
Unified Bundling and Registration of Brain White Matter Fibers

Qing Xu,
Vanderbilt University Institute of Imaging Science and the Department of Electrical Engineering
and Computer Science, Vanderbilt University, Nashville, TN 37232 USA

Adam W. Anderson,
Vanderbilt University Institute of Imaging Science and the Department of Biomedical Engineering,
Vanderbilt University, TN 37235 USA

John C. Gore, and
Vanderbilt University Institute of Imaging Science and the Department of Biomedical Engineering,
Vanderbilt University, TN 37235 USA

Zhaohua Ding [Member, IEEE]
Vanderbilt University Institute of Imaging Science, the Department of Electrical Engineering and
Computer Science, the Department of Biomedical Engineering, and also with the Chemical and
Physical Biology Program, Vanderbilt University, TN 37235 USA
Qing Xu: qing.xu.1@vanderbilt.edu; Adam W. Anderson: adam.anderson@vanderbilt.edu; John C. Gore:
john.gore@vanderbilt.edu; Zhaohua Ding: zhaohua.ding@vanderbilt.edu

Abstract
Magnetic resonance diffusion tensor imaging is being widely used to reconstruct brain white
matter fiber tracts. To characterize structural properties of the tracts, reconstructed fibers are often
grouped into bundles that correspond to coherent anatomic structures. For further group analysis
of fiber bundles, it is desirable that corresponding bundles from different studies are coregistered.
To address these needs simultaneously, a unified fiber bundling and registration (UFIBRE)
framework is proposed in this work. The framework is based on maximizing a posteriori Bayesian
probabilities using an expectation maximization algorithm. Given a set of segmented template
bundles and a whole-brain target fiber set, the UFIBRE algorithm optimally bundles the target
fibers and registers them with the template. The bundling component in the UFIBRE algorithm
simplifies fiber-based registration into bundle-to-bundle registration, and the registration
component in turn guides the bundling process to find bundles consistent with the template.
Experiments with in vivo data demonstrate that the estimated bundles have an ∼80% consistency
with ground truth and the root mean square error between their bundle medial axes is less than one
voxel. The proposed algorithm is highly efficient, offering potential routine use for group analysis
of white matter fibers.
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I. Introduction
Magnetic resonance diffusion tensor imaging (DTI) is an established noninvasive technique
for studying neuronal fiber pathways in vivo, particularly in the brain white matter (WM)
[1], [2]. In each voxel, DTI provides a diffusion tensor (3 × 3 symmetric positive definite
matrix) that describes the local Brownian motion of water molecules. Eigenvalues and
eigenvectors of the tensor can be exploited to reconstruct the WM fibers [3]. To facilitate
quantitative characterization of fiber pathways, WM fibers of similar geometry and location
can be further grouped into fiber bundles, since they presumably belong to similar
anatomical structures in the brain [4]–[9]. Comparisons of corresponding WM bundles in
subjects from two or more studies can reveal brain structural differences among different
patients or patient groups, or between different stages of disease progression [10]–[12]. For
reliable comparisons, reconstructed fibers need to be bundled consistently across different
DTI studies. Furthermore, it is desirable that fiber bundles from different studies are aligned
into a common coordinate system, so that structural differences among corresponding
bundles can be characterized directly.

There have been a number of fiber bundling methods proposed recently. One widely used
approach is to manually place regions of interest (ROIs) within the fibers, and then group
the fibers that pass through the same set of ROIs as a distinct bundle [13], [14]. In spite of its
flexibility in selecting fiber bundles of interest, this method suffers from inter- and intra-
operator variabilities, and is highly inefficient since ROIs have to be manually defined for
each study. The bundling procedure can be automated by using computer based clustering
methods that group similar fibers with minimal human intervention. To date a few
algorithms of this kind have been proposed, which come with different definitions of fiber
similarity and clustering approaches [4]–[9]. Ding et al. [4] defined fiber similarity as the
mean Euclidean distance between corresponding segments of a pair of fibers, and used an
agglomerative algorithm to merge fibers on the basis of their similarity measure. Brun et al.
[5] represented a fiber as a 9-D vector that included the first- and second-order statistics of
points in that fiber (centroids and covariance matrices). The Euclidean distance between
fiber feature vectors was computed pairwise to create a weighted undirected graph, which
was further partitioned into coherent sets using a normalized cut algorithm. Gerig et al. [6]
constructed point correspondence between two fibers by mapping each point in one fiber to
the closest point in the other, and employed a similar clustering method to that used by Ding
et al. [4]. O'Donnell et al. [7] proposed the maximum of pointwise minimum distances
between a pair of fibers as the distance measure and clustered all fibers from different
subjects with a k-way normalized cut algorithm. Zhang et al. [8] defined the fiber distance as
the mean of the distance between all points in a shorter fiber and their closet
correspondences in another, and agglomeratively clustered fibers with mean distance below
a certain threshold. Maddah et al. [9] constructed statistical bundle models based on
coefficients of B-spline representation of fibers. By assuming a mixture bundle model, an
expectation maximization algorithm was utilized to estimate model parameters and label
fibers. These automated methods are efficient, but lack the flexibility in generating bundles
that satisfy the need of specific studies, which could be otherwise achieved by manual
bundling.

