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Cardiac C-Arm CT: A Unified Framework for
Motion Estimation and Dynamic CT

Marcus Prümmer*, Joachim Hornegger, Guenter Lauritsch, Lars Wigström, Erin Girard-Hughes, and
Rebecca Fahrig

Abstract—Generating 3-D images of the heart during interven-
tional procedures is a significant challenge. In addition to real
time fluoroscopy, angiographic C-arm systems can also now be
used to generate 3-D/4-D CT images on the same system. One
protocol for cardiac CT uses ECG triggered multisweep scans.
A 3-D volume of the heart at a particular cardiac phase is then
reconstructed by applying Feldkamp (FDK) reconstruction to the
projection images with retrospective ECG gating. In this work we
introduce a unified framework for heart motion estimation and
dynamic cone-beam reconstruction using motion corrections. The
benefits of motion correction are 1) increased temporal and spatial
resolution by removing cardiac motion which may still exist in the
ECG gated data sets and 2) increased signal-to-noise ratio (SNR)
by using more projection data than is used in standard ECG
gated methods. Three signal-enhanced reconstruction methods
are introduced that make use of all of the acquired projection
data to generate a 3-D reconstruction of the desired cardiac phase.
The first averages all motion corrected back-projections; the
second and third perform a weighted averaging according to 1)
intensity variations and 2) temporal distance relative to a time
resolved and motion corrected reference FDK reconstruction. In
a comparison study seven methods are compared: nongated FDK,
ECG-gated FDK, ECG-gated, and motion corrected FDK, the
three signal-enhanced approaches, and temporally aligned and
averaged ECG-gated FDK reconstructions. The quality measures
used for comparison are spatial resolution and SNR. Evaluation is
performed using phantom data and animal models. We show that
data driven and subject-specific motion estimation combined with
motion correction can decrease motion-related blurring substan-
tially. Furthermore, SNR can be increased by up to 70% while
maintaining spatial resolution at the same level as is provided by
the ECG-gated FDK. The presented framework provides excellent
image quality for cardiac C-arm CT.
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I. CARDIAC IMAGING

A. Medical Application

A CCESS to intraprocedural 3-D images in the interven-
tional suite is becoming more important as minimally

invasive cardiac procedures increase in complexity. Retro-
spectively ECG-gated cardiac C-arm CT has recently been
developed [2], allowing a single C-arm imaging system to
provide both real-time fluoroscopy and 3-D volume CT images
of the heart during a procedure. The imaging protocol for this
3-D volume imaging approach is to acquire 2-D projection
images during sequential forward and backward sweeps around
the object while simultaneously recording the ECG signal.
A 3-D volume reconstruction of a particular cardiac phase is
accomplished by choosing the projection at each angle of the
set of projections that is closest to the phase of interest, and
then using the standard Feldkamp reconstruction algorithm
(FDK) [1] to generate the 3-D volume. Current 3-D image
quality, as defined by signal-to-noise ratio (SNR) and mo-
tion-related blurring (MRB), is determined by the total imaging
time (which must be within a single breath hold) the time per
sweep, the detector readout rate and the dose per projection.
These parameters determine the number of projections (and
therefore the dose) and the temporal spread of the projection
data that contribute to a single reconstructed volume at a given
cardiac phase. Note that the slower rotation speed of the C-arm
leads to a temporal spread of the ECG-gated projections that is
much higher than that produced by a clinical CT scanner. It is
likely that a preoperative clinical CT scan will not be obtained
if intraoperative C-arm CT is used, in order to minimize patient
exposure.

Improvement of image quality for these typically
view-starved 3-D reconstructions (e.g., 200 views per
volume as compared to 1000 for clinical CT) may be particu-
larly important if there is a need to use automatic segmentation
and/or 2-D/3-D image registration algorithms during the inter-
vention. One approach to improve image quality and to increase
the dose efficiency of the ECG-gated C-arm CT imaging pro-
tocol is to use all of the projection data acquired to produce a
single volume at the cardiac phase of interest. Such an approach
increases the SNR of the reconstructed volume, but requires
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knowledge of and correction for the motion of the object in
order to limit MRB. Many methods for motion estimation and
for motion correction for both respiratory and cardiac motion
in 3-D reconstructed images have been developed. A summary
of the current state of the art is presented below. In general, the
motion is first modeled via a mathematical model, using dense
deformation fields or using spline models. In the second step,
a reconstruction method that takes the motion into consider-
ation is applied to improve the quality of the reconstruction.
This combination of motion estimation and dynamic object
reconstruction reduces MRB and can improve image quality in
cardiac C-arm CT.

B. Contributions to Cardiac C-Arm CT

In this paper, we present new work demonstrating SNR
improvement using an estimated dense deformation field in
combination with a modified FDK algorithm for use with the
ECG-gated C-arm CT imaging protocol. We follow the two-step
process as outlined above, with some key refinements. First, the
motion vector field (MVF) mapping the reconstructed cardiac
phases to a reference phase is calculated using a multilevel
3-D/3-D registration approach that has been runtime optimized
to provide a fast estimate of the MVF suitable for use in the
clinic. We then concatenate these dense deformation fields
to generate a time-continuous 4-D MVF using interpolation
between cardiac phases, so that the trajectory of each voxel
throughout the whole cardiac cycle is known. To reconstruct
the corrected volume, each projection is backprojected along
a curved path, with the path determined by the voxel being
reconstructed, the phase at which the projection was acquired,
and the estimated MVF. We carry out motion correction in the
projection space, which maximizes the resulting image quality
for a given accuracy of the MVF.

Since subject-specific heart motion encoded in the MVF can
only be estimated approximately and nonrigid heart motion
cannot be corrected exactly by current dynamic FDK-like
algorithms, a trade-off exists between spatial resolution and
SNR, depending on the projection data used for reconstruction.
In this work we present two new weighting methods to combine
all of the acquired projection data from a multisweep protocol
(see Lauritsch et al. [2]) into a single reconstructed volume:
weighting by cardiac phase variance and weighting by intensity
variance. All weighting schemes are based on the combination
of several short-scan motion compensated FDK-like recon-
structions. The resulting motion-corrected image quality is
compared to uncorrected FDK-like reconstructions and also
compared to the current state-of-the-art ECG-gated Feldkamp
reconstruction, in the following denoted as EG-FDK. Image
quality is evaluated and compared by measuring the edge
response function versus SNR for all of the reconstruction
methods. In summary the major contributions of this paper are
combined motion estimation and correction, SNR enhance-
ment, and further image quality improvements.

