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Abstract

The expression of the HER-2/neu (HER2) gene, a member of the epidermal growth factor receptor 

family, has been shown to be a valuable prognostic indicator for breast cancer. However, 

interobserver variability has been reported in the evaluation of HER2 with immunohistochemistry. 

It has been suggested that automated computer-based evaluation can provide a consistent and 

objective evaluation of HER2 expression. In this manuscript, we present an automated method for 

the quantitative assessment of HER2 using digital microscopy. The method processes microscopy 

images from tissue slides with a multistage algorithm, including steps of color pixel classification, 

nuclei segmentation, and cell membrane modeling, and extracts quantitative, continuous measures 

of cell membrane staining intensity and completeness. A minimum cluster distance classifier 

merges the features to classify the slides into HER2 categories. An evaluation based on agreement 

analysis with pathologist-derived HER2 scores, showed good agreement with the provided truth. 

Agreement varied within the different classes with highest agreement (up to 90%) for positive (3+) 

slides, and lowest agreement (72%–78%) for equivocal (2+) slides which contained ambiguous 

scoring. The developed automated method has the potential to be used as a computer aid for the 

immunohistochemical evaluation of HER2 expression with the objective of increasing observer 

reproducibility.
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I. Introduction

Inspite of the prognostic value of traditional clinical risk factors, such as tumor size, lymph 

node status, histologic grade, and age [1], the information arising from such factors is not as 

precise and accurate as needed to reliably identify those individuals who will require and 

benefit from a particular therapy from those who will not [2]. As a result of this lack of 

ability to focus on individuals with customized predictions, many otherwise lower risk 

women currently undergo aggressive therapy with its acute side affects including pain, 

premature menopause, weight gain, mild memory loss, fatigue, and potential loss of life 

from complications of therapy. Conversely, about a third of patients with no detectable 

lymph node involvement will develop recurrent disease within 10 years [3]. Improved tools 

are clearly needed for the assessment of prognosis in breast cancer in order to identify 

patients at higher risk of relapse and to select the most appropriate systemic treatment for an 

individual patient [4]. Molecular information has in recent years demonstrated the capacity 

to identify characteristics that reflect tumor behavior and that relate to disease progression 

and outcomes, including cancer recurrence. As a result, molecular markers (or biomarkers) 

have been extensively investigated as prognostic factors, defined as factors that predict the 

risk of recurrence or of death from cancer independently of treatment, and/or predictive 

factors, defined as those that predict the response of a patient to a certain treatment [5], [6].

For breast cancer, several biomarkers have been identified [7]–[17]. The HER2 biomarker 
(HER2/neu or erb-B2), a member of the epidermal growth family, is over-expressed, 

amplified, or both, in 15%–20% of high-grade invasive breast cancers [18] and has been 

associated with rapid tumor growth, increased risk of recurrence after surgery, poor response 

to conventional chemotherapy and shortened survival [19]–[21]. As a predictive biomarker, 

HER2 positivity has been associated with a significant benefit in disease-free and overall 

survival from the addition of paclitaxel to adjuvant treatment [22]. Primarily though, HER2 

has been used over the last few years to identify likely responders to trastuzumab therapy 

(Herceptin, Genentech, CA). Five international, prospective randomized clinical trials have 

demonstrated that adjuvant trastuzumab reduces the risk of recurrence and mortality by one 

half and one third, respectively, in patients with early stage breast cancer [23]–[27]. On the 

other hand, trastuzumab therapy is costly (cost between $50 000–$100 000/year [28], [29]) 

and has side effects including risk of heart dysfunction [30], [31]. Accurate evaluation is 

necessary to correctly identify HER2-positive breast cancer patients and at the same time 

avoid false classification.

Currently, the two most widely used technologies to determine HER2 status are 

immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). IHC provides a 

measure of protein expression whereas FISH provides a measure of gene copy amplification. 

Several studies have focused on the correlation of protein over-expression and gene 
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amplification and consequently on the use of IHC and/or FISH for HER2 evaluation [32], 

[33]. Recent guidelines from the College of American Pathologists (CAP) and the American 

Society of Clinical Oncology (ASCO) for HER2 evaluation recommend IHC analysis to 

determine negative, equivocal, and positive specimens, and further evaluation of equivocal 

cases with FISH [29].

The evaluation of HER2 with IHC involves the visual examination of cell membrane 

staining in paraffin-embedded tissue slides with a light microscope and overall slide 

classification in categories of {0, 1+, 2+, and 3+} corresponding to no staining, weak, 

moderate, and strong staining. According to the CAP/ASCO guidelines cases scored as 3+ 

are recommended for trastuzumab therapy, whereas 2+ cases are subject to further testing 

with FISH. They define as positive (3+) a case with complete, intense, and uniform staining 

in > 30% of invasive tumor cells; as equivocal (2+) a case with complete membrane staining 

that is either weak or nonuniform in intensity in > 10% of tumor cells, and as a negative 

result (0, 1+) a case showing no staining or weak, incomplete membrane staining in any 

proportion of tumor cells [29]. Evaluating criteria such as intensity and uniformity of 

staining, and estimating the percentage of stained cells is a subjective process that affects the 

accuracy of IHC assessment and contributes to interobserver variability. Observer variability 

associated with quantifying expression levels using color-grading approaches is well-

documented [34]–[37]. A recent study by Hsu et al. [38] on the evaluation of HER2 by five 

observers reported complete agreement in 48% of HER-2 cases (22 out of 46). 

Distinguishing moderately (2+) from strongly (3+) positive results showed agreement in 

only 13 (59%) of 22 positive cases. There is clearly a need for quantitative methods to 

improve the accuracy and reproducibility in the assessment of immunohistochemical 

staining.