In addition to fiber bundling, efforts also have been made in developing registration
techniques that allow corresponding fiber bundles from different studies to be aligned and
compared. These techniques can be broadly categorized into three types. The first type is to
align corresponding fiber bundles by registering maps of fractional anisotropy or other
scalar indices of DTI data using scalar image registration algorithms [15]. Evidently, the
alignment of a scalar map of DTI does not guarantee the alignment of fibers since fiber
orientation information is not taken into account. The second type, which is more technically
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sophisticated, is to register the tensor data by utilizing the orientation information that the
tensor contains [16], [17]. While being able to provide more accurate results in principle,
such a registration technique has not gained anticipated popularity in the DTI community,
likely owing to the complications in tensor reorientation, interpolation, and selection of
appropriate tensor metrics. More recently there have been some endeavors in developing
techniques for direct registration of WM fibers. For example, Leemans et al. [18] and Mayer
et al. [19] each proposed an iterative scheme for estimating a rigid or affine transformation
based on the alignment of individual fibers in reference data to their closest counterparts in
target data. Both schemes are computationally intensive due to the process of closest-fiber
finding and one-to-one fiber registration given the sheer number of fibers per volume that
are typically generated by tractography. In addition, the rigid or affine transformation
provides limited degrees-of-freedom for deformation, which significantly restricts the
accuracy of fiber alignment. In contrast to the fiber-to-fiber registration, Ziyan et al. [20]
proposed a method that aligns corresponding fiber bundles individually with an affine
transformation, which is subsequently combined across bundles using a poly-affine
framework. Although the computational efficiency has been substantially improved due to
the bundle-to-bundle registration, it requires preclustering of fiber bundles as well as a
reasonable initial affine registration.

To address the limitations in the aforementioned bundling and registration techniques, we
propose a unified fiber bundling and registration (UFIBRE) algorithm. Our method starts
with an initial bundling of fibers in a template fiber set, and uses an expectation
maximization algorithm to jointly estimate corresponding fiber bundles in a target fiber set
and the transformation from the template to the target coordinate system. The initial
bundling is achieved by using the manual ROI method, which provides an opportunity to
select or define any fiber bundles of interest. Our method is efficient, as only the Gaussian
statistics of the bundle model is aligned and there is no need to seek the alignments of
individual fibers. Such a computational efficiency permits the use of more complex
transformations, such as thin plate spline transformations, to gain higher degrees of freedom
for mapping template fibers to target fibers.

In the following, the problem of joint fiber bundling and registration is first formally
defined; then a maximum a posteriori (MAP) framework for estimating optimal bundles and
transformation is described. Qualitative and quantitative evaluations of the proposed
algorithm with in vivo DTI data are also presented. To further demonstrate the utility of our
algorithm, we provide an example of constructing a fiber bundle atlas for nine WM fiber
bundles using in vivo DTI data. Finally, major contributions of this work are summarized,
and some technical limitations are discussed so as to guide future research along this line.

II. Unified Fiber Bundling and Registration
A. Problem Definition

The goal of this work is to cluster fibers in a target fiber set and align them with a labeled
template fiber set. This can be cast as an optimization problem that simultaneously seeks
optimal bundles in the target fiber set and an optimal transformation from the template to the
target coordinate system. Let x and y denote the template and target fiber set, respectively.
Each set contains a collection of open space curves, with each curve represented by a
sequence of discrete 3-D points. Let x and y be, respectively, divided into K fiber bundles,
each of which contains a group of fibers that belong to a certain anatomical structure. We
assume that the fibers in each bundle follow a Gaussian distribution of positions, and thus
use a Gaussian mixture model to represent the fiber distribution in the whole template/target
fiber set. Let μx and μy denote the means of the fiber bundles (defined as “central curves”
henceafter) in x and y, respectively, σx and σy the covariance matrices, πx and πy the
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mixture proportions of each bundle Gaussian model, and T the transformation that maps
(πx, μx, σx) to (πy, μy, σy).

Set y represents the target fibers generated tractographically from all appropriate seeds in a
whole DTI data volume, while x only contains certain fibers of interest in the template
dataset for a specific study. Assuming the template bundle parameters (πx, μx, σx) are
known a priori, one goal of this work is to determine the target fiber bundles that are
consistent with the template. Another goal is to find an optimal transformation that maps
fibers from the template to the target coordinate system. Taken together, these can be
expressed as a joint estimation of the target bundle model (πy, μy, σy) and the
transformation T given (x, y, πx, μx, σx). This can be formally defined as a Bayesian
decision problem, for which an optimal solution can be obtained by a MAP approach.

B. MAP Estimation
Given (x, y, πx, μx, σx), we find optimal (πy, μy, σy) and T that maximize the posterior
probability as follows:

(1)

where p(A∣B) denotes the conditional probability of A given B.

Assuming y is a set of independent and identically distributed fibers that are drawn from the
target bundle model (πy, μy, σy), the likelihood of y conditioned on (πy, μy, σy) can be
simplified as the product of the likelihood of each fiber as follows:

(2)

where

(3)

Note that k, j, and i index fiber bundles, fibers in the target fiber set, and the points along
each fiber, respectively; there are M fibers in y, K bundles of interest that need to be
estimated, and Nk points on the central fiber μy,k of the kth fiber bundle. Therefore, μy,k,i is
the coordinate of the ith point on the central fiber of the kth target bundle, and σy,k,i is the 3
× 3 covariance matrix of the distribution of the points corresponding to μy,k,i. Variable yj,i
denotes the point in the jth fiber corresponding to μy,k,i.

To find yj,i, a simple approach is to resample all the fibers to a set of consecutive points such
that: 1) each point has an equal distance to its neighboring points; 2) the number of points in
each fiber is a constant; 3) the first and last resampled points coincide with the starting and
ending points of the fibers. Resampling in such a manner allows point correspondence
between yj and μy,k to be naturally established. A more sophisticated method is to define the
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point in yj that is closest to μy,k,i as yj,i. This provides better accuracy, but it requires a
correspondence finding procedure in each iteration and thus is not time efficient. Therefore,
the first approach is used in the UFIBRE algorithm to obtain a fast and stable estimation of
yj,i.