C. Motion Vector Field Estimation

Initial studies using animal models by Prümmer et al. [5] have
shown that a 4-D MVF can be derived for this application by
computation of a subject-specific series of 3-D MVFs using a

variational nonrigid registration approach. The estimation of the
MVFs is based on a time series of EG-FDK reconstructions. A
comprehensive review of variational nonrigid registration can
be found in [21], including details of distance measures such
as sum of squared differences, correlation based measures and
mutual information as well as smoothness regularizations for
the deformation. Most of the registration algorithms proposed
in the literature provide a nonsymmetric motion estimation. The
motion is computed starting from the fixed object (reference)
towards the moving object. However, as introduced by Han et
al. [20], a symmetric motion estimation that provides a bijec-
tive mapping between the aligned volumes is desired. Han in-
troduced a regularized Mumford-Shah Model that provides a
one-to-one edge matching of the aligned objects. In comparison
to injective mappings such an approach provides the transfor-
mation over time in both directions. Therefore no spatial regrid-
ding of the dense deformation field is required to transform the
volume to another cardiac phase in both time directions. How-
ever, a bijective mapping is computationally more expensive and
it is not required for our application.

A general review of 3-D modeling for functional analysis of
cardiac images in different modalities is given by Frangi et al.
[8]. A 4-D image registration method for consistent estimation
of cardiac motion from MRI image sequences was proposed by
Shen et al. [11]. Within this 4-D registration framework, all 3-D
cardiac images obtained at different time-points are registered
simultaneously and the motion estimation is forced to be spa-
tiotemporally smooth. This smoothness constraint overcomes
the potential limitations of those methods that estimate cardiac
deformation sequentially from one frame to another instead of
treating the entire set of images as a 4-D volume.

Taguchi et al. [10] presented a method that estimates the 2-D
components of the MVF from a time sequence of 2-D cardiac
CT slices. Taguchi et al. [9] has also proposed an iterative ap-
proach repeating the following four steps until the difference
between two projection data sets falls below a certain criterion:
1) estimate or update the cardiac motion vectors, 2) reconstruct
the time-resolved 4-D dynamic image volume using the motion
vectors, 3) calculate forward projections from the current 4-D
images, and 4) compare them with the measured projection data.

We choose a fast and parallel 3-D/3-D nonrigid multilevel
registration method to deal with larger deformations and avoid
error propagation over time. No prior knowledge for motion
modeling is used, providing a purely subject-specific motion es-
timation so that the anatomical structure of contrast-filled ven-
tricles can be optimally aligned. This is especially important for
dynamic CT reconstruction of an individual subject.

D. Dynamic 3-D Reconstruction

Many motion correction methods for respiratory and car-
diac motion have been proposed in the literature. Most of the
methods consist of two steps. First, the motion is modeled
via a mathematical model, dense deformation fields, or spline
models. Second, a reconstruction method incorporates the mo-
tion during reconstruction. Here one can distinguish between
correcting the motion in the projection space or in the image
space of the reconstructed volume or slice. In addition, there
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are different classes of object motion, such as linear, affine or
generalized nonrigid motion.

Desbat et al. [23] presented a general work for
dynamic tomography and also proposed a generalization to 3-D
cone-beam; their scheme compensates analytically within fil-
tered backprojection for object deformations that are affine in
time and along a line (ray). Taguchi et al. [24] introduced a
method for motion compensated reconstruction using derivative
backprojection filtering that corrects for locally affine transfor-
mations. These classes of deformations, however, do not include
arbitrary nonrigid deformations like complex cardiac motion.

Blondel et al. [12] introduced a method that consists of three
steps: 1) 3-D reconstruction of coronary artery centerlines, in-
cluding respiratory motion compensation, 2) computation of the
4-D coronary artery motion, and 3) 3-D tomographic recon-
struction of coronary arteries, with compensation for respira-
tory and cardiac motion. For the motion compensated recon-
struction a dynamic projector model combined with an iterative
ART method is used.

Li et al. [7] presented a first version of motion compensated
reconstruction. They used a time-dependent transformation
of 3-D filtered backprojections to incorporate a patient-spe-
cific motion model, and extended the algorithm to 3-D for
cone-beam CT. It has also been shown that given a motion field
of a dynamic (nonrigid) moving object, a motion corrected
(dynamic) FDK-like reconstruction can be performed (Schäfer
et al. [3] and [4]). The dynamic reconstruction is performed
by dynamically adapting the geometry used for filtered back-
projection according to the MVFs. These methods can deal
with arbitrary nonrigid cardiac motion, but the filtering and
redundancy weighting is still approximate.

Iterative motion estimation and reconstruction methods (e.g.,
[9]) are time consuming. This is especially true when the en-
ergy functional contains a combination of 3-D/4-D image data
and 2-D projection images. Methods where the motion is only
estimated in 2-D projection space are limited because 3-D mo-
tion cannot be uniquely measured in sinogram space. Further-
more cardiac motion lies in the generalized deformation class
of nonrigid motion. In this work we therefore use noniterative,
combined motion estimation and correction in using an
approximate, but fast dynamic filtered backprojection approach.
The motion correction method is based on the work of Li et al.
[7] and has been optimized for the recently introduced multi-
sweep C-arm acquisition protocol [2].

E. SNR Enhanced Reconstruction

An approach for respiratory motion compensation and SNR
enhancement was introduced by Li et al. [6]. The 3-D CT im-
ages at different phases are registered to the same phase via a
deformable model. A regularization term combining temporal
and spatial neighbors is proposed and thus dose reduction can
be achieved. A second method [22] introduced for 4-D cone-
beam CT (4DCBCT) correlates the data in different respiratory
phase bins and integrates the internal respiratory motion into
the 4DCBCT reconstruction. Each filtered backprojection is de-
formed by a time-dependent transformation to correct for mo-
tion. This approach is similar to our method, but we address
the problem of cardiac motion, which is more complex because

Fig. 1. Acquisition scheme of multisweep C-arm scans where contrast is in-
jected during one breathold over all sweeps. The projection data is gated retro-
spectively according to a reference cardiac phase.

it is highly variable in both temporal and spatial domains. The
less complex respiratory motion can be regularized globally, and
image artifacts should not significantly corrupt the motion esti-
mate. The SNR enhancement introduced by Li et al. increases
blurring when edges of different phases do not match perfectly,
as is expected to be the case for artifact-prone cardiac recon-
struction. Our weighting scheme addresses this problem. The
improvement in image quality via the integration of data from
different respiratory or cardiac phases to the desired phase is
limited by the temporal resolution of each single reconstructed
phase. We therefore chose an approach that aligns each acquired
projection image to the desired phase. The projection data is
gated into several subsets, where each subset provides data for
a short-scan. Each motion corrected short-scan weights its con-
tribution according to the expected or estimated confidence of
the corrected data to the resulting reconstruction.