The use of computer-aided microscopy has been suggested as a way to improve 

interobserver reproducibility in the immunohistochemical interpretation of biomarkers [39]–

[42]. Computer-aided microscopy involves the digitization of stained tissue and the 

automated evaluation of immunohistochemistry with image analysis. In the case of HER2, 

the CAP/ASCO guidelines recognize image analysis as an effective tool for achieving 

consistent interpretation of immunohistochemical staining, provided that a pathologist 

confirms the result [29]. Computer-aided quantitative assessment of immunohistochemical 

staining has potentially the following benefits. 1) it can provide a true continuous and 

reproducible assessment of staining. The human eye has a difficulty distinguishing subtle 

differences in staining intensity using a continuous scale [42]. Consequently, scoring 

systems tend to be nominal (i.e., 0, 1+, 2+, and 3+). Studies for HER-2 have shown that 

accurate distinction between nominal categories is difficult and often arbitrary, and this 

difficulty contributes to a significant lack in reproducibility [43]. 2) Automated systems can 

consistently preselect stained areas and extract a score from them or point the same areas to 

different observers; the selection of different areas to be assessed by different observers has 

been identified as a source of interobserver variability [35]. 3) Automated systems could be 

used for screening for strongly positive or strongly negative slides so that the ever-increasing 

reading load of a pathologist will be relieved from obvious cases. 4) In addition to increased 

reproducibility, automated systems have the potential to increase prognostic accuracy by 
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revealing differences in biomarker expression that are not discernible to the pathologist due 

their inability to distinguish between fine levels of expression [42], [44].

A few studies have reported on the development of methodologies for the computer-aided 

assessment of HER2 with immunohistochemistry. Camp et al. [44] developed a system for 

the quantitative assessment of HER-2 which showed good correlation with manual 

evaluation and was able to identify a category of HER-2 expression that was linked to poor 

outcome. Their method required the application of fluorescent tags on slides and the use of 

fluorescent microscopy, limiting its broad application. Other studies [45]–[47] used image 

analysis software to quantify HER-2 expression but their approach required user-

intervention. Other than research studies, a number of commercial systems currently exist 

for the evaluation of immunohistochemistry, as reviewed by Cregger et al. [48]. Such 

systems have been used to assess HER2 status with immunohistochemistry [49], [50]. A 

limitation of commercial systems is that they require manual intervention, in the sense that 

they are trained for a particular biomarker set and need to be manually optimized to staining 

conditions of different biomarkers or different staining antibodies by changing thresholds or 

other image characteristics (saturation, contrast, etc.) [40]. Such adjustments reintroduce 

subjective criteria and sources of interlaboratory variability.

In this manuscript we present a method for the automated quantitative assessment of HER2 

immunohistochemistry in breast cancer tissue specimens. The method processes microscopy 

images from a tissue slide and extracts quantitative, continuous measures of cell membrane 

staining intensity. An algorithm merges the features to classify the slides into HER2 

categories. This method is the first step towards a system for the computer-assisted 

immunohistochemical evaluation of HER2, with the objective of increasing interobserver 

reproducibility.

This paper is organized as follows. In Section II the data set used in this study is described. 

In Section III we present the method for quantitative assessment of HER2 with IHC. Results 

and discussion are provided in Section IV. Finally, we conclude in Section V.

II. Materials

A. Data Description

The dataset for algorithm development and evaluation included 77 formalin fixed, paraffin 

embedded breast cancer tissue slides acquired from the archives of the Department of 

Pathology, University of California at Irvine.

The specimens were sectioned onto positively charged slides and deparaffinized. Antigen 

retrieval was carried out with Dako Target Retrieval Solution pH 6 in a pressure cooker for 5 

min. Application of primary antibody and detection system was performed on a Dako 

Autostainer Plus automated immunostainer (Dako Inc., Carpinteria, CA). The HER2 

polyclonal antibody (Dako Inc., Carpinteria, CA) was used at a dilution of 1:500. Negative 

controls were performed with substitution of a rabbit immunoglobulin for the primary 

antibody.
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Manual evaluation of the staining in categories 1+, 2+ or 3+ (with increasing expression) 

was provided by a surgical pathologist with experience in breast pathology, applying the 

grading system of the Dako Herceptest. Briefly, no staining is designated as 0 (not available 

in our data set), incomplete, faint membrane staining in > 10% of cells in a section was 

designated 1+, and moderate or strong complete membrane staining in > 10% of cancer cells 

was designated 2+ or 3+ respectively. The IHC scoring of this data set was performed before 

the recent CAP/ASCO guidelines (which call for report on staining from > 30% of cells 

instead of 10%) [29] were published. The distribution of the slides scores was as follows: 26 

were scored 1+, 27 were scored as 2+, and 24 were scored as 3+. The data set provided 

training and testing sets for algorithm design and evaluation respectively. Specifically, 13 

slides (four with a score of 1+, five with a score of 2+, and four with a score of 3+) were 

randomly selected from each category for algorithm development and parameter 

optimization, and the remaining 64 slides (22 with a score of 1+, 22 with a score of 2+, and 

20 with a score of 3+) were used for cross-validation performance evaluation, as will be 

described in Section III.

B. Whole Slide Digitization and ROI Selection

All tissue slides were scanned using the Aperio Scanscope T2 Whole Slide Imager (Aperio 

Technologies, Vista, CA). The system employed 20X objectives, an auto-focus function, and 

a robotic arm for feeding slides for scanning. For each of the resulting whole digital slides, 

regions of interest (ROIs) were extracted from areas of epithelial cells. Enough ROIs were 

extracted to cover the whole area of epithelial cells, with an average of 10 ROIs per digital 

slide. Each ROI image was saved in a color TIFF format with 8 bits and a size of 646 × 816 

pixels. Fig. 1 shows three representative ROIs from slides scored as 1+, 2+, and 3+, 

respectively.

III. Methods

The automated method for the IHC assessment of HER2 consisted of a multistage algorithm 

that extracted quantitative features describing HER2 membrane staining from each ROI, and 

a classifier that was trained to provide an overall HER2 score for the whole digitized breast 

cancer tissue slide. The main steps of the overall system are depicted in Fig. 2 and described 

in detail in this section.

A. Color Pixel Classifier

In the first stage of the algorithm, color pixel classifiers were trained to distinguish between 

three classes of pixels: epithelial cell nuclei, epithelial cell membrane, and background, 

which consisted of the remaining pixels. As a preprocessing step, light-colored pixels were 

removed from each ROI image using an empirically-set threshold of 240 on the pixel value 

of each of the RGB channels. Pixel classification on the remaining pixels was performed in 

two steps. First, a linear regression classifier was used to extract membrane pixels in the 

image. A second linear regression classifier was trained to extract nuclei pixels. The 

motivation behind the two-stage pixel classification was the fact that nuclei and background 

pixels had similar color properties which were distinctively different from those of the dark-

stained membrane pixels, making it more efficient to treat this problem as two separate 
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binary classification tasks. The procedure for color pixel classification is described in this 

section.

