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DT-REFinD: Diffusion Tensor Registration

With Exact Finite-

Strain Differential

B.T. Thomas Yeo*, Tom Vercauteren, Pierre Fillard, Jean-Marc Peyrat, Xavier Pennec, Polina Golland,

Nicholas Ayache,

Abstract—1In this paper, we propose the DT-REFinD algorithm
for the diffeomorphic nonlinear registration of diffusion tensor
images. Unlike scalar images, deforming tensor images requires
choosing both a reorientation strategy and an interpolation
scheme. Current diffusion tensor registration algorithms that
use full tensor information face difficulties in computing the
differential of the tensor reorientation strategy and consequently,
these methods often approximate the gradient of the objective
function. In the case of the finite-strain (FS) reorientation strategy,
we borrow results from the pose estimation literature in computer
vision to derive an analytical gradient of the registration objective
function. By utilizing the closed-form gradient and the velocity
field representation of one parameter subgroups of diffeomor-
phisms, the resulting registration algorithm is diffeomorphic and
fast. We contrast the algorithm with a traditional FS alternative
that ignores the reorientation in the gradient computation. We
show that the exact gradient leads to significantly better reg-
istration at the cost of computation time. Independently of the
choice of Euclidean or Log-Euclidean interpolation and sum of
squared differences dissimilarity measure, the exact gradient
achieves better alignment over an entire spectrum of deformation
penalties. Alignment quality is assessed with a battery of metrics
including tensor overlap, fractional anisotropy, inverse consistency
and closeness to synthetic warps. The improvements persist even
when a different reorientation scheme, preservation of principal
directions, is used to apply the final deformations.

Index Terms—Diffeomorphisms, diffusion tensor imaging, fi-
nite-strain (FS), finite-strain differential, preservation of principal
directions, registration, tensor reorientation.
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I. INTRODUCTION

IFFUSION tensor imaging (DTI) noninvasively measures
D the diffusion of water in in vivo biological tissues [8]. The
diffusion is anisotropic in tissues such as cerebral white matter.
DTT s therefore a powerful imaging modality for studying white
matter structures in the brain. The rate and anisotropy of diffu-
sion at each voxel of a diffusion tensor image is summarized
by an order 2 symmetric positive definite tensor, i.e., a posi-
tive definite 3 X 3 matrix. This is in contrast to scalar values
in traditional magnetic resonance images. The eigenvectors of
the tensor correspond to the three principal directions of diffu-
sion while the eigenvalues measure the rate of diffusion in these
directions.

To study the variability or similarity of white matter struc-
tures across a population or to track white matter changes of a
single subject through time, registration is necessary to estab-
lish correspondences across different diffusion tensor (DT) im-
ages. Registration can be simplistically thought of as warping
one image to match another. For scalar images, such a warp can
be defined by a deformation field and an interpolation scheme.
For DT images however, one also needs to define a tensor reori-
entation scheme. Reorientation of tensors is necessary to warp
a tensor image consistently with the anatomy [3]. There are two
commonly used reorientation strategies: the finite-strain (FS) re-
orientation and the preservation of principal directions (PPD)
reorientation. In this paper, we derive an exact differential of
FS reorientation strategy and show that incorporating the exact
differential into the registration algorithm leads to significantly
better registration than the common practice of ignoring the re-
orientation when computing the gradient [3]. Their empirical
performance is similar [23], [34], [49].

Many DTI registration algorithms have been proposed [2],
[15], [24], [28], [31], [36], [49], [50]. Because the reorientation
strategies greatly complicate the computation of the gradient of
the registration objective function [49], many of these registra-
tion techniques use scalar values or features that are invariant
to image transformations. This includes the use of fractional
anisotropy [31] and fibers extracted through tractography [50].
Leemans et al. [28] use mutual information to affinely align
the diffusion weighted images from which the DT images are
estimated. Nonlinear fluid registration of DT images based
on information theoretic measures has since been introduced
[16], [39].

Instead of using deformation invariant features, Alexander
and Gee [2] perform elastic registration of tensor images by re-
orienting the tensors after each iteration using PPD reorienta-
tion. The reorientation is not taken into account when computing
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the gradient of the objective function. Cao et al. [15] propose a
diffeomorphic registration of tensor images using PPD reorien-
tation. The diffeomorphism is parameterized by a nonstationary
velocity field under the large deformation diffeomorphic metric
mapping (LDDMM) framework [11]. An exact gradient of the
PPD reorientation is computed by a clever analytical reformu-
lation of the PPD reorientation strategy. In this paper, we com-
plement the work in [15] by computing the exact gradient of the
FS reorientation.