The paper is organized as follows. First, we briefly outline
recent cardiac C-arm CT acquisition protocols and intro-
duce general notation for projection (sub)sets and common
ECG-gating techniques. Then, our method for retrospective
heart motion estimation and dynamic FDK-like reconstruction
is presented. Two methods to enhance SNR by combining
ECG-gated and motion corrected FDK-like reconstructions
(provides sharp edges, but lower SNR) and dynamic FDK-like
reconstructions utilizing the projection data from all sweeps
(nongated) are introduced. The combined motion estimation
and correction framework is evaluated using phantom data and
an animal model. The results are summarized, and discussed
with reference to other, previously published approaches.

II. THEORETICAL FRAMEWORK

A. Retrospective ECG-Gating

Before describing the algorithms in detail, we first introduce
the basic notation and concepts. Projection images are denoted
by bold face small and volumes by bold face capital letters.
Sets are denoted by normal face capital letters. The concept of
ECG-gated cardiac C-arm CT and the resulting distribution of
projection images due to their relative cardiac phase is shown in
Fig. 1 and summarized in Lauritsch et al. [2].

Let be the unique projection image index of a multi-
sweep scan, where and is the total number
of acquired projection images. is the number of sequential
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ECG-synchronized forward (fw) and backward (bw) sweeps.
Each single sweep is a short scan. Thus, during one forward
or backward sweep, projections of the calibrated view
positions are acquired. The cardiac phase is defined by its posi-
tion between R-peaks in the ECG signal and is measured in per-
cent. Let be the set of all projection image indices and the
cardinality is . For a particular cardiac phase a gated
subset is defined by and contains projec-
tion image indices. This gated subset is defined such that a single
projection image index is provided for each single view position
of a short scan. can be used for a short scan Feldkamp
[1] reconstruction. The index denotes different gating window
widths, as explained below. Since sweeps are performed, ex-
actly projection images are measured for each single short
scan view position. To reconstruct at a specific cardiac phase

the projection image that lies closest to this reference cardiac
phase is selected for each view position. Thus the subset
contains the projection image indices of a nearest neighbor (NN)
ECG-gating, where the temporal window width is smallest for

.
This is, however, not very dose efficient, since only of

the acquired data is used in . We extend the gating and
create further projection subsets for
that can be used for the reconstruction in combination with the
weighting and motion compensation schemes introduced here.
These sets are indexed by (gating windows)

(1)

and , . Each subset for all
is gated using the same NN ECG-gating

strategy, however only those remaining projection image indices
as defined in (1) are considered. This gating approach groups
projections into distinct subsets, each containing of
all acquired projections. As increases, the cardiac phases
of the projections contained in a subset are farther from the ref-
erence cardiac phase .

The cardiac phase function provides the observed cardiac
phase of each projection image . The cardiac phase function
operates on and maps each to its corresponding cardiac
phase

(2)

Note that is not necessarily equal to .
We define the effective cardiac phase (ECP)

, , , for a selected subset of
projection images of cardiac phase

(3)

The cardiac phase variance (CPV) of an ECG-gated subset
is defined by

(4)

Fig. 2. Pairwise 3-D-3-D nonrigid registration of the initial reconstructions.

The gating method results in an increasing cardiac phase vari-
ance as increases,

.
In retrospectively-gated cardiac C-arm CT, image quality de-

pends on the motion of the heart and on the temporal resolu-
tion of the projection data contributing to a reconstruction. At
acquisition, a cardiac phase such as end diastole is selected
for which the heart motion is assumed to be negligible [2]. The
timing of the scan (i.e., acquisition of backward and forward
sweeps) is then triggered so that the variance at
the selected phase is minimized. The resulting temporal reso-
lution of all reconstructions depends on the number of per-
formed C-arm sweeps and is approximately of the average
R-R interval of the entire imaging time. We use the term cardiac
phase variance instead of temporal resolution to express the re-
sulting temporal window width after retrospective gating. How-
ever, depending on and the heart motion, motion related blur-
ring in an FDK reconstruction of at the selected phase
and at other phases can still be observed. We first use an estimate
of the subject-specific heart motion to reduce motion artifacts
and increase edge sharpness of the reference cardiac volume.
We then add projection data from other subsets for
to this motion corrected reconstruction using novel weighting
schemes that are described later in detail.

B. Retrospective Motion Estimation

If we neglect the implications of interpolation and tissue den-
sity variation during contraction, we can represent the temporal
information of the volume data by either a sequence of volumes
or by a single volume and a sequence of displacement vector
fields. In our scenario the input to the registration method is
volume data and the output is a coordinate transform from one
volume to the other as shown in Fig. 2. For computation of the
displacement vector fields a temporal sequence of initial recon-
structions is required.

1) Initial Reconstructions: The reconstruction task is
the computation of object densities for all grid points of
a particular volume from projections. All volumes herein
are cubes of size voxels with 3-D grid points

. The object
density for a particular voxel of an ECG-gated FDK
reconstruction (EG-FDK) using the projection set is
denoted by , and is the whole
volume of intensity values. To compute the subject-specific
heart motion, a cardiac phase series of volumes (see
Fig. 2) for is initially reconstructed
using EG-FDK.
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For these initial reconstructions only the gating window
is used.
2) Nonrigid Registration: The heart motion is es-

timated voxel-wise and relative to a preselected refer-
ence cardiac phase (RCP) that is by definition one
of the phases . A dense displacement vector field

maps the
coordinates of the reference volume to any target
volume . In discrete space the 3-D displacement
vector maps a discrete grid point of the reference volume
to a 3-D point in the target volume. The 3-D
point in the target volume is not necessarily a grid point,
and 3-D interpolation is required to access the corresponding
function value of the reference grid point in the deformed
target volume. The displacement vector field is computed by
performing 3-D-3-D nonrigid registration between all volume
pairs , for all as
shown in Fig. 2. The volume of the reference cardiac phase
is mapped to all the other (deformed) volumes, providing the
relative heart motion from to for all .

The registration problem is defined as a variational problem
with the energy functional

(5)

consisting of a dissimilarity measure

(6)

and the irregularity of the dense deformation field

(7)

To minimize the energy functional we compute its first variation
and use a time-marching method to find the that minimizes

. A fast direct cosine transform technique [13] can be used with
a multilevel approach to increase computation speed and handle
larger spatial deformations. The deformation is regularized by

with weight . Each pair can be computed in parallel since
the minimization can be done for each phase independently.
The advantage of parallel computation comes at the expense of
temporal smoothness, since any additional temporal regulariza-
tion (i.e., beyond ) is computationally more expensive. More
details about parameter settings are given in Section III-A1.