1) Membrane Pixel Extraction: A linear regression classifier was trained to distinguish 

between membrane and nonmembranous pixels using color information. A total of 468 

membrane training pixels and 811 nonmembranous pixels (427 nuclei and 384 background 

pixels) were manually selected from ROIs of the 13 training slides to reflect a wide range of 

membranous staining (from faint, light brown pixels to strong and intense brown colored 

membrane pixels), and nonmembrane pixels. Membrane pixels were selected from epithelial 

cells whereas nonmembranous pixels were selected from cell nuclei areas as well as 

background (nonepithelium) areas. Training pixels were assigned a continuous score ranging 

from 0 for unstained/nonmembranous pixels to 1 for membranous pixels showing intense 

staining.

Several color spaces provided features to describe the color content of each pixel and train 

the linear regression classifier. A number of color spaces are available to represent color as 

reviewed in [51]. It has been shown in several applications of color image processing that 

color transformation may affect classifier performance for several reasons including 

increased robustness to lighting variations if pixel luminance is discarded [52], and the effect 

of color transformations to color quantization [53]. For this application we investigated the 

use of red–green–blue (RGB), Hue-Saturation-Value (HSV), and CIE*Lab (LAB) color 

spaces [54], which are commonly used in color image analysis and have been previously 

used to segment cell nuclei [55]. For each training pixel, a feature vector was constructed 

consisting of the RGB, HSV and LAB coordinates for a total of nine feature values. 

Stepwise linear regression was used to select features which contributed to a statistically 

significant improvement in classifier performance and to determine the weights of the 

classifier. Using this commonly used procedure, feature selection and classifier training were 

performed simultaneously on all our training pixels. The stepwise regression analysis 

resulted in a reduced subset of seven color channels (R, G, B, S, V, A, B).

By applying a threshold on the classifier output, pixels were classified as membranous or 

nonmembranous. Fig. 3(a) shows receiver operating characteristic (ROC) curves describing 

the training performance of the linear regression classifier for membrane extraction. ROC 

analysis is commonly used for performance assessment of diagnostic tasks as reviewed in a 

recent tutorial by Wagner et al. [56]. ROC curves are constructed from pairs of true positive 

fraction (TPF) and false positive fraction, collected for different threshold values. For this 

study, TPF was defined as the number of detected true membrane pixels over the total 

number of membrane pixels, whereas FPF was defined as the number of false positive 

membrane pixels over the total number of detected pixels. Detected membrane pixels were 

those for which the classifier score value was higher than a predetermined threshold, which 

was varied between 0 and 1 to collect {TPF, FPF} pairs. The effect of threshold choice on 

overall performance will be discussed in Section IV.

Following classification, the coordinates of membrane pixels were stored in a separate image 

whereas nuclei and background pixels were subject to further classification as described 

below.
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2) Epithelial Nuclei Pixel Extraction: The non-membranous pixels resulting from the 

previous step were classified by a second linear classifier to distinguish between nuclei and 

background pixels. This was a more challenging problem because of the relative color 

similarity between nuclei and background. Similarly to the first classifier, the second 

classifier employed color features resulting from stepwise discrimination analysis. The 

stepwise regression analysis resulted in only two significant color features, namely G (from 

RGB space) and A (from LAB space). Due to the noisy nature of nuclei and background 

areas, we investigated the utilization of neighborhood information around each pixel. For 

each pixel, the mean value of its N × N neighbors for each color feature was computed and 

used in the feature vector. The value of N was limited by the nuclei area. A comparison of 

classifier performance between the use of single-pixel values and the use of mean values 

from 5 × 5 neighborhoods is illustrated using the ROC curves of Fig. 3 (bottom plot). Based 

on this analysis, a value of 5 was chosen for N, i.e., a pixel value was replaced by the mean 

feature value of its 5 × 5 neighbors. A total of 427 nuclei pixels and 384 background pixels 

were used for training purposes, with nuclei pixels being assigned a 1 and background pixels 

a 0 value. A threshold was applied to the classifier output to detect nuclei pixels. 

Background pixels were removed whereas nuclei pixels were further processed to define 

nuclei regions.

B. Epithelial Nuclei Segmentation

Following pixel classification, connected component analysis on the detected nuclei pixels 

was used to form nuclei regions. From the resulting regions, small regions with area less 

than 50 pixels were removed based on empirical observations on epithelial nuclei areas from 

the training images. The remaining regions included a number of overlapping nuclei. The 

segmentation of overlapping cells is a well-known problem in cytology [57], [58]. In order 

to address this problem, the marked watershed segmentation algorithm was used [59], a 

region growing method where local minima of certain depth (or intensity difference from its 

neighbors) are used to guide segmentation. This approach has been described in detail in the 

study by Raimondo et al. [57] where it was used for nuclei segmentation in FISH image 

analysis.

The marked watershed algorithm was selectively applied only to structures consisting of 

overlapping cells. In order to identify these structures and avoid unnecessary segmentation 

of single nuclei, the shape of each region was analyzed prior to segmentation. Structures of 

overlapping cells appeared to be more irregular than single nuclei. An ellipse was adaptively 

fitted around each region and the overlap between the ellipse-enclosed area and the region 

area was used to identify irregular structures of overlapping cells. The identified structures 

were subject to the procedure of marked watershed segmentation described above.

As a final processing step, a hole-filling operation (where background pixels surrounded 

completely by nuclei pixels were set to nonzero value) was applied to the remaining regions. 

This step was necessary to correct for imperfections in pixel classification. It has to be noted 

that this step should not be applied to structures of overlapping cells prior to watershed 

segmentation, since hole-filling could eliminate gaps between neighboring nuclei and affect 

the selection of local minima. An example of watershed segmentation and the effect of hole-
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filling are demonstrated with the example of Fig. 4. At the end of this stage, nuclei regions 

were segmented and were used to assess membrane staining as described in the next section.

C. Membrane Modeling Using Adaptive Ellipse-fitting

For each nuclei region in an ROI image, the membrane pixels within a search window 

around the nucleus were identified and used to extract quantitative measures of HER2 

staining. The search window dimensions for each nucleus were empirically selected as a 

rectangle with sides 1.5 × (the sides of the minimum rectangle enclosing the nucleus region). 