It should be noted that the soundness of (3) is based on the assumption that each fiber point
can be modeled as a mixture of 3-D Gaussian probability distributions and the distribution
of each point is independent of other points in the same fiber.

The probability in (2) describes the likelihood of the target fibers conditioned on the
Gaussian mixture model (πy, μy, σy) (i.e. how well the target fibers data fit the model). It
can be regarded as a clustering term, whose maximization would lead to optimal bundling of
the fibers into K clusters on the basis of the target data only. However, maximization of such
a clustering term alone can not ensure the consistency in the fiber bundles between the target
and the given template, nor does it give any alignment information. To associate the target
with the given template, the prior probability p(μy, σy, πy∣μx, σx, πx, T) has to be optimized
as well.

A reasonable expression of p(μy, σy, πy∣μx, σx, πx, T) should be related to the similarity
between the warped template model T(μx, σx, πx) and the target model (μy, σy, πy). There
exist metrics that measure the similarity between Gaussian mixture models (e.g. Kullback
Leibler divergence), whose optimization would lead to alignment of both central fibers and
covariance. However, they are not used in this work due to difficulties in their optimizations.
To make the optimization more tractable, only the similarity between T(μx) and (μy) is
considered, i.e., only the consistency between the central fibers of the template and target
bundles is sought. The mixture proportions πy and the covariance matrices σy of the target
bundles are determined by the clustering term [(2)]. Therefore, p(μy, σy, πy∣μx, σx, πx, T)
can be simplified as p(μy∣μx,T).

It is further assumed that the probability distribution of errors between the central fibers of
the target and template data is Gaussian, and the covariance matrices are proportional to
those of the target models. Therefore, p(μy∣μx, T) is expressed as

(4)

where |σy,k,i| denotes the determinant of σy,k,i and c is a parameter that controls the
contribution of p(μy∣μx, T) to the overall objective function. Maximization of the above
probability would yield a transformation T that optimally registers the central fibers of
template fiber bundles with those of target fiber bundles, and also leverage the computation
of (μy, σy) by giving preference to target bundles that are consistent with template bundles.

Finally, p(T) denotes the prior distribution of the transformation T. It needs to be selected
such that the trade-off between the registration accuracy and the smoothness of the
deformation fields is adequately balanced. The form of p(T) used in this study will be
detailed in Section II-D.

Taken together, maximization of all the probabilities in (1) yields an optimal set of
parameters that allow the target fibers to be bundled consistently with the given template
bundles.
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C. Optimization
Based on the above derivations of the posterior distribution, the MAP estimation can be
expressed as maximization of the following Log probability function:

(5)

The above function can be maximized by using the well-known expectation-maximization
(EM) algorithm. Starting with an initial parameter θ, this algorithm finds the optimal
parameter θ by iteratively performing an expectation step and a maximization step until
convergence.

1) Expectation Step—In the expectation step of the nth iteration, the membership

probability  of each fiber yj belonging to the fiber bundle (μy,k, σy,k) is estimated using
the most recent estimate of parameter θn−1

(6)

where the superscript denotes the iteration number.

2) Maximization Step—In the maximization step of the nth iteration, the parameters ( ,

, Tn) are optimized to minimize the objective function below

(7)

where we heuristically assume that the mixture proportions in the target model are the same
as in the template model (πy = πx).

By solving the equations , , one can obtain the optimal solutions

to ( , ) that minimize the above function [(7)] shown in (8a) and (8b) at the bottom of
page.
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(8a)

(8b)

Equation (8) can be rearranged as follows:

(9a)

(9b)

Equation (9) is then further simplified as

(10a)

(10b)

where
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 and  denote the central fibers and covariance matrices that are obtained by

maximizing the bundling term p(y∣μy, σy, πy) alone (2).  denote the warped template
central fibers using the transformation estimated in the previous iteration. The central fibers

 in the proposed algorithm are actually computed as a weighted sum of  and ,
with their relative weight C controlled by the parameter c (10a). The weight C is chosen to
be one of the core adjustable parameters in the algorithm. The choice of C and its effect on
the performance of the UFIBRE algorithm will be studied experimentally.

In principle, evaluations of the above formulas (10) for each bundle involve all the fibers in

target fiber set. However, the fibers with low membership probability  are excluded from
the computation of μy,k for the sake of computational efficiency. To do so, the target fibers
are first sorted in an ascending order of Mahalanobis distance to the target central fibers,
which is computed as follows:

where Distj,k denotes the distance between the jth fiber and the kth bundle in the target fiber
set. Assuming the number of fibers in the kth template bundle is Mk, the first Mk target
fibers with smallest Distj,k are retained for the kth target bundle while the remaining fibers
are excluded as outliers.

Lastly, the optimal Tn is given by minimizing the following objective function:

(11)

D. Transformation
The above EM framework does not assume any form of transformation, i.e., transformation
from rigid, affine to more complex forms may be used in this framework. Both rigid and
non-rigid transformations are integrated in the UFIBRE algorithm to achieve a robust and
accurate mapping between template and target datasets. Thin plate spline (TPS) is chosen as
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the non-rigid transformation, because it has high degrees-of-freedom and smoothness in
deformation and closed-form solution for warping and parameter estimation. A unit
quaternion is used to represent the rotation part of the rigid transformation, as it can lead to
simple optimization.

Let vm, δm, and pm denote , , and , respectively, where , k ∈ [1,
…, K], i ∈ [1, …, Nk], m ∈ [1, …, S]. With these simplified notations, (11) is rewritten as

(12)

1) Estimation of Rigid Transformation—A rigid transformation for a point u can be
expressed as

(13)

where t is a 3×1 translation vector, and R is a 3×3 rotation matrix that is subject to RTR = I
and the determinant of R is 1 (proper rotation).