3) Interpolation of the Deformation Field: The next step is
to concatenate the discrete time series of MVFs so that the
MVFs are cyclic and continuous over the cardiac phase. For later
motion correction the for , are com-
puted using interpolation. The displaced locations of
each voxel define the discrete temporal samples used as knot
points for the interpolation function. The are then the inter-
polated MVFs for phase . It is by definition cyclic such that

and . Different interpolation kernels
such as nearest neighbor, linear, cubic-spline or polynomial in-
terpolation have been investigated in [19].

C. Motion Compensated FDK (MC-FDK)

We implement a dynamic filtered backprojection (FBP) algo-
rithm using FDK [1], the work horse in C-arm CT, where the ge-

ometry of cone-beam backprojection is adapted using the com-
puted motion model. For a detailed description of cone-beam
filtered backprojection we refer to the original work from Feld-
kamp et al. [1].

For a MC-FDK reconstruction of cardiac phase a set
of projection images is used. Each projection image is fil-
tered row wise [1]. The filtered image, , is then backprojected
into 3-D, denoted by . The standard FDK
algorithm then accumulates all into one 3-D volume.
To compensate for motion, each is spatially warped

according to the estimated dense deformation
before this accumulation step. This motion compensa-

tion is equivalent to backprojection along a curved ray, as though
the forward projection had been created by integrating the tissue
densities along the curved projection ray as defined by the MVF.
The interpolation along the curved rays can be implemented in
the projection space during backprojection or in a second inter-
polation step in 3-D after backprojecting straight rays. Cosine
and Parker [14] weights are not adapted to the dynamic FBP.

1) Warping in Projection Space (MC-FDK-P): Numerically,
the better choice is to directly sample the 2-D filtered projec-
tion image according to the warped positions . Using a
voxel-driven backprojection we first transform the 3-D volume
grid from to and then use cone-beam projection
geometry to compute the 2-D sampling position of the warped
3-D grid position. The projected grid position does not neces-
sarily intersect the 2-D detector at lattice points. Thus efficient
2-D linear interpolation is required. The projection of arbitrary
warped grid points is time consuming.

2) Warping in Backprojection Space (MC-FDK-B): To take
advantage of fast backprojectors that expect equidistant grid
positions , warping can also be done after backprojection.
The filtered projection is backprojected onto and then

is spatially warped according to the MVF such that we
get . However, since a 2-D interpolation of the
filtered projections is followed by a trilinear interpolation during
the spatial warping of , this approach accumu-
lates interpolation errors as compared with warping applied di-
rectly to each projection (i.e., in projection space).

We implemented sampling in the backprojection space, and
provide results of MC-FDK using only this sampling method.
Using an ECG-gated set to reconstruct phase of any
gating window width , the MC-FDK algorithm can be illus-
trated as follows (see Fig. 3).

1) During back-projection, we first apply standard
FDK-based filtering and voxel-driven back-projection
separately for each .

2) Each filtered and 3-D back-projected image is
spatially warped by regridding the filtered back-projection
(FBP) according to .

3) All spatially warped filtered backprojections are ac-
cumulated according to

(8)

to create the final 3-D motion corrected volume
.

Note that assumptions underlying FBP, such as the Fourier-
slice theorem and uniform sampling density, do not hold for
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Fig. 3. Principal steps of a dynamic FDK-like algorithm (MC-FDK). The left
image of the third step shows the reconstructed volume, overlayed with a MVF.
The right hand side shows the accumulation of the warped filtered back-projec-
tions.

curved rays in general, and that rebinning of data into a par-
allel ray geometry is not possible if the data was acquired during
arbitrary motion. Thus even when the MVF is known perfectly,
the motion corrected reconstruction may have artifacts resulting
from nonuniform sampling of the volume data and from non-
ideal filtering of the projection data. We assume here that the
heart motion is sufficiently small and we do not consider any
sampling density or filter compensation; the impact of this as-
sumption is evaluated below using a numerical simulation study.

D. Application: SNR Enhanced Reconstruction

The introduced framework of motion estimation and correc-
tion provides a tool to utilize all acquired projection images
from a multisweep scan in combination with motion correc-
tion. Use of more than images may provide increased
SNR, while the MVF correction preserves the sharpness of the
image’s anatomical structure. In this application we investigate
the motion estimation and correction framework for contrast en-
hanced ventricles of the heart.

We derive and compare three weighting schemes that com-
bine motion corrected reconstructions using the ECG-gated sets

into a single volume at the reference cardiac phase
such that all projections contribute. The ECG-gated sub-
sets provide data for motion corrected reconstructions

where each reconstruction is gen-
erated using the gated subset targeting .

Our weighting schemes consider the following three obser-
vations.

• Estimation of subject-specific heart motion is imperfect
and accuracy depends on the image quality (edge sharp-
ness) of the initial reconstructions.

• Deformation between a volume in systole and a volume in
diastole is larger than the deformation seen between two
volumes at different time points in diastole. The MC-FDK

becomes less accurate as the nonrigid spatial deformation
to be corrected becomes larger.

• The reconstruction using provides the sharpest
edges and the best image quality but is not optimal in SNR.

1) Averaging Scheme (SNR0): One method to combine all
projections, SNR0, is to take a voxel-by-voxel average of

the reconstructed intensity of all resulting
gating windows. The resulting SNR enhanced reconstruction is

where

(9)

First each voxel is summed with weighting which for
simple averaging is set to . The sum is then normal-
ized by . This method trades off spatial resolution
for SNR since the motion compensated reconstructions using
the gating windows provide blurred edges compared to

. Thus we extend the weighting method and introduce
two adapted schemes.

2) Cardiac Phase Variance Scheme (SNR1): Given the as-
sumptions regarding window width, motion and resolution, we
propose a weighting that is adapted to the cardiac phase variance
for each single motion corrected reconstruction , SNR1.
The contribution is calculated using a Gaussian function with
standard deviation , defined by

(10)

The normalization function is then given by

(11)

According to (10), the MC-FDK reconstruction using the set
contributes most to the resulting image as defined

in (9). With increasing cardiac phase variance, the MC-FDK re-
constructions contribute less in order to preserve edge sharp-
ness. Each voxel is given the same weight for a specific .