For each pixel the output of the linear regression membrane classifier described in Section 

III-A was available, ranging from 0 for a light brown (indicating weak staining and low 

HER2 expression) to 1 for a dark brown pixel (indicating strong staining and high HER2 

expression). Using a threshold on the classifier output value, membrane pixels within the 

search window were selected in order to fit an ellipse enclosing the nucleus. Ellipse fitting 

was based on minimizing the least square error between those pixels and the fitted ellipse as 

in [60]. The value of the threshold was initially set to 1 and was reduced until enough points 

were available for ellipse fitting, so that pixels with the highest intensity would be included 

in the fit. The ellipse fit was considered proper if it overlapped the area of the nucleus and 

was within the search window of the nucleus. An example of the resulting ellipse-fitting for 

a 3+ slide is shown in Fig. 5.

D. Membrane Feature Extraction

Based on the resulting ellipses fitted around nuclei, the features membrane completeness and 

membrane staining intensity were extracted, with the objective of providing quantitative 

measures of HER2 expression.

The first feature, membrane completeness (or closing), was defined as the percentage of 

membrane pixels on the fitted ellipse with staining intensity (membrane color pixel classifier 

output) value larger than a threshold tstained. This feature approaches 1, indicating strong 

expression, if all membrane pixels on the fitted ellipse have intensity larger than tstained. The 

threshold tstained essentially defines what constitutes a “stained” pixel. The variable 

definition of a stained pixel (or membrane area as evaluated with a microscope) has been 

identified as a source of observer variability [35]. The value of tstained was determined using 

an optimization procedure described in the next subsection.

The second feature, membrane average intensity, was defined as the average staining 

intensity (average membrane color pixel classifier output) of the membrane pixels on the 

fitted ellipse pixels.

The two features provided a quantitative assessment of membrane staining intensity and 

degree of closing, two measures that pathologists evaluate perceptually to derive an 

assessment score of HER2 staining. The feature values of all nuclei within the ROI images 

of each slide were averaged to derive mean membrane completeness and mean membrane 
intensity values for each slide.
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E. Slide Classification

The extracted features, mean membrane completeness and mean membrane intensity, where 

used to classify each slide in a category of 1+, 2+, or 3+, using a minimum cluster distance 

(MCD) classifier. The MCD classifier was trained using the following procedure. First, the 

evaluation set of cases (tissue slides) was split between training and testing sets. Using the 

training set, the two features were calculated as a function of tstained. Based on the available 

truth regarding the score of each slide, clusters were formed in the feature space for each of 

the three classes (1+, 2+, and 3+), and the cluster means were calculated. The Euclidean 

distances in the feature space between the feature values of a training slide and each of the 

three training cluster means was extracted and used to classify each slide to the class with 

the nearest cluster mean. The procedure was repeated for varying values of tstained to identify 

the value that maximized classifier performance. The performance metric used in agreement 

analysis was percent correct agreement, as will be described in Section IV. The value for 

derived from training was used to extract feature values (mean membrane completeness and 

mean membrane intensity) for the slides in the testing set. Finally, the Euclidean distances in 

feature space between the feature values of a testing slide and the three cluster centers 

extracted from the training procedure were used to classify each testing slide in one of 1+, 

2+, and 3+ categories.

F. Performance Evaluation

The absence of a gold standard for HER2 assessment makes performance evaluation a 

challenging task. In some studies, correlation of IHC with FISH was used as the figure of 

merit to compare human vs. computer-aided evaluation of HER2 [50]. However, even 

though IHC and FISH scores demonstrate an overall high level (> 90%) of concordance in 

the literature [61], [62], this issue is still controversial with arguments that HER2 gene 

amplification, determined by FISH, does not correspond directly with HER2 gene over-

expression as determined by IHC [63]. Moreover, both FISH and IHC evaluations of the 

same cases are not always available, as is the case for the dataset used in this study. A 

different approach to performance evaluation in the absence of ground truth involves 

agreement analysis. As presented in a review by Kundel et al. [64], statistical analysis of 

observer agreement is generally performed for a number of reasons: it provides information 

about the reliability of imaging diagnosis since a reliable method should produce good 

agreement when used by knowledgeable observers. It can be used to check the consistency 

of a method and to provide an assessment of a methodology when measurement of 

sensitivity and specificity is precluded. Agreement analysis is well suited to this application 

since truth regarding the quantitative HER2 expression is absent and the task becomes the 

estimation of the ordinal true score. Based on the archived HER2 scores of the breast tissue 

data set, agreement analysis was performed between the automated, computer-based 

assessment scores and the pathologist-provided scores.

The figure of merit used to assess agreement between the computer-based and the 

pathologist-based classification scores was percent correct three-class agreement, defined as 

the percentage of cases for which the computer-based and pathologist-based score coincided. 

Concordance analysis has been used often for HER2 evaluation, namely in the comparison 

between IHC- and FISH-based classification [32], [38], [49], [65], [66]. The overall 
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performance of the algorithm using percent correct agreement was assessed using k-fold 

cross validation of the evaluation set (64 slides), where the data was split into k data subsets 

of samples, training was performed on k – 1 subsets and testing was done on the remaining 

set. The process was repeated k times until each subset served as a test set, and an overall 

performance measure was calculated as the mean performance on the k testing sets. Cross 

validation was used in order to maximize the utility of our limited data set and extract an 

estimate of the ability of the developed algorithm to generalize its performance on unknown 

samples. The k subsets included samples drawn from the three HER2 classes (1+, 2+, and 

3+).

IV. Results and Discussion

The developed algorithm for the automated extraction of quantitative measures of HER2 

expression was applied to the set of 64 digital breast cancer slides. As described in the 

previous section, feature values from epithelial cells were averaged to produce overall 

feature values for each slide. The distribution of the two features mean membrane 
completeness and mean membrane intensity over all 64 slides is plotted in Fig. 6, along with 

the archived HER2 scores for each slide. The plot shows a pattern of increasing feature 

values from 1+ to 3+ slides as expected. Also evident from the plot is a degree of overlap 

between score classes which can be attributed to variability in both the staining properties of 

different slides within a class and the pathologist’s staining interpretation. Another 

observation from Fig. 6 is the correlation between the two features which was expected since 

positive samples have by definition both strong and circumferential membrane staining.