For a general transformation, such as defined by B-splines or
nonparametric free form displacement field, the FS reorienta-
tion [3] is defined through the rotation component of the defor-
mation field. This rotation is estimated by the polar decomposi-
tion of the Jacobian of the deformation field using principles of
continuum mechanics. The rotation produced by the polar de-
composition of the Jacobian is the closest orthogonal operator
to the Jacobian under any unitary invariant norm [26]. However,
the polar decomposition requires computing the square root of
a positive definite matrix, which replaces the eigenvalues of the
original matrix with their square roots. The dependence of the
rotation matrix on the Jacobian of deformation is therefore com-
plex and the gradient of any objective function that involves re-
orientation is hard to compute.

Zhang et al. [48], [49] propose and demonstrate a piecewise
local affine registration algorithm to register tensor images using
FS reorientation. The tensor image is divided into uniform re-
gions and the optimal affine transformation is then estimated
for each such region. The rotation component of the deforma-
tion need not be estimated as a separate step. Instead, since rota-
tion is already explicitly optimized in the affine registration, the
gradient due to FS reorientation can be easily computed. These
piecewise affine transformations are fused together to generate
a smooth warp field. The algorithm is iterated in a multiscale
fashion with smaller uniform regions. Unfortunately, it is un-
clear how much of the optimality is lost in fusing these locally
optimal piecewise affine transformations.

In this paper, we borrow results from the pose estimation lit-
erature in computer vision [20] to compute the analytical differ-
ential of the rotation matrix with respect to the Jacobian of the
displacement field. We propose a diffeomorphic DTI registra-
tion algorithm DT-REFinD, which extends the recently intro-
duced diffeomorphic Demons registration of scalar images [42]
to registration of tensor images. The availability of the exact an-
alytical gradient allows us to utilize the Gauss—Newton method
for optimization. Implemented within the Insight Toolkit (ITK)
framework, registration of a pair of 128 x 128 x 60 diffusion
tensor volumes takes 15 min on a Xeon 3.2 GHz single pro-
cessor machine. This is comparable to the nonlinear registration
of scalar images whose runtime might range from a couple of
minutes to hours. DT-REFinD has been incorporated into the
freely available MedINRIA software.!

The diffeomorphic Demons registration algorithm [42] is
an extension of the popular Demons algorithm [37]. It guar-
antees that the transformation is diffeomorphic. The space of
transformations is parameterized by a composition of deforma-

IMedINRIA can be downloaded at http://www-sop.inria.fr/asclepios/soft-
ware/MedINRIA.
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tions, each of which is parametrized by a stationary velocity
field. Such a representation is similar to that used by the large
deformation diffeomorphic metric mapping (LDDMM) frame-
work [11], [38]. However, unlike LDDMM, the diffeomorphic
Demons algorithm does not seek a geodesic of the Lie group of
diffeomorphism. At each iteration, the diffeomorphic Demons
algorithm seeks the best diffeomorphism to be composed with
the current transformation. Restricting each deformation up-
date to belong to a one parameter subgroup of diffeomorphism
results in a faster algorithm than the typical algorithm based on
the LDDMM framework or algorithms that parameterize the
entire diffeomorphic transformation by a stationary velocity
field [7], [25].

In addition to DT-REFinD, we also propose a simpler and
faster algorithm that ignores the reorientation during the gra-
dient computation. Instead, reorientation is performed after
each iteration. This faster algorithm is therefore a diffeomorphic
variant of the method proposed by Alexander and Gee [2] with
Gauss—Newton optimization. We compare the two algorithms
and show that using the exact gradient results in significantly
better registration at the cost of computation time.

While many methods for interpolating and comparing tensor
images exist [27], [32], we use Euclidean interpolation and
sum-of-squares difference (EUC-SSD) [2], [3], [49], as well
as Log-Euclidean interpolation and sum-of-squares difference
(LOG-SSD) [6], [21]. Regardless of the choice of interpo-
lation and dissimilarity metric, we find the exact gradient
achieves better alignment over an entire range of deforma-
tion regularization. Alignment quality is assessed with a set
of seventeen different metrics including tensor overlap, frac-
tional anisotropy and inverse consistency of the warps. We
also find that the exact gradient method recovers synthetically
generated warps with higher accuracy. Finally, we show that
the improvements persist even when PPD is used to