3) Intensity Scheme (SNR2): The second extended weighting
method, SNR2, assumes that the motion corrected reconstruc-
tion provides the sharpest edges and provides a
good reference volume. The contribution function is based on
a Gaussian function with standard deviation . The intensity
similarity between the reference and all others
define the contribution weight with

(12)

The normalization function of (11) is used, but with
as defined in (12). The motion correction depends on the sub-
ject-specific MVF estimate and the accuracy of this estimate is
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TABLE I
NUMBER OF PROJECTION IMAGES CONTRIBUTING

TO EACH RECONSTRUCTION METHOD

uncertain in a clinical environment. This uncertainty is there-
fore implicitly included in the success of motion blurring re-
duction. If the intensity deviation of a MC-FDK reconstruction
is high according to (12), the reconstructed intensity value will
contribute less to the resulting reconstruction. The more the mo-
tion corrected reconstructions reflect the reference
the higher the contribution will be.

4) Algorithmic Summary of SNR Enhanced Reconstruction:
The algorithmic pipeline of this reconstruction system is sum-
marized in algorithm 1.

Algorithm 1 SNR Enhanced Reconstruction

1) Reconstruction of volumes
using ECG-gated FDK.

2) Set .
3) Computation of and using (5).
4) Temporal interpolation of , .
5) Reconstruct for using

MC-FDK.
6) Compute and depending on weighting scheme

SNR0 , SNR1 (10) or SNR2 (12).

7) Compute using (9).

5) Algorithmic Variations: We compare SNR0, SNR1,
and SNR2 to a nonmotion compensated, but SNR enhanced
reconstruction, AL-EG-FDK. nonrigidly aligned initial
reconstructions are averaged

(13)

We also compute a nongated FDK reconstruction, AV-FDK,
using all acquired projection images

(14)

A complete list of all algorithmic variation is presented in
Table VII. We investigate these algorithmic variations in the
result section and demonstrate their performance. The number
of images contributing to the final reconstruction for each
method is summarized in Table I.

III. EXPERIMENTAL METHODS

To evaluate the image quality of the introduced methods listed
in Table VII, we measure and compare the SNR and the edge re-
sponse function [18] to state-of-the-art reconstructions methods.
The evaluation of the algorithms is carried out using a moving

plastic phantom and several animal models. For the phantom,
we also compare our approaches with a standard Feldkamp re-
construction of the static object, the ground truth (GT-FDK).

A. Motion Estimation

The cardiac phases of the initial reconstructions that are
used to compute the MVF are selected manually. The selection
process considers prior knowledge of the expected heart motion
and the sharpness of the reconstructed volumes.

1) Registration Method Parametrization: For the nonrigid
registration we use spatial regularization only. Empirical studies
showed that temporal regularization does not significantly im-
prove image quality. For both phantom and in vivo studies we
applied a multilevel scheme with four levels ([volume size, it-
erations], , , , ), and for the
spatial curvature regularization .

2) Temporal Interpolation: In previous studies, we deter-
mined empirically that cubic spline and linear interpolation out-
perform nearest neighbor and polynomials, and so here all tem-
poral interpolation for the computation of was restricted to
cubic-spline.

B. Simulation, In Vitro, and Animal Study

1) Simulated Phantom: To evaluate the sampling issue that
is raised in the MC-FDK algorithm, a simulation study in 2-D
is performed. A modified Shepp-Logan phantom (see Fig. 4) is
virtually scanned (parameters summarized in Table II), while
the phantom undergoes nonrigid and sinusoidal warping during
the scan. Dense horizontally oriented bars were added to the
phantom to emphasize motion related blurring artifacts. We as-
sume that the ideal MVF is known and compare, using the ideal
MVFs, the MC-FDK method where the interpolation (warping)

• takes place in the projection-space (MC-FDK-P);
• is performed after the backprojection in the 3-D backpro-

jection-space (MC-FDK-B).
These results are compared to AV-FDK and AL-EG-FDK.

2) In Vitro Phantom: The in vitro object consists of a plastic
cube moving along a sinusoidal path in a water bath. The
phantom was scanned using an artificial ECG signal that was
connected to the C-arm system during sinusoidal motion of
the cube along the axis of rotation of the C-arm. The artificial
RR-peak of the phantom (0%) occurred at a position of 7
mm. Maximum velocity occurred at 25% and 75% and the
maximum amplitude of 7 mm and 7 mm occurred at 0%
and 50%. The protocol is presented in Table III. We chose to
investigate a phase for which phantom velocity was close to the
maximum (i.e., 84%), in order to fully challenge our motion
correction algorithms. A more typical choice would consider a
phase with minimum velocity for the reference.

3) Animal Study: The research protocol was approved by the
Institutional Animal Care and Use Committee at Stanford Uni-
versity. An adult swine ( 40 kg) was first anesthetized using
intramuscular injection of ketamine; the animal was then intu-
bated and given a mixture of oxygen and isoflurane. An 8 French
introducer sheath was placed in the femoral artery and femoral
vein for hemodynamic monitoring and administration of medi-
cations and contrast material. Both animal and plastic cube were
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Fig. 4. Simulation study using an ideal MVF. The figure shows a modified Shepp-Logan phantom using the reconstruction method: (a) original phantom, (b)
filtered-backprojection of nonmoving object, (c) MC-FDK-B, (d) MC-FDK-P, (e) AL-EG-FDK, and (f) a filtered-backprojection without motion correction (AV-
FDK).

TABLE II
MODIFIED SHEPP–LOGAN PHANTOM PROTOCOL

TABLE III
IN VITRO PHANTOM PROTOCOL

TABLE IV
ANIMAL STUDY PROTOCOL

scanned using an AXIOMArtis dTA C-arm system. During the
scan 175 ml of Omnapaque was injected into the vena cava (in-
jection rate 3.5 ml/s). The protocol is summarized in Table IV.

C. Evaluation of Image Quality

To measure the image quality we compute the edge response
function and the SNR.

1) Edge Response-Function: The edge response function is
computed by averaging together shifted edge profiles; shifting
ensures that the center of each profile corresponds to the center
of the edge. For the in vitro phantom, 30 profiles along a straight
line perpendicular to the direction of sinusoidal motion were
first shifted to align the center and then averaged together. For

the animal study, 50 edges were measured perpendicular to the
boundary between the interventricular septum and the papillary
muscle. To detect and align the edges we use a structure tensor
[16] where the edge candidates are those for which the ratio of
the eigenvalues from the structure tensor matrix is larger than a
manually selected threshold. This technique automatically de-
tects the orientation and center of edges. We sample using the
nearest neighbors along the line that is perpendicular to the edge
and average several centered profiles of the ventricles’ edge. For
the simulated phantom, the straight edge of a dense horizontal
bar is known and used for evaluation. The averaged edge is con-
volved with a step-size function and then the Fourier transform
of the resulting first derivative of the edge is taken. The edge re-
sponse function is then normalized to the zero frequency of the
Fourier transformed signal.