The extracted features were used to classify each slide in one of the {1+, 2+, 3+} HER2 

categories using the MCD classifier described in Section III-E. The performance of the 

classifier was evaluated using k-fold cross validation and three-class agreement analysis to 

the pathologist-derived archived HER2 scores. Fig. 7 illustrates percent correct agreement as 

a function of different threshold values of the membrane pixel classifier. A k value of 16 was 

used for this analysis which essentially examined the effect of varying the definition of a 

“stained” pixel. Variation in the definition of tissue positivity has been identified as one of 

the main sources of interobserver variability in the evaluation of IHC staining [35]. It can be 

seen from the plot that the threshold value had a more pronounced effect on the 

classification of 2+ slides. Using a stricter threshold for stained pixels resulted in better 

agreement between the computer-extracted and pathologist-extracted scores.

Fig. 8 shows the results for overall agreement over all three classes as well as a breakdown 

of the results for each class, as a function of k. A threshold value of 0.9 was used for the 

membrane pixel classifier for this analysis. Results show an overall percent correct 

agreement in the order of 81%–83%. Agreement varies within the different classes with 

highest agreement (up to 90%) for 3+ slides, which may be more obvious to score due to the 

presence of strong staining. As expected, agreement for class 2+ slides which contained 

ambiguous scoring was the lowest (72%–78%). Also shown on the plot is the standard 

deviation of the percent correct results calculated by resampling 20 times the sets used in the 

cross validation. The standard deviation appears to be higher for the more ambiguous 2+ 

slides.
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Analysis of the results showed that most often disagreement involved a single category 

difference, i.e., a 1+ was scored as a 2+ and vice versa, or a 3+ was scored as a 2+, and vice 

versa. More specifically, in the case of four-fold validation, there was only 1 case out of 13 

where a two-score difference was observed, i.e., a 1+ slide was scored as a 3+ and vice 

versa. Furthermore, from the multiple iterations of the k-fold cross-validation it was 

observed that disagreement was recorded consistently for 10 particular slides. This could be 

due to the imaging properties of those slides, or it could be due to misclassification related to 

the provided truth which was limited to a single observer. Analysis of a multiple observer 

study would likely assist in understanding the reasons for disagreement on those slides. 

ROIs from a slide for which there was disagreement between the computer and pathologist 

score are shown in Fig. 9. It can be seen from the slide that significant membrane staining 

exists in the particular ROIs which could be interpreted differently by different observers. 

The computer-extracted measures of HER2 staining could be useful in increasing agreement 

between different observers for cases where staining is ambiguous.

The performance evaluation presented in this manuscript, as well as the truth used for 

algorithm training, was based on agreement analysis of the computer-extracted scores with 

only one pathologist. Despite the expertise of the observer, the variability that is known to 

exist in the evaluation of IHC makes it preferable to base our analysis on multiple observers. 

In future work, we will conduct a multiple observer study on the data set used in this study. 

Analysis of scores from multiple observers will provide an estimate of interobserver 

variability associated with the particular data set of HER2-stained breast cancer specimens. 

Furthermore, the scores will allow us to study the effect of truth definition on algorithm 

training and performance. Finally, the study will quantify the benefit of the developed 

computer aids in reducing interobserver variability in the evaluation of HER2.

In addition to the multiple observer study, future work will include the expansion of 

automated quantitative analysis of IHC to other biomarkers that were shown to be valuable 

prognostic and/or predictive factors for breast cancers, including estrogen and progesterone 

receptors, the tumor oncogene p53, and the proliferation index Ki67. Adaptive parameter 

optimization methods will be developed to enable the retraining of algorithms for a different 

biomarker or new specimen data from a particular biomarker. Finally, we will investigate 

methodologies to address the under-examined problem of differences in color properties due 

to different tissue staining and preparation protocols.

V. Conclusion

The developed methodologies for computer-aided assessment of IHC staining will contribute 

towards quantitative efforts in the interpretation of biomarkers with IHC. By increasing 

interobserver reproducibility, selection of biomarkers that have value as independent 

prognostic factors and the validation of such biomarkers could be performed with less 

uncertainty. Improved accuracy and reproducibility in biomarker interpretation will build 

confidence in their clinical utility as prognostic/predictive factors. Biomarkers can then 

provide the additional information needed to achieve the level of precision necessary for 

individual patient clinical decisions and to move a step further towards personalized 

medicine for breast cancer.

Masmoudi et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported in part by the National Institute of Biomedical Imaging and Bio-engineering of the 
National Institutes of Health. The mention of commercial products in this manuscript does not constitute 
endorsement by the U.S. Food and Drug Administration.

References

[1]. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, and Senn H-J, “Meeting 
highlights: International expert consensus on the primary therapy of early breast cancer 2005,” 
Ann. Oncol, vol. 16, pp. 1569–1583, 2005. [PubMed: 16148022] 

[2]. Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, and West M, “Towards integrated 
clinico-genomic models for personalized medicine: Combining gene expression signatures and 
clinical factors in breast cancer outcomes prediction,” Human Molecular Genetics, vol. 12, pp. 
R153–R157, 2003. [PubMed: 12928487] 

[3]. Cole BF, Gelber RD, Gelber S, Coates AS, and Goldhirsch A, “Polychemotherapy for early breast 
cancer: An overview of the randomaised clinical trials with quality-adjusred survival analysis,” 
Lancet, vol. 358, pp. 277–286, 2001. [PubMed: 11498214] 

[4]. Kallioniemi A, “Molecular signatures of breast cancer-Predicting the future,” New Eng. J. Med, 
vol. 347, pp. 2067–2068, 2002. [PubMed: 12490689] 

[5]. Beenken SW, Grizzle WE, Crowe DR, Conner MG, Weiss HL, Sellers MT, Krontiras H, Urist 
MM, and Bland KI, “Molecular Biomarkers for Breast Cancer Prognosis: Coexpression of c-
erbB-2 and p53,” Ann. Surgery, vol. 233, pp. 630–638, 2001.

[6]. Ross JS, Linette GP, Stec J, Clark E, Ayers M, Leschly N, Symmans WF, Hortobagyi GN, and 
Pusztai L, “Breast cancer biomarkers and molecular medicine: Part II,” Expert Rev. Mol. 
Diagnosis, vol. 4, pp. 169–188, 2004.