The objective function in (12) is expressed as

(14)

So far there is no existing closed-form solution for estimating R that minimizes EEM (R, t),
so an iterative algorithm [21] is used to find R. The algorithm represents the rotation matrix
R with a unit quaternion for simple optimization. A rotation by angle Ω around a 3×1 unit
vector l can be represented by a 4×1 unit vector q such that

The iterative algorithm [21] that finds an optimal R can be summarized as follows:

Sub-algorithm 1: estimating q that minimizes EEM (R, t)

Input: vm, δm, pm. Output: q.

1: Compute a 3×4 matrix Xm:

where the product a × A of a vector a and a matrix A is a matrix whose column vectors are the cross product of a and
column vectors of A.

2: Set b = 0 and Wm = I3×3.

3: Compute a 4×4 matrix M:
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4: Compute a 4×4 matrix N:

where

The inner product (A : B) of matrices A = (Ai,j) and B = (Bi,j) is a scalar value that is defined by Σi,j(Ai,jBi,j). The outer
product A × B is a matrix whose element in the ith row and the jth column is defined as Σk,l,m,nεi,k,lεj,m,nAk,mBl,n, where
εi,k,l is levi-civita symbol

The matrix operator A[] is A[A] = (A − AT)/2. The matrix operator t3[] is t3[A] = [A3,2, A1,3, A2,1]T.

5: Compute the smallest eigenvalue of matrix M − bN and the corresponding normalized eigenvector q.

6: If the absolute value of the eigenvalue is close to zero, stop and return q. Otherwise, update b and Wm as follows and
go to step 3,

where the matrix operator S[] is S[A] = (A + AT)/2. The outer product a × A × a of a vector a and a matrix A is a matrix
whose element in the ith row and the jth column is defined as Σk,l,m,n εi,k,lεj,m,nakamAl,n.

The rotation matrix R is then computed using the resulting q

(15)

The translation vector t is then computed using the R

(16)

2) Estimation of a TPS transformation—Using {v1, v2, …, vm, …} as control points,
a TPS transformation for a point u can be expressed as

(17)

where u is a column vector (ux, uy, uz, 1)T that represents the coordinate of a point; d
denotes a 3 × 4 matrix that contains the affine part of TPS; ϕ(u) is an S × 1 vector whose
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mth component ϕm (u) is − ‖u − vm‖2; w is a 3 × S coefficient matrix that transforms φ(u) to
a coordinate.

The objective function in (12) is then expressed as

(18)

where λP(d, w) is the prior term of TPS and λ is a parameter that controls the degree-of-
freedom in the TPS transformation [22]. A large λ implies a TPS with smaller freedom. In
the extreme cases of λ = +∞ and λ = 0, the TPS becomes an affine and a completely free
transformation, respectively.

To estimate the coefficients d and w that minimize EEM(d, w) (18), we solve the following
system of linear equations:

(19)

where U is a block matrix, each 3 × 3 component of which can be represented as Um,n =
I3×3ϕm(vn). Here, I3×3 is a 3 × 3 identity matrix. To incorporate anisotropic point
localization errors, a weighting matrix W is introduced to the equations as follows [22]:

V is a matrix composed of the coordinates of all the control points

Similarly, P is expressed as

Note that in (19), d̃ and w̃ are column vectors rearranged from the coefficient matrices d and
w.

3) Coarse-to-Fine Registration—Rigid registration coarsely matches template to target
fibers in a stable manner due to its limited freedom. On the other hand, TPS can accurately
register two sets of fibers thanks to its high degree-of-freedom, but this freedom could also
result in mapping template fibers to outlier target fibers. Therefore, the UFIBRE algorithm
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achieves a both stable and accurate registration of fiber bundles by smoothly increasing the
degree of transformation freedom, from rigid to highly nonrigid. In our implementation, a
rigid transformation is used for the first seven iterations to achieve a coarse but stable
alignment between fiber bundles. Our pilot experiments show that seven iterations of rigid
registration are sufficient to remove intersubject differences that are caused by global
rotation and translation. Following the rigid registration, a TPS transformation is used in
subsequent eight iterations. To make the TPS smoothly transit from affine to highly
nonrigid, we decrease λ in each iteration by a factor of ten from a starting value of 104

(instead of setting λ to a constant). The value of λ = 104 at the beginning yields a nearly
pure affine transformation and the value of λ = 10−4 (104/108) in the last iteration makes the
TPS a highly free transformation.

E. Outline of the UFIBRE Algorithm
Implementations of the UFIBRE algorithm are outlined as follow:

1. Rigid UFIBRE algorithm

Input: x, y and (πx, μx, σx).

Output: R, t.

1: Initialize n, R, t and (πy, μy, σy) as 0, I and (πx, μx, σx).

2: Compute membership probability  using (3) and (6).

3: Compute updated target bundle parameters  using (8) and (13).

4: Compute unit quaternion q using sub-algorithm 1.

5: Compute updated rotation Rn+1 using (15).

6: Compute updated rotation tn+1 using (16).

7: If n < 7, go to step 2 and n = n + 1; otherwise stop and return Rn+1, tn+1.

2. Transform x using the resulting rigid transformation and recalculate (πx, μx, σx)

3. Non-rigid UFIBRE algorithm

Input: x, y and (πx, μx, σx).

Output: d, w.

1: Initialize λ n, d, w and (πy, μy, σy) as 104, 0, I and (πx, μx, σx).

2: Compute membership probability  using (3) and (6).

3: Compute updated target bundle parameters  using (8) and (11).

4: Compute updated TPS dn+1 wn+1 by solving (19).