2) Signal-To-Noise Ratio: Using the volume rendering
software InSpace [17] a manually selected volume of interest
(VOI) is placed inside a contrast-filled ventricle or in the in
vitro phantom. We compute the SNR as the ratio of the mean
voxel intensity value to the standard deviation inside the VOI
region.

IV. RESULTS

We first consider numerical simulations of the sampling issue
during the spatial warping of the filtered back-projections as
described in the MC-FDK algorithm II-C. Then we demonstrate
the performance of the introduced motion correction method on
the in vitro phantom and on an animal subject.

A. Simulation Study

The reconstructed images of the simulated phantom are
shown in Fig. 4. The two right images show the result of (e)
AL-EG-FDK and (f) AV-FDK, with strong motion blurring.
The ground truth phantom is shown in (a) and the 2-D FBP of
the nonmoving phantom is shown in (b). An important question
is the interpolation of warped rays during backprojection as
described in Section II-C. In this study we assume that the
ideal MVF is known and compare, using the ideal MVFs, the
MC-FDK method where the interpolation (warping)

• takes place in the projection-space (MC-FDK-P);
• is performed after the backprojection in the 3-D backpro-

jection-space (MC-FDK-B).
Visually there is no significant difference between the mo-
tion corrected reconstructions using (c) MC-FDK-P and (d)
MC-FDK-B. The corresponding edge response functions are
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Fig. 5. Edge response of simulated phantom using the reconstruction methods
AV-FDK, MC-FDK-P, MC-FDK-B and AL-EG-FDK. The labels (a,b, ) de-
note the corresponding images in Fig. 4.

presented in Fig. 5. The edge response using the (c) MC-FDK-P
method is slightly improved compared to the (d) MC-FDK-B
method. However, the simulation shows that the gain in spatial
resolution is only marginal compared to the computational cost
of the more complex backprojection of the warped grid posi-
tions . The result using AL-EG-FDK (e) shows a slight
improvement compared to (f) AV-FDK due to the ECG-gated
reconstruction of the four cardiac phases, before aligning them
according to the ideal MVF. Averaging several ECG-gated
reconstructions (e) that have been warped to one single cardiac
phase still produces strong motion related blurring artifacts,
even when the ideal MVF is applied. For the experiments that
follow, interpolation according to MC-FDK-B was applied.

B. In Vitro Phantom Study

The edge profile of all seven reconstruction methods is
shown in Fig. 7. The FDK reconstruction of the nonmoving
phantom (GT-FDK) provides a reference against which all
other methods can be compared. For the GT-FDK, EG-FDK,
and MC-FDK, 191 projections were used for the reconstruction.
For AL-EG-FDK, SNR0, SNR1, SNR2, and AV-FDK all 764
projections were considered during reconstruction. However,
depending on the weighting schemes of SNR1 and SNR2,
not all 764 projection images provided the same contribution
to the final reconstruction. As shown in Fig. 7, the edge of
the EG-FDK is strongly blurred and increases approximately
linearly between the minimum and maximum of the motion
amplitude. The sharpest edge, with a width of approximately
3 mm and a height of 300 intensity units, is provided by the
GT-FDK reconstruction of the nonmoving phantom. Motion
artifacts having an intensity offset of about 50 units can be
observed in the methods EG-FDK and AL-EG-FDK, where the
edge is also strongly blurred. All motion corrected reconstruc-
tions MC-FDK, SNR0, SNR1 and SNR2 provide increased
edge amplitude as compared to the standard EG-FDK recon-
struction.

The resulting edge response functions are shown in Fig. 8.
The impact of the standard deviations and of SNR1 and

Fig. 6. Multiplanar rendered reconstructions of the in vitro phantom. The figure
shows all reconstruction methods compared to the nonmoving object recon-
struction GT-FDK. The sinusoidal motion of the phantom was from left to right
according to the shown MPRs.

SNR2 are shown in Fig. 9. The resulting 30% edge response
versus the SNR for the range
and is shown. The SNR and edge
response for both SNR1 and SNR2 methods correspond to
the measurements provided from the MC-FDK method. For
small standard deviations such as and ,
almost the same projections that are used for the MC-FDK
reconstruction contribute to the SNR1 and SNR2 result. With
increasing and more projections outside the targeted
reconstruction window contribute to the final reconstruction.
Thus, the SNR of the SNR1 and SNR2 methods increases
up to the SNR0 measurements, where all acquired projection
images contribute with the same weight to the final reconstruc-
tion. Here we observe a trade-off between increasing SNR
and spatial resolution. This reflects the approximate motion
estimation and correction where the spatial resolution drops
as more motion corrected filtered backprojections contribute
to the final reconstruction. The SNR2 provides a larger SNR
compared to SNR1 for the same spatial resolution. The highest
SNR is provided by AV-FDK, although the spatial resolution
decreases to 0.675 lp/cm. The SNR0 provides a comparable
spatial resolution to EG-FDK, while the SNR of SNR0 is
significantly increased. The AL-EG-FDK method provides an
increased SNR compared to EG-FDK (0.725 lp/cm), however
the edges become strongly blurred and the spatial resolution
drops below 0.675 lp/cm.

A multiplanar reconstruction of all methods is shown in
Fig. 6 (window , ). The reference
reconstruction GT-FDK of the nonmoving object is shown
in the bottom right image. The EG-FDK is shown in the top
left image. The edges perpendicular to the object’s motion
are significantly more blurred in the EG-FDK compared to all
motion corrected reconstructions (MC-FDK, SNR0, SNR1,
and SNR2). For SNR1 and SNR2, the standard deviations

and have been used. We observed that
the AL-EG-FDK method (13) does not improve edge sharpness
although the same MVFs have been used to align the initial
reconstructions to .
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Fig. 7. Edge profiles of the in vitro phantom. The representative edges were
computed via averaging 30 center aligned edge measurements. The edge is per-
pendicular to the sinusoidal motion direction. The centered positions do not rep-
resent any temporal specific edge locations. Standard deviation for the SNR1
and SNR2 method is , . The SNR1 profile is almost iden-
tical to SNR2.

Fig. 8. In vitro phantom: Edge response of all reconstruction methods using
, .

