded for 250,000 independent sets for each
set size. Fig. 6 plots the standard deviation of this error for each of the three filters as a
function of the sample size. In Fig. 6, the amplitude weighted filter used the squared
magnitude (k = 2) as the weighting parameter. The dependence of the estimator error as a
function of the weighting parameter k for set size n = 20 is shown in the inset and indicates
that the error is minimized near this value of k = 2. As anticipated, the mean filter performs
poorly relative to the median filter due to the poor outlier rejection properties of the former.
Further, the amplitude-weighted filter outperforms both the mean and median filter. The
origin of outlier rejection for the filter in this application results from its ability to de-
emphasize those phase differences for which the magnitude of the first measurement, |ΓA|, is
small relative to its ensemble average. A small magnitude |ΓA| increases the susceptibility of
the measurement to phase perturbation by the phasor |ΓC| (see Fig. 2c), and therefore lower
values of |ΓA| are characteristic of the outlier points (data not shown). We note that, although
we have used the magnitude of the phasor ΓA as the weighting, the complimentary phasor
ΓB could be used with the same results by symmetry, or the average of the two phasor
magnitudes could be used. Further, it is interesting to note that amplitude weighting by the
squared magnitude (k = 2) is additionally optimal if the system is SNR limited assuming
Gaussian noise statistics, and the weighted mean filter can thus be applied efficiently across
both of these noise limiting regimes.

The examples above serve both to describe specifically the implications of the derived
statistical properties of decorrelation noise on the design of PR-DOCT systems as well as to
illustrate generally the practical utility of these properties in the design of phase-sensitive
OCT imaging systems.

VI. Conclusion
The statistical distribution of decorrelation noise in PR-DOCT imaging was derived from
the underlying statistical properties of OCT signals and using optical mode overlaps to
quantify correlations. Expressions for the noise distribution and variance as a function of the
fractional displacement between beams are given and validated through comparison with
both measured and numerically modeled noise distributions. The utility of these noise
properties in the design of imaging systems was illustrated in two examples. The improved
performance that results can directly enhance the ability of PR-DOCT systems to visualize
smaller vessels or to image more rapidly, both of which can lead to enhancements in the
clinical or biological utility of the technology.
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Fig. 1.
The beam profiles and defining parameters (δx, 2ωo) of the displaced Gaussian beams
resulting in a single pair of phase measurements, and a single phase difference measurement.
The parameter 2ωo defines the 1/e2 (power) beam diameter at its focus.
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Fig. 2.
(a) Each of the beams A and B yield a complex reflectivity (for a given depth) represented
by the phasors ΓA and ΓB, respectively. The signal of interest is the phase difference
between these phasors, θ. (b) The correlation between the phasors ΓA and ΓB is described
explicitly by expressing the phasor ΓB as a linear combination of ΓA and a third independent
phasor ΓC, with the coefficients of this linear combination being determined by the
fractional displacement of the two measuring beams, (δx/ωo). (c) Using a rotated coordinate
frame in which the X’ axis is aligned to the phasor ΓA. equates the phase difference, θ, with

the angle of the phasor .
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Fig. 3.
The decorrelation noise distribution is shown for three fractional displacements, (δx/ωo).
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Fig. 4.
The experimental and numerical validating methods are illustrated. Decorrelation noise was
measured by imaging a homogenous scattering phantom using a Doppler optical frequency
domain imaging (OFDI) system. Corresponding intensity (a) and phase difference (b)
images over a reduced ROI are shown for a fractional displacement of 0.156. Note that the
colormap on the Doppler image is truncated from its full range of [−π, π] to [−π/2, π/2] to
increase contrast. (c) The generation of decorrelation noise by numerical simulation is
illustrated. The beam profile (E2) given by the intensity of the Gaussian imaging is
multiplied by an array of randomly generated complex reflectivities (R) with and without an
offset of Δ and summed to give correlated complex reflectivities ΓA and ΓB respectively.
The fractional displacement is given by the ratio of Δ to the beam width.
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Fig. 5.
(a) The derived analytic expression for the decorrelation noise distribution is compared with
measured noise distributions from a PR-DOCT system and simulated noise distributions
from a Monte Carlo model for (a) fractional displacement (δx/ωo) = 0.078 and (b) (δx/ωo) =
0.156. The analytic expression displays excellent agreement with both the measured and
simulated distributions over the full angular range.

Vakoc et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The fractional displacement and signal-to-noise ratio (SNR) are plotted versus their resulting
RMS phase noise. Using these relations, imaging systems can be designed to achieve the
highest imaging speed (resulting from the highest fractional displacements) while limiting
decorrelation noise levels at or below the level resulting from an anticipated SNR level. As
an example, SNR levels of 15 dB to 30 dB require limiting fractional displacements to less
than 0.064 and 0.009 respectively to maintain near SNR limited Doppler performance.
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Fig. 7.
The performance of mean, median, and weighted mean filters applied to decorrelation noise
is plotted for a series of sample counts (n = 3, 10, 20, 30, and 40). The estimator errors were
calculated as the standard deviation of that estimator applied to 25000 independent sets (of
sample count n). These sets were generated using the Monte Carlo model of decorrelation
noise. For the weighted mean, weights were given by |ΓA|2. Both the median and weighted
mean posses outlier rejection properties that reduce the impact of the large power in the tails
of the decorrelation noise distribution function. The error for the median and weighted mean
estimators as a fraction of the error of the mean estimator is given as the label for each point
in their respective curves. The fractional displacement (δx/ωo) for this calculation was 0.12
corresponding to an unfiltered RMS noise level of 0.31 rad. Inset: the estimator error for the
weighted mean filter and sample count n = 20 is shown as a function of the weighting
exponent, k. Optimal filtering is achieved near k = 2.
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