5: If n < 8, go to step 2 and n = n + 1, λ = λ/10; otherwise, return dn+1, wn+1 and .

F. 2-D Example
To illustrate the UFIBRE algorithm, we provide a simple 2-D example that graphically
shows the optimization process of this algorithm. The template contained three fiber
bundles, as indicated in Fig. 1(a). The target was constructed by rotating the template
bundles 30° clockwise. To demonstrate the robustness of the algorithm, an outlier bundle,
which did not have a correspondence in the template, was added to the target [see Fig. 1(b)].
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To make the problem more challenging, the outlier bundle was deliberately positioned such
that it could be easily misjudged to correspond to the third bundle in the template.

The UFIBRE algorithm was applied to the target as described in the preceding sections. The
intermediate and final results of the optimization are illustrated in Fig. 1(c)–(h). Each of

these figures shows the target fibers (cyan),  (blue),  (red), and  (green). In this 2-
D example, C was empirically set to 0.5, and a rigid transformation was used.

Fig. 1(c) displays the target fibers and , which were initialized as the unwarped template

central fibers. In the first iteration,  was used to compute the membership probability ,

which was then used to calculate . Due to the close proximity to , the outlier target
bundle had high membership probability of belonging to the third bundle, resulting in an

incorrect  as shown in Fig. 1(d). On the other hand,  and  were correctly

determined, leading to more reasonable estimates of  and . In the last step of the first

iteration, a rigid transformation was calculated to align the template central fibers with . In

spite of the incorrect , the template fibers were still rotated in a favorable direction as

driven by the other two correct target bundles, and thus  was gradually pulled toward

the correct target bundle as shown in Fig. 1(d) and (e). As the weighted sum of  and

,  was also driven to the correct position by the movement of  [Fig. 1(d)–(f)].

In the 12th iteration,  had become quite close to the correct third target bundle and thus

generated correct membership probability  that led to a correct estimation of  [Fig.
1(g)]. Finally, the warped template bundles converged to the correct target bundles as shown
in Fig. 1(h). This example demonstrates that the registration process helps reduce the
influence of the outlier so that the target fibers can be bundled consistently with the
template.

III. Experiment and Evaluation Method
A. Imaging

The UFIBRE algorithm was implemented on in vivo DWI data obtained from eight healthy
human subjects. Prior to imaging, informed consent was given by the subject according to a
protocol that was approved by the local ethics committee. The data were acquired with a 3-T
Philips Intera Achieva MR scanner (Best, The Netherlands) and an eight-element SENSE
coil. A volume of 256 × 256 × 120 mm3 was scanned using 32 noncollinear weighting
directions and a single shot, echo-planar, pulsed gradient spin echo imaging sequence with a
diffusion weighting factor (i.e., b value) of 1000 s/mm2. The data matrix had the size of 128
× 128 × 60, giving an isotropic resolution of 2 × 2 × 2 mm3 in the data. Three repeated scans
were obtained from each subject, which were motion and distortion corrected and then
averaged using Philips diffusion registration PRIDE tool (Release 0.4). Diffusion tensors
were estimated from the averaged DWI data using a linear least-square fitting procedure.

B. Fiber Reconstruction
To generate the WM fibers, we employed a first order Euler integration method [23]. The
voxels whose FA was greater than 0.5 were selected as seed points, from which the fibers
were reconstructed by sequentially following the local principal diffusion direction at a step
size of 2 mm. The fiber tracking process was terminated when voxels with FA below 0.1
were met or the angle between the principal diffusion directions of two consecutive points
exceeded 45°. The above procedure yielded around 15 000 fibers for each dataset.
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C. Bundle Selection
Nine WM fiber bundles of interest were manually segmented for each of the eight subjects
by referring to their known anatomy. These bundles include the left and right corticospinal
tracts (CST), the left and right medial lemniscus (ML), the left and right superior cerebellar
peduncle (SCP), middle cerebellar peduncle (MCP) and the lower half of the splenium
(SCC) and genu bundle (GCC), respectively. The bundle set from one subject was arbitrarily
selected as the template fiber bundle, and Gaussian statistics (μx,k, σx,k, k = 1, …, 9) of the
bundles were calculated.

D. Performance Evaluation
With the template, the proposed UFIBRE algorithms were applied to the remaining seven
target fiber sets individually. The resulting bundles were compared with the manually
segmented target bundles, which served as the “ground truth” in this comparison.

Since our algorithm achieves joint bundling and registration, the performance was evaluated
by (1) the consistency of the estimated bundles with the ground truth, and (2) registration
errors between their central fibers. Let bk,  be the estimated and the ground truth fiber
bundles respectively and μk,  be their central fibers (k ∈ {1, … 9}). The consistency for
bundle k is measured by the percent correct clustering (PCC)

(20a)

where | ● | denotes the cardinality, i.e., the number of fibers in a bundle, and ∩ represents
the intersection of two fiber bundles. The bundle registration error is measured by the root
mean squared error (RMSE) between the central fibers μk and  (k ∈ {1, …, 9}), which is
defined as

(20b)

To comprehensively evaluate the proposed algorithm, we used a variety of parameter
settings and tested the following aspects

1) Effect of the parameter C—To see how the weighting factor C affects the
performance, we evaluated the UFIBRE algorithm with different values of C ranging from
zero to one. The mean overall PCC and RMSE were presented as functions of C in order to
find an optimal C that yields the best overall performance. Here the overall PCC and RMSE
were calculated for each subject by averaging PCC and RMSE across the nine bundles.
Their means across seven subjects were further computed for each value of C.