C. Results in the Animal Model

An intensity profile of all reconstruction methods measured
across the ventricle is shown in Fig. 11. The edges of the
AL-EG-FDK and AV-FDK method are strongly blurred. The
left blurred edge is about 15 mm wide where the motion of the
ventricle is large. The EG-FDK method provides a sharper time
resolved edge, but inside homogeneous regions, the residual
motion-related artifact contributes to a jagged profile. The
motion corrected MC-FDK, SNR1, and SNR2 methods are
more homogeneous with a comparable edge sharpness. The
edges provided by the SNR0 method are slightly more blurred
than EG-FDK.

The resulting edge response function measured around
the papillary muscle is shown in Fig. 12. The MC-FDK
method provides the best edge response followed by the
SNR2 , EG-FDK, SNR1 , SNR0,
AL-EG-FDK, and AV-FDK methods. The measured SNR of all

TABLE V
SNR MEASURED INSIDE THE LEFT VENTRICLE. THE LEFT TABLE PROVIDES A
SUMMARY OF SNR MEASURES OF ALL METHODS, WHILE THE RIGHT TABLE
SPECIFICALLY SHOWS THE SNR DEPENDING ON AND FOR THE SNR1

AND SNR2 METHOD ON THE ANIMAL MODEL

methods is presented in Table V. For in vivo data, the MC-FDK
and SNR2 methods outperform the EG-FDK method, providing
both higher SNR and improved spatial resolution. The impact
of the standard deviation parameters and of the SNR1
and SNR2 methods are shown in Fig. 10 and Table V. The
figure shows the resulting resolution at 30% edge response
versus the SNR for the range and

. The AL-EG-FDK and AV-FDK
methods provide a resolution of about 0.7 lp/cm and a SNR
of about 50. The EG-FDK method has the lowest SNR with a
resolution of about 0.9 lp/cm. The SNR1 and SNR2 methods
provide measurements ranging from the SNR and resolution
of the MC-FDK method to the SNR0 method. The SNR2
method outperforms the SNR1 method, although both provide
an advantageous nonlinear regularization for the SNR-reso-
lution trade-off between the MC-FDK and SNR0 method as
shown in Fig. 10. The numerical results summarized in Table V
are reflected in multiplanar reconstructions (MPR) (intensity
window width 621) shown in Fig. 11. Contrast-filled ventricles,
as shown in the marked region of interest in the MPR (see
black arrow in Fig. 11-AL-EG-FDK), and vessels appear more
homogeneous as shown in Fig. 11-SNR1, SNR2, SNR0, and
MC-FDK compared to AL-EG-FDK, AV-FDK and EG-FDK.
Consistent with the in vitro results, the contrast-filled region of
the SNR2 method is more homogeneous than that of SNR1.
Especially in regions of strong motion, e.g., the area indicated
by the small circle in Fig. 11-AL-EG-FDK, the sharpness of
the edge differs between the MC-FDK based methods. For
example, the edge inside the black circle is sharper in the
MC-FDK method as compared to the EG-FDK. For the SNR2
method, edge sharpness is comparable to that of EG-FDK,
while SNR is significantly increased. However, as shown in
Fig. 11-SNR1, the edges becomes more blurred as compared
to EG-FDK, SNR2, and the MC-FDK method. For the uniform
weighting scheme SNR0, the edges become more blurred, while
the SNR increases from 45.65 (EG-FDK) to 64.87. A uniform
averaging using AL-EG-FDK results in strongly blurred edges
such as seen in a nongated reconstruction (Fig. 11-AV-FDK).
This emphasizes the performance of MC-FDK based methods
using an estimated subject-specific MVF for motion correction.

D. Computational Complexity

Initial Reconstruction: The EG-FDK reconstruction of one
volume can be performed in less than 3 s
using GPU acceleration.
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Fig. 9. In vitro phantom: Edge response at 30% in lp/cm versus SNR.

Fig. 10. Edge response at 30% in lp/cm versus SNR of the animal model. The
standard deviation parameters of the SNR1 and SNR2 methods are varying with

and .

Motion Estimation: For the motion estimation, initial re-
constructions are computed and then pairwise reg-
istrations are required. Using a fast DCT-technique for inver-
sion of the sparse and structured matrix, a complexity of

is seen for each iteration of the registration of one
volume pair. Most of the work is done on coarse grids and only
about five iterations are performed on full resolution. This re-
sults in a registration runtime of about 2 min for one pair. The
complexity of the MVF interpolation using linear interpolation
is , since for each projection image one vector field
is interpolated.

Reconstruction: The runtime of the MC-FDK method is
much higher compared to EG-FDK, because additional com-
putational costs include loading the specific 3-D MVF for each
projection image used for the reconstruction and trilinear inter-
polation of each back-projected image for warping. Using a non
runtime optimized C++ implementation, one MC-FDK recon-
struction takes about 3 min. For SNR0, SNR1, and SNR2

TABLE VII
NOTATION AND ABBREVIATIONS

motion corrected volumes using MC-FDK are reconstructed.
The complexity of the weighting schemes SNR1 and SNR2
is then , where is a constant and depends on
the complexity of the weighting function. The weighting takes
about a second. The overall estimation plus reconstruction time
on a CPU is about 12 min ( , ).

V. DISCUSSION AND CONCLUSION

A. Discussion

1) Dynamic Filtered Backprojection: The results from the
animal model and from the in vitro phantom indicate that the
voxel-dependent intensity weighting of the SNR2 provides a
better trade-off between spatial resolution and SNR than the
SNR1 method. For both the animal model and the in vitro
phantom, the SNR2 method provided an advantageous non-
linear regularization between SNR and spatial resolution such
that a higher SNR can be achieved, while the resolution still
remains above values provided by EG-FDK and SNR0. How-
ever, results from the in vitro phantom showed that the SNR1
method is more linear in regularizing between resolution and
SNR, while for the animal model a more beneficial trade-off
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Fig. 11. Multiplanar reconstructions of all seven reconstruction methods of a swine. A measured intensity profile is shown in the bottom right figure. The intensity
profile is measured from left to right along the black line as shown in the thumbnail ( , ).

can be achieved (see Figs. 9 and 10). Compared to the MC-FDK
method, we observed higher motion blurring in the motion
correction methods in which all projections contribute to the
final reconstruction (SNR0, SNR1, and SNR2) because mo-
tion-corrected filtered backprojections that lie farther outside
the targeted cardiac phase window are included. The results
also show that the MC-FDK method provides increased edge
sharpness compared to EG-FDK and therefore is a reliable

reference for the weighting scheme of the SNR2 method. The
cardiac phase-based weighting scheme of the SNR1 method
also outperforms the uniform weighting scheme of the SNR0
method as shown in Figs. 10 and 9. A performance summary is
presented in Table VI. As shown in Figs. 10 and 9, the trade-off
between spatial resolution and SNR can be regularized using
the Gaussian weighting methods SNR1 and SNR2 such that
increased SNR can be gained while the spatial resolution can
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Fig. 12. Edge response functions ( , ) of the animal
model.