[7]. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, 
Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, and Schnitt SJ, “Prognostic factors in 
breast cancer: College of americal pathologists consensus statement 1999,” Arch. Pathol. Lab. 
Med, vol. 124, pp. 966–978, 2000. [PubMed: 10888772] 

[8]. Ross JS, Linette GP, Stec J, Clark E, Ayers M, Leschly N, Symmans WF, Hortobagyi GN, and 
Pusztai L, “Breast cancer biomarkers and molecular medicine,” Expert Rev. Mol. Diagnosis, vol. 
3, pp. 573–585, 2003.

[9]. Colozza M, Azambuja E, Cardoso F, Sotiriou C, Larsimont D, and Piccart MJ, “Proliferative 
markers as prognostic and predictive tools in early breast cancer: Where are we now,” Ann. 
Oncol, vol. 16, pp. 1723–1739, 2005. [PubMed: 15980158] 

[10]. Linke SP, Bremer TM, Herold CD, Sauter G, and Diamond C, “A multimarker model to predict 
outcome in tamoxifen-treated breast cancer patients,” Clin. Cancer Res, vol. 12, pp. 1175–1183, 
2006. [PubMed: 16489071] 

[11]. Yamashita H, Nishio M, Toyoma T, Sugiura H, Zhang Z, Kobayashi S, and Iwase H, 
“Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic 
molecular marker in breast cancer,” Breast Cancer Res, vol. 6, pp. R24–R30, 2004. [PubMed: 
14680497] 

[12]. Coradini D and Daidone MG, “Biomolecular prognostic factors in breast cancer,” Current 
Opinion Obstetrics Gynecol, vol. 16, pp. 49–55, 2004.

[13]. Bose S, Chandran S, Mirocha JM, and Bose N, “The AKT pathway in human breast cancer: A 
tissue-array-based analysis,” Modern Pathology, vol. 19, pp. 238–245, 2006. [PubMed: 
16341149] 

[14]. Perez-Tenorio G and Stal O, “Activation of AKT/PKB in breast cancer predicts a worse outcome 
among endocrine treated patients,” Br. J. Cancer, vol. 86, pp. 540–545, 2002. [PubMed: 
11870534] 

[15]. Schmitz KJ, Otterbach F, Callies R, Levkau B, Holscher M, Hoffmann O, Grabellus F, Kimmig 
R, Schmid KW, and Baha HA, “Prognostic relevance of activated AKT kinase in node-negative 
breast cancer: A clinicopathological study of 99 cases,” Modern Pathol, vol. 17, pp. 15–21, 2004.

Masmoudi et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[16]. Hutchinson JN, Jin J, Cardiff RD, Woodgett JR, and Muller WJ, “Activation of AKT-1 (PKB-a) 
can accelerate ErbB-2 mediated mammary tumotigenesis but suppresses tumor invasion,” Cancer 
Res, vol. 64, pp. 3171–3178, 2004. [PubMed: 15126356] 

[17]. Wullschleger S, Loewith R, and Hall MN, “TOR signaling in growth and metabolism,” Cell, vol. 
124, pp. 471–484, 2006. [PubMed: 16469695] 

[18]. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, and McGuire WL, “Human breast 
cancer: Correlation of relapse and survival with amplification of the HER2/neu oncogene,” 
Science, vol. 235, pp. 177–182, 1987. [PubMed: 3798106] 

[19]. Ross JS and Fletcher JA, “HER-2/neu (c-erb-B2) gene and protein in breast cancer,” Am. J. Clin. 
Pathol, vol. 112, no. (1 Suppl 1), pp. S53–67, 1999. [PubMed: 10396301] 

[20]. Toikkanen S, Helin H, Isola J, and Joensuu H, “Prognostic significance of HER-2 oncoprotein 
expression in breast cancer: A 30-year follow-up,” J. Clin. Oncol, vol. 10, pp. 1044–1048, 1992. 
[PubMed: 1351537] 

[21]. Paik S, Fisher RHE, Sass R, Fisher B, Redmond C, Schlessinger J, Lippman M, and King C, 
“Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: Prognostic 
significance of erbB-2 protein overexpression in primary breast cancer,” J. Clin. Oncol, vol. 8, 
pp. 103–112, 1990. [PubMed: 1967301] 

[22]. Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, Broadwater G, Goldstein 
LJ, Martino S, Ingle JN, Henderson IC, Norton L, Winer EP, Hudis CA, Ellis MJ, and Berry DA, 
“HER2 and response to paclitaxel in node-positive breast cancer,” New Eng. J. Med, vol. 357, pp. 
1496–1506, 2007. [PubMed: 17928597] 

[23]. Slamon D, Eiermann W, and Robert N, “Phase III randomized trial comparing doxorubicin and 
cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin 
and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study,” Breast 
Cancer Res. Treatment, vol. 94, p. S5, 2005.

[24]. Joensuu H, Kellokumpu-Lehtinen P-L, and Bono P, “Adjuvant docetaxel or vinorelbine with or 
without trastuzumab for breast cancer,” New Eng. J. Med, vol. 354, pp. 809–820, 2006. 
[PubMed: 16495393] 

[25]. Romond E, Perez E, and Bryant J, “Trastuzumab plus adjuvant chemotherapy for operable 
HER2-positive breast cancer,” New Eng. J. Med, vol. 353, pp. 1673–1684, 2005. [PubMed: 
16236738] 

[26]. Piccart-Gebhart M et al., “Trastuzumab after adjuvant chemotherapy in HER2-positive breast 
cancer,” New Eng. J. Med, vol. 353, pp. 1659–1672, 2005. [PubMed: 16236737] 

[27]. “The Herceptin Adjuvant (HERA) Trial Study Team: Trastuzumab following adjuvant 
chemotherapy in HER2-positive early stage breast cancer (HERA trial): Disease-free and overall 
survival after 2 year follow-up,” J. Clin. Oncol 24, 2006. [PubMed: 16648501] 

[28]. Dendukuri N, Khetani K, McIsaac M, and Brophy J, “Testing for Her2-positive breast cancer: A 
systematic review and cost-effectiveness analysis,” Can. Med. Assoc. J, vol. 176, pp. 1429–1434, 
2007. [PubMed: 17485695] 

[29]. Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, 
Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, 
Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, Van de Vijer M, Wheeler TM, and Hayes 
DF, “American Society of Clinical Oncology/college of American Pathologists guideline 
recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. 
Pathol. Lab. Med, vol. 131, pp. 18–43, 1 2007. [PubMed: 19548375] 