2) Optimal performance—To examine the performance of the algorithm with the
optimal C, we reported the bundle specific mean PCC and RMSE instead of overall PCC
and RMSE. To give a sense of the original differences between the template and target
spaces, the RMSE between template central fibers and  were also given (“Unregistered” in
Table II). With this information, one can see the effect of the UFIBRE algorithm on in vivo
datasets. In addition to the quantitative evaluation, the resulting fiber bundles were also
assessed visually.
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3) Effect of the number of bundles used—The above experiments were based on the
use of the nine fiber bundles chosen (the left and right CST, the left and right ML, the left
and right SCP, MCP, SCC, and GCC). To test the effect of the number of bundles on the
performance, we excluded some bundles from the experiments. The bundle specific mean
PCC and RMSE were reported for the case when ML and SCP were excluded and also for
the case when MCP was excluded.

4) Consistency of factional anisotropy (FA)—To examine the consistency of
diffusion parameters between the fiber bundles from the UFIBRE algorithm and those from
manual segmentation, we performed group comparisons of the FA values along the nine
fiber bundles studied. Let bk,j,i and b̄k,j,i be the ith point at the jth fiber in the kth bundle
from implementation of the UFIBRE algorithm and the manual segmentation, respectively.
The mean FA value along the kth bundle Fk,iF̄k,i can then be computed for each subject as
follows:

where FA(a) denotes the FA value at the position a in DTI data, and | ● | denotes the
cardinality. Treating Fk,i and F̄k,i as two random variables whose values for each subject as
samples from their probability distributions, we statistically compared Fk,i with F̄k,i to see
whether there are significant differences between the diffusion measurement resulting from
the UFIBRE algorithm and that of manually segmented bundles. Paired t-tests were used to
test the group difference along the fiber bundles, with each group containing the seven
subjects studied.

5) Convergence—To analyze the convergence, the overall RMSE between the estimated

central fibers  and manual segmentations were recorded for each of the 15 iterations.

E. Atlas Construction
The bundle correspondence and transformation information from the UFIBRE algorithm can
be readily used to construct a fiber bundle atlas, which can serve as a statistical template for
many purposes, such as guiding fiber tracking or bundle segmentation. To demonstrate the
use of this algorithm for atlas construction, all the seven target datasets were transformed
into the template coordinate system using the inverse of the transformation T previously
obtained; then the corresponding bundles, which had already been estimated by the
algorithm, were combined to construct a bundle atlas on the basis of the seven target and the
template fiber sets. The statistics (central fiber and model covariance) of each bundle in the
atlas were subsequently computed.

IV. Results
A. Performance Evaluation

1) Effect of the Parameter C—Fig. 2 shows that the UFIBRE algorithm achieves an
optimal performance (maximum PCC and minimum RMSE) at C = 0.5. This indicates that

the algorithm works best when the bundling term  and registration term  contribute

equally to  (10). Therefore, C is set to 0.5 for all the following studies.
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2) Optimal Performance—Tables I and II show the statistics of PCC and RMSE
respectively for each of the fiber bundles studied. From the second and third columns in
Table I, it can be seen that the estimated CST, MCP, SCC and GCC achieve an overall
consistency of 85% PCC (minimum: 79%, maximum: 94% PCC) with the manually
segmented bundles. From the fourth and fifth columns in Table II, it can also be seen that all
the bundles give a very small average RMSE (less than 1 voxel) except the ML and SCP,
whose average RMSEs are slightly greater than 1 voxel. These results indicate that our
algorithm is capable of segmenting most of target bundles at a subvoxel accuracy. The
relative smaller PCCs and larger average RMSEs in ML and SCP may be attributable to two
factors. First, the fibers of the ML and SCP mutually overlap for a significant distance,
which makes them rather difficult to distinguish for both the UFIBRE algorithm and manual
segmentation. Second, there is considerable variability among the individual subjects in the
course and size of the ML and SCP. Such variability contributes significantly to the
difference between the template and the target data.

To demonstrate the capability of the algorithm for joint bundling and registration, estimated
bundles in one of the seven target datasets were superimposed onto the template bundles, as
shown in Fig. 3. In Fig. 3(a), the CST, ML, and SCP bundles of the template (red) and the
target fiber (blue) set are overlaid on one coronal (top row) and sagittal (bottom row) slice of
the target FA map. Note that the blue bundles, which were found by the UFIBRE algorithm,
exhibit gross similarity to the manually segmented template bundles with respect to bundle
structures and shapes. This indicates that our algorithm is able to bundle the target fibers in a
way consistent with the template bundles. The left column of Fig. 3(a) displays the target
bundles and unregistered template bundles, which shows obvious differences in the location
and course between them due to differences in subject brain morphology, scan positions and
orientations. The right column shows the results of registering the template bundles with the
target, in which it can be seen that the postregistered template bundles overlap well with the
target fibers. There is noticeable mismatch between the boundaries of the postregistered and
target SCP, because the algorithm only registers their central fibers and thus does not
guarantee the match of the whole bundles. Fig. 3(b) and (c), respectively, displays the MCP
(b), SCC and GCC (c) bundles for template and target fibers overlaid on a transverse (top
row) and sagittal (bottom row) view of the target FA map. We can also see increased
similarity in the location and course for the post-registered template bundles.

The estimated target bundles for a typical case were visually compared with manual
segmentation in Fig. 4. In this figure, the first and third columns (red) are the fiber bundles
estimated by the UFIBRE algorithm and the second and fourth columns (blue) are the
bundles from manual segmentation. Note that the saggital view only displays the left CST,
ML and SCP to avoid overlap with their right homologues. It can be appreciated that, for all
structures, the courses and positions of the estimated target bundles are quite consistent with
those from manual segmentation (blue).