TABLE VI
PERFORMANCE SUMMARY OF RECONSTRUCTION METHODS. THE RANKING
IS ORDERED FROM LEFT (BEST) TO RIGHT. (A) EG-FDK, (B) AV-FDK, (C)

AL-EG-FDK, (D) MC-FDK, (E) SNR0, (F) SNR1, (G) SNR2

be approximately preserved. In our evaluation, the noise is
measured as the variance of a region where a homogeneous
attenuation value is expected. It is expected that methods that
take into account the same number of projection data provide
comparable SNR values. However, in our case the increase of
SNR is provided in addition to a reduction of motion artifacts.

2) AL-EG-FDK Versus MC-FDK: The comparison between
motion correction during reconstruction (MC-FDK) and ret-
rospective alignment of several cardiac phases (AL-EG-FDK)
after ECG-gated FDK reconstruction using the same MVF esti-
mate shows a significant advantage for the MC-FDK algorithm.
The key is that the AL-EG-FDK method only aligns anatomical
structures and is therefore limited by the initial image quality.
AL-EG-FDK produces an average of possible blurred ventricle
edges of several cardiac phases and, in the ideal case, the
edges are only perfectly aligned and not sharpened. In contrast,
increased edge sharpness can be achieved if the FBPs are
spatially warped such that, during the accumulation step of
MC-FDK, the filtered projection data contribute to the correct
spatial edge position and thus to improved edge sharpness.

3) Retrospective Motion Estimation: Although not described
in detail here, we have observed that the temporal distribution of
the initial reconstructions should uniformly cover the full R-R
interval even if those initial reconstructions are blurred. The cur-
vature regularization to enforce smoother spatial deformations
is also significant, especially for blurred initial reconstructions
correlating with a high cardiac phase variance. We assume that
the remaining blurring in ECG-gated reconstructions is compa-

rable for different cardiac phases. It is well known that in mul-
tilevel image registration the energy minimum is not shifted in
its location on coarser resolutions. It can therefore be expected
that a MVF can be estimated on a blurred representation of the
object like the initial reconstructions using a proper regulariza-
tion. Empirical studies also showed that while temporal regular-
ization can improve the motion estimate, the improvement was
not significant and depended on the object. Temporal regular-
ization affects the spatial smoothness, and thus must be imple-
mented very carefully. Heart motion is nonlinear in time and
the temporal sampling of our data is sparse, temporal regular-
ization must incorporate this nonlinearity and should in addi-
tion be bounded by the temporal sampling. This is, in practice,
a nontrivial task and can result in a less optimal spatial align-
ment of edges in order to comply with the requirement of tem-
poral smoothness. However, for the motion correction a precise
spatial alignment of edge structure is crucial to provide sharp
edges in a corrected reconstruction. One solution for a fast tem-
poral regularization is to smooth the temporal trajectory of each
voxel using a time dependent Gaussian kernel that is adapted to
the heart motion. The pairwise registration is performed in par-
allel and so the smoothing could be applied during each iteration
during minimization.

4) Clinical CT: Although not within the scope of this paper,
our approach could also be used with preoperative clinical CT
data. Calculation of the MVF could be carried out using CT
scans acquired prior to the intervention. After alignment be-
tween the intraoperative C-arm CT volume and the clinical CT
data, the MVF could be mapped to the C-arm data and used to
provide corrected C-arm CT volume reconstructions. Note that
the motion estimation we present should not be compared di-
rectly to those approaches that are used for cardiac CT because
the cardiac phase variance of C-arm CT ECG-gated projection
sets is usually much higher than in clinical cardiac CT.

B. Conclusion

We conclude that standard 3-D–3-D nonrigid registration,
based on initial EG-FDK reconstructions, provides a motion
estimate for retrospective motion correction. We demonstrated
that by combining several MVFs via cubic-spline interpola-
tion into a 4-D-MVF, retrospective motion correction using
the MC-FDK algorithm can be achieved. Compared to the
AL-EG-FDK method, where only EG-FDK reconstructions,
motion estimation, and regridding of the volumes is required,
the SNR0, SNR1, and SNR2 methods are computationally
more expensive. The AL-EG-FDK algorithm provides compa-
rable results to nongated Feldkamp (AV-FDK) where strong
motion blurring is observed. We also conclude that, for most
of the experiments, the MC-FDK method reduces motion
related blurring significantly and edge sharpness is maximized.
Furthermore, the SNR ratio can be increased by up to 70%
by using all acquired projection images of a multisweep scan
using the MC-FDK algorithm in combination with the SNR0,
SNR1, or SNR2 method. The SNR1 and SNR2 weighting
methods outperform SNR0 by weighting the contribution of
motion corrected FBPs based on intensity deviations or based
on the cardiac phase variance. In our experiments SNR2 outper-
formed the SNR1 method. We further conclude that the SNR1

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on January 25, 2010 at 05:48 from IEEE Xplore.  Restrictions apply. 



PRÜMMER et al.: CARDIAC C-ARM CT: A UNIFIED FRAMEWORK FOR MOTION ESTIMATION AND DYNAMIC CT 1849

and SNR2 weighting methods address the trade-off between
increased SNR and motion blurring caused by approximate
motion estimation and correction methods using an FDK-like
algorithm. However, the experiments showed that an increased
SNR is obtained at the cost of a slightly higher blurring of
edges.

In summary, the introduced motion estimation and correction
framework provides increased SNR while reducing motion-re-
lated blurring, which may be particularly important in appli-
cations that require segmentation such as delineation of con-
trast- filled ventricles. We also show that our refined motion
estimation/correction method can be applied to cardiac C-arm
CT data, where cardiac motion is locally less smooth than that
of respiratory motion as introduced by Li et al. [22]. In addi-
tion, MC-FDK has high potential for practical application since
the newest hardware accelerated FDK-like reconstructions take
less than 3 s for volumes and about 200 projections. The
motion registration of the volume pairs can be done in parallel
and, using fast linear interpolation, the computational cost to
compute the MVF as well as the spatial warping of the FBP is
acceptable. The framework introduced here has applications be-
yond cardiac imaging, and may be particularly useful for the es-
timation and correction of respiratory-motion-related artifacts.
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