[30]. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, Murphy M, Stewart SJ, and Keefe 
D, “Cardiac dysfunction in the trastuzumab clinical trials experience,” J. Clin. Oncol, vol. 20, pp. 
1215–1221, 2002. [PubMed: 11870163] 

[31]. Tan-Chiu E, Yothers G, Romond E, Jr CEG, Ewer M, Keefe D, Shannon RP, Swain SM, Brown 
A, Fehrenbacher L, Vogel VG, Seay TE, rastogi P, mamounas EP, Wolmark N, and Bryant J, 
“Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and 
cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in 
node-positive, human epidermal growth factor receptor 2-Overexpressing breast cancer: Nsabp 
B-31,” J. Clin. Oncol, vol. 23, pp. 7811–7819, 2005. [PubMed: 16258083] 

Masmoudi et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[32]. Barlett J, Mallon E, and Cooke T, “The clinical evaluation of her-2 status: Which test to use,” J. 
Pathol, vol. 199, pp. 411–417, 2 2003. [PubMed: 12635130] 

[33]. Prati R, Apple S, He J, Gornbein JA, and Chang H, “Histopathologic characteristics predicting 
Her-2/neu amplification in breast cancer,” Breast J, vol. 11, pp. 433–439, 2005. [PubMed: 
16297088] 

[34]. Going JJ, Mallon L, and Reeves JR, “Inter-observer agreement in assessing c-erbB-2 status in 
breast cancer: Immunohistochemistry and FISH,” J. Pathol, vol. 190, pp. 19A–19A, 2000.

[35]. van Diest PJ, van Dam P, Henzen-Logmans SC, Berns E, van de Burg MEL, Green J, and Vergote 
I, “A scoring system for immunohistochemical staining: Consensus report of the task force for 
basic research of the EORTC-GCCG,” Clin. Pathol, vol. 50, pp. 801–804, 1997.

[36]. Helin HJ, Helle MJ, Kallioniemi OP, and Isola JJ, “Immunohistochemical determination of 
estrogen and progesterone receptors in human breast carcinoma: Correlation with histopathology 
and DNA flow cytometry,” Cancer, vol. 63, pp. 1761–1767, 1989. [PubMed: 2649227] 

[37]. Bartlett J, Mallon E, and Cooke T, “The clinical evaluation of Her-2 status: Which test to use,” J. 
Pathol, vol. 199, pp. 411–417, 2003. [PubMed: 12635130] 

[38]. Hsu C-Y, Ho DM-T, Yang C-F, Lai C-R, Yu I-T, and Chiang H, “Interobserver reproducibility of 
HER-2/neu protein overexpression in invasive breast carcinoma using the DAKO HercepTest,” 
Amer. J. Clin. Pathol, vol. 118, pp. 693–698, 2002. [PubMed: 12428788] 

[39]. Seidal T, Balaton AJ, and Battifora H, “Interpretation and quantification of immunostains,” 
Amer. J. Surg. Pathol, vol. 25, pp. 1204–1207, 2001. [PubMed: 11688582] 

[40]. Braunschweig T, Chung J-Y, and Hewitt SM, “Perspectives in tissue microarrays,” Combinatorial 
Chemistry High Throughput Screening, vol. 7, pp. 575–585, 2004. [PubMed: 15379629] 

[41]. Braunschweig T, Chung JY, and Hewitt SM, “Tissue microarrays: Bridging the gap between 
research and the clinic,” Expert Rev. Proteomics, vol. 2, pp. 325–36, 2005. [PubMed: 16000080] 

[42]. Camp RL, Chung GG, and Rimm DL, “Automated subcellural localization and quantification of 
protein expression in tissue microarrays,” Nature Med, vol. 8, pp. 1323–1327, 2002. [PubMed: 
12389040] 

[43]. Paik S, Bryant J, Tan-Chiu E, Romond E, Hiller W, Park K, Brown A, Yothers G, Anderson S, 
Smith R, Wickerman DL, and Wolmark N, “Real-World performance of Her2 testing-National 
Surgical Adjuvant Breast and Bowel Project experience,” J. Nat. Cancer Inst, vol. 94, pp. 852–
854, 2002. [PubMed: 12048273] 

[44]. Camp RL, Dolled-Filhart M, King BL, and Rimm DL, “Quantitative analysis of breast cancer 
tissue microarrays shows that both high and normal levels of Her2 expression are associated with 
poor outcome,” Cancer Res, vol. 63, pp. 1445–1448, 2003. [PubMed: 12670887] 

[45]. Lehr H-A, Jacobs TW, Yaziji H, Schnitt SJ, and Gown AM, “Quantitative evaluation of 
Her-2/neu status in breast cancer by fluoresence in situ hybridization and by 
immunohistochemistry with image analysis,” Amer. J. Clin. Pathol, vol. 115, pp. 814–822, 2001. 
[PubMed: 11392876] 

[46]. Matkowskyj KA, Schonfeld D, and Benya RV, “Quantitative immunohistochemistry by 
measuring cumulative signal strength using commercially avalilable software photoshop and 
matlab,” J. Histochemsitry Cytochemistry, vol. 48, pp. 303–311, 2000.

[47]. Hatanaka Y, Hashizume K, Kamihara Y, Itoh H, Tsuda H, Osamura RY, and Tani Y, “Quantitative 
immunohistochemical evaluation of Her2/neu expression with Herceptest in breast carcinoma by 
image analysis,” Pathol. Int, vol. 51, pp. 33–36, 2001. [PubMed: 11148461] 

[48]. Cregger M, Berger AJ, and Rimm DL, “Immunohistochemistry and quantitative analysis of 
protein expression,” Arch. Pathol. Lab. Med, vol. 130, pp. 1026–1030, 7 2006. [PubMed: 
16831029] 

[49]. Wang S, Saboorian H, Frenkel EP, Haley BB, Siddiqui MT, Gokaslan S, Wians FH, Hynan L, and 
Ashfaq R, “Automated cellular imaging system (ACIS)-Assisted quantitation of 
immunohistochemical assay achieves high accuracy in comaprison with fluorescence in situ 
hybridization assay as the standard,” Anatomic Pathol, vol. 116, pp. 495–503, 2001.

[50]. Ciampa A, Xu B, Ayata G, Baiyee D, Wallace J, Wertheimer M, Edmiston K, and Khan A, 
“HER-2 status in breast cancer, correlation of gene amplification by fish with 

Masmoudi et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immunohistochemistry expression using advanced cellular imaging system,” Appl. 
Immunohistochemistry Molecular Morphol, vol. 14, pp. 132–137, 6 2006.