3) Effect of the Number of Bundles Used—Tables I and II also show the resulting
PCC and RMSE when some fiber bundles were excluded from the nine template bundle
models. Comparing the third with the first column in Table I and the fifth with the third
column in Table II, it can be seen that the PCCs and RMSEs with MCP excluded are very
comparable to those with all the nine bundles used (with generally a slightly worse
performance when MCP was excluded). With ML and SCP excluded, it can be found that
the PCCs (the fourth column in Table I) and RMSEs (the sixth column in Table I) of the
CST deteriorate greatly due to the fact that the ML and SCP fibers are close and similar to
the CST fibers, which leads to incorrect classification of some ML and SCP fibers as CST
by the algorithm. On the other hand, the performance for MCP, SCC, and GCC bundles only
decreases slightly when ML and SCP were excluded. These observations indicate that
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including more bundles in the registration improves the performance of registering bundles
in their vicinity, but the effect is very small on remote fiber bundles.

4) Consistency of Factional Anisotropy (FA)—Fig. 5 shows the group mean and
standard deviation of F and F̄ together with the p-value of their paired t-tests along the nine
fiber bundles studied. Comparing the first and second columns, it can be seen the curves of
F's and F̄'s group mean along the bundles are quite similar. Rigorous paired t-tests between F
and F̄ show that there are no statistically significant differences between them along any of
the bundles (the third column) at p = 0.05 level, as all the p-values are greater than 0.2 and
∼90% of them are even greater than 0.5. Of particular notes, the ML and SCP bundles
exhibit relatively smaller p-values than the other bundles; this is consistent with earlier
observations that the PCC and RMSE of these two bundles are worse than others.

5) Convergence—Starting from a significantly large value (∼4 voxels), the overall RMSE
stabilizes at a small value (less than 1 voxel) after 13 iterations. This indicates that 15
iterations are sufficient for the UFIBRE algorithm to achieve convergence.

6) Computational Complexity—In our experiments, there are a total of 1000 fibers
approximately in the template bundles (∼100 in each of the SCP, the MCP, the ML and the
CST; ∼500 in the SCC and the GCC). The number of fibers in one target dataset is usually
around 15 000. Each fiber was downsampled to 30 discrete points. It takes up to 15
iterations at ∼60 s per iteration for our Matlab implementation to complete bundling and
registering a whole target fiber set with the nine template bundles on an AMD Athlon 64×2
Dual-Core processor.

B. WM Fiber Atlas Construction
The atlas bundles were constructed by combining the fibers from the corresponding bundles
in the eight datasets. The calculated central fibers and covariance (μx,k, σx,k, k = 1, 2,…, 9)
of the atlas bundles are graphically displayed in a 3-D view in Fig. 6. At each point along
the central fiber, the covariance matrix is represented by an ellipsoid. The orientations of the
three axes of the ellipsoid are the same as the eigenvectors of the covariance matrix, and the
lengths of the axis are equal to the square roots of the eigenvalues of the corresponding
eigenvectors respectively. The ellipsoid at each central fiber point describes the distribution
of all the points that belong to the same bundle and has correspondence to the central fiber
point. It can be seen that the middle portion of the bundles have smaller ellipsoids or tighter
distributions of points, and the ellipsoids tend to become larger towards to the ends of the
bundles. In particular, the ellipsoids at the ends of some of the bundles (MCP, SCC, and
GCC) sharply expanded. The compact middle portion indicates that the target bundles have
been reasonably well-registered with the template. The gradually increasing covariance
towards the ends is largely attributable to divergent nature of WM fiber bundles as they
approach cortical regions and also partly due to accumulative errors that may occur in fiber
tracking. The sudden increase of covariance at the ends suggests the tensors and thus the
derived fiber tracts are less reliable near the cortical regions, where the FA is typically quite
low.

V. Discussion
We proposed in this paper a novel algorithm for joint bundling and registration of WM
fibers reconstructed from DTI data. Given a set of segmented template bundles and a whole-
brain target fiber set, the algorithm optimally bundles the target fibers and registers them
with those in the template. Experiments with in vivo human DTI data show that,
postregistration, ∼80% of fibers are correctly clustered, and the root mean square error of

Xu et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the bundle central fiber reaches subvoxel accuracy. The algorithm is highly efficient,
converging within 15 iterations of parameter optimization at a speed of 60 s per iteration.
This offers the potential of using the algorithm as a routine tool for laboratory research.

The framework we proposed has two salient and mutually beneficial features. First, the
registration process guides fibers in the target to converge to bundles that are consistent with
the template. This consistency is not guaranteed in conventional fiber clustering algorithms,
which exclusively operate on individual datasets separately. Second, the bundling process
helps simplify fiber-based registration to bundle-to-bundle registration. This avoids the
process of fiber preclustering, and considerably improves the computational efficiency.

Image registration as a general image processing problem has long been the interest of many
researchers. Essentially, it involves searches in a high dimensional space for transformation
parameters that deform one image to optimally match another. The image registration
problem, however, is ill-posed since a unique solution may not exist, and has very high
computational complexity due to the high dimensional searches needed. The situation is
worse for WM fiber registration, as the structures to be registered are finer and hence more
complicated scenarios may occur. To approach the ill-posed, highly complex problem, it is
typical to employ some regularization mechanisms and iterative optimizations, so that
practically useful solutions can be obtained.