[51]. Wyszecki G and Styles WS, Color Science: Concepts and Methods, Quantitative Data and 
Formulae, 2nd ed. New York: Wiley, 1982.

[52]. Phung SL, Bouzerdoum A, and Chai D, “Skin segmentation using color pixel classification: 
Analysis and comparison,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 27, no. 1, pp. 148–154, 1 
2005. [PubMed: 15628277] 

[53]. Shin MC, Chang KI, and tsap LV, “Does colorspace transformation make any difference on skin 
detection,” in Proc. 6th IEEE Workshop Appl. Comput. Vis. (WACV 2002), 2002, pp. 275–279.

[54]. Glassner A, Principles of Digital Image Synthesis. San Francisco, CA: Morgan-Kaufmann, 1995.

[55]. Lezoray O and Cardot H, “Cooperation of color pixel classification schemes and watershed: A 
study for microscopic images,” IEEE Trans. Image Process, vol. 11, no. 7, pp. 783–789, 7 2002. 
[PubMed: 18244674] 

[56]. Wagner RF, Metz CE, and Campbell G, “Assessment of medical imaging systems and computer 
aids: A tutorial review,” Acad. Radiol, vol. 14, pp. 723–748, 2007. [PubMed: 17502262] 

[57]. Raimondo F, Gavrielides MA, Karayannopoulou G, Lyroudia K, Pitas I, and Kostopoulos I, 
“Automated evaluation of Her2/neu status in breast tissue from fluorescent in situ hybridization 
images,” IEEE Trans. Image Process, vol. 14, no. 9, pp. 1288–1299, 9 2005. [PubMed: 
16190465] 

[58]. Lezoray O and Cardot H, “Bayesian marker extacation for color watershed in segmenting 
microscopic images,” in Proc. 16th Int. Conf. Pattern Recognit, 2002, vol. 1, pp. 739–742.

[59]. Soille P, Morphological image analysis: Principles and applications, 2nd ed. Berlin, Germany: 
Springer-Verlag, 2003.

[60]. Fitzgibbon A, Pilu M, and Fisher R, “Direct least square fitting for ellipses,” IEEE Trans. Pattern 
Anal. Mach. Intell, vol. 21, no. 5, pp. 476–480, 5 1999.

[61]. Yaziji H and Gown AM, “Accuracy and precision in Her2/neu testing in breast cancer: Are we 
there yet,” Human Pathol, vol. 35, pp. 143–146, 2004. [PubMed: 14991529] 

[62]. Press MF, Sauter G, Bernstein L, Villalobos IE, Mirlacher M, Zhou J-Y, Wardeh R, Li Y-T, 
Guzman R, Ma Y, Sulivan-Halley J, Santiago A, Park JM, Riva A, and Slamon DJ, “Diagnostic 
evaluation of her-2 as a molecular target: An assessment of accuracy and reproducibility of 
laboratory testing in large, prospective, randomized clinical trials,” Clin. Cancer Res, vol. 11, pp. 
6598–6607, 2005. [PubMed: 16166438] 

[63]. Birner P and Oberhuber G, “Is fluorescence in situ hybridization really superior to HercepTest,” 
J. Clin. Oncol, vol. 20, pp. 4607–4607, 2002. [PubMed: 12454125] 

[64]. Kundel HL and Polansky M, “Measurement of observer agreement,” Radiology, vol. 228, pp. 
303–308, 8 2003. [PubMed: 12819342] 

[65]. Thomson TA, Hayes MM, Spinelli JJ, Hilland E, Sawrenko C, Phillips D, Dupuis B, and Parker 
RL, “HER2/neu in breast cancer: Interobserver variability and performance of 
immunohistochemistry with 4 antibodies compared to fluorescent in situ hybridization,” Modern 
Pathol, vol. 14, pp. 1079–1086, 2001.

[66]. Jacobs TW, Gown AM, Yaziji H, and Schnitt MJBJ, “Comparison of fluorescence in situ 
hybridization and immunohistochemistry for the evaluation of her-2/neu in breast cancer,” J. 
Clin. Oncol, vol. 17, pp. 1974–1982, 1999. [PubMed: 10561247] 

[67]. Fleiss JL, Statistical Methods for Rates and Proportions. New York: Wiley, 1981, vol. 1981.

Masmoudi et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Examples of ROI images extracted from slides with HER2 score of: 1+ (left), 2+(center), 

and 3+(right).
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Fig. 2. 
Block diagram of the algorithm for the quantitative assessment of HER2 IHC staining.
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Fig. 3. 
ROC curves demonstrating the training performance of a linear regression pixel classifier for 

detecting membrane pixels (upper plot) and detecting nuclei pixels (bottom plot). The 

bottom plot shows an improvement in classifier performance when mean color values from 5 

× 5 neighborhood are used.
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Fig. 4. 
Example of the epithelial nuclei segmentation procedure. a) Original ROI including 

epithelial cells, b) Output of the pixel classification and connected component analysis steps. 

Overlapping of cells can be observed. c) Result of hole filling followed by the watershed 

segmentation algorithm. In some cases (indicated by arrow) the filling of the area between 

cells resulted in segmentation error. d) Result of the watershed segmentation applied without 

hole filling. Oversegmentation was observed in some cases, indicated by arrow, e) Result of 

the selective watershed segmentation and hole filling approach.
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Fig. 5. 
Examples of membrane extraction for an ROI extracted from a 3+ slide Original image is 

shown on the left and the result of the corresponding membrane ellipse fitting is shown on 

the right. Red ellipses indicate those ellipses fitted around membrane pixels with tellipse ≥ 

0.5.
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Fig. 6. 
Feature distribution for the 64 slides in evaluation set, labeled according to the pathologist-

derived archived HER2 scores.
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Fig. 7. 
Overall and class agreement results for 16-fold cross validation using the percent correct 

metric as a function of the threshold value of the membrane pixel classifier.
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Fig. 8. 
Overall and class agreement results for k-fold cross-validation using the percent correct 

metric. Agreement on class 3+ appears to be the highest, whereas 2+ is the lowest as was 

expected.
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Fig. 9. 
ROIs for a slide for which there was disagreement between the computer- and pathologist-

extracted scores. Specifically, the computer score 2+ was whereas the pathologist score was 

1+.
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