In this work, we also use regularization and iterative optimization, but further make three
assumptions on fiber distributions for WM fiber registration: 1) a set of fibers in the human
brain observe a Gaussian mixture model, 2) fibers in a bundle and points along the fibers are
identically and independently distributed, and 3) the probability distribution of errors
between the central fiber of a target and that of a template is Gaussian. These assumptions
offer considerable computational benefits to parameter optimization, which renders the fiber
registration problem more tractable. Although the validity of these assumptions still
warrants further proof, experiments in this work demonstrate that quite appealing results can
be obtained based on them. We recognize, however, more sophisticated models may better
describe WM fiber distributions. For example, it was reported that a Gamma mixture
distribution [9] may model the WM fiber distribution more accurately. Since parameters in
the Gamma model can also be estimated by the EM algorithm, it can be in principle
incorporated into our framework as well. A major drawback of using this or other more
sophisticated models is disproportionally increased complication in the parameter
optimization. We, therefore, note that, for fiber registration, the fiber distribution model
should be chosen judiciously so that an optimal trade-off between the accuracy of model
representation and the efficiency of parameter optimization is achieved.

It should be mentioned that, in this work, alignment of fiber bundles between the template
and the target is only based on matching of the first order statistics (central fibers) of the
bundles. The central fiber alone, however, does not carry complete information about the
morphology of the fiber bundle. To align two fiber bundles more accurately, higher order
statistics need to be considered. For instance, minimizing the difference in the second order
statistics (covariance matrices) would provide better matching of bundle cross-sectional
profiles. However, using higher order statistics may create difficulties in modeling the
conditional probability, p(μy, σy, πy∣μx, σx, πx). A solution to this exists for the second-
order statistics (i.e., using Kullback Leibler divergence), but optimization of the target
bundle parameters becomes too complicated. Therefore, high order statistics are not
included in this work, in order to achieve a compromise between the accuracy of bundle
alignment and the efficiency of parameter optimization.
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A most direct and useful application of joint bundling and registration of WM fibers is group
analysis. It allows fibers from different subjects to be bundled consistently and registered
into a common space, in which statistical characterization of bundle structural, architectural
or geometric properties can be conveniently implemented. In addition, consistent and
coregistered bundles from a group of subjects may be used to construct a parametric bundle
atlas, which can be further utilized to guide other processes such as fiber tracking, bundling/
labeling and registration. This application has been debuted in the present work with
construction of a bundle atlas using eight human datasets.

Finally, we point out that the initial template bundles are segmented manually in this work.
As mentioned earlier, this offers great flexibility in selecting or defining the bundles of
interest. Notwithstanding this flexibility, the manual initial segmentation has the drawback
of potentially producing subjective errors, and involving a certain amount of human labor.
Manual segmentation can be avoided by using an atlas that contains well defined bundle
models of interest for initialization. We have demonstrated the possibility of constructing an
atlas of this kind, and plan to develop a more reliable atlas with more comprehensively
defined fiber bundle models from a larger group of subjects, to enable our UFIBRE
algorithm to work in a fully automated and objective fashion.

VI. Conclusion
In summary, we proposed an algorithm to automatically bundle a whole-brain fiber set and
register it with a template bundle set. The resulting fiber bundles are consistent across
subjects and share a common space, which facilitates further group analysis of the bundle
properties. Experiments with in vivo human brain DTI data demonstrate that the algorithm
we proposed is capable of bundling WM fibers in a consistent manner, and registering fiber
bundles with subvoxel accuracy. Future work along this line includes development of a
reliable parametric bundle atlas for fully automated implementation of this algorithm, and
further applications of the automated algorithm to group analysis.
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Fig. 1.
Illustrations of the optimization process of the proposed UFIBRE algorithm with a simple 2-
D example. (a) Template fibers with known bundle classification. (b) Target fibers with

unknown bundle classification. The target fibers (cyan),  (blue),  (red), and 
(green) at 0th (c), first (d), fifth (e), 12th (f), 15th (g), and 20th (h) iteration, respectively.
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Fig. 2.
Variations of the mean overall PCC and RMSE with respect to the weighting factor C.
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Fig. 3.
Superimposition of the template (red) and target fiber (blue) bundles on the FA map of the
target data. The left column displays the unregistered template bundles with the target
bundles, and the right column shows the registered and warped template bundles with the
same target bundles. (a) CST (yellow arrow), ML (cyan arrow), and SCP (green arrow)
bundles in coronal (top row) and sagittal (bottom row) views. (b) MCP bundle in transverse
(top row) and sagittal (bottom row) views. (c) SCC (yellow arrow) and GCC (green arrow)
bundles in transverse (top row) and sagittal (bottom row) views.
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Fig. 4.
Comparisons between ground truth obtained by manual segmentation (blue) and the bundles
estimated by the UFIBRE algorithm (red) for one typical dataset.
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Fig. 5.
Comparisons between F and F̄ along bundles. The curve in the first column shows the group
mean F with its standard deviation as error bars. Similarly the second column shows the
group mean and standard deviation of F̄. The p-values of paired t-tests of F and F̄ are plotted
in the third column. The last column shows the locations of the proximal and distal ends of
each of the fiber bundles studied.
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Fig. 6.
Three-dimensional view of the constructed bundle atlas from the template and seven target
datasets (Red: the CST, Green: the ML, Blue: the SCP, Cyan: the MCP, Yellow: the SCC,
Magenta: the GCC).
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TABLE I

Statistics of PCC for Nine Fiber Bundles Over the Seven Subjects Using the UFIBRE With C = 0.5

All bundles included MCP excluded ML, SCP excluded

Mean Std Mean Mean

CST(Left) 0.8862 0.1091 0.8611 0.718

CST(Right) 0.7898 0.1114 0.7948 0.7175

ML(Left) 0.6936 0.2831 0.6924 N/A

ML(Right) 0.6383 0.3420 0.6049 N/A

SCP(Left) 0.6931 0.2786 0.6652 N/A

SCP(Right) 0.6553 0.2933 0.6560 N/A

MCP 0.9366 0.0718 N/A 0.9320

SCC 0.9000 0.0624 0.8968 0.8955

GCC 0.8632 0.0760 0.8593 0.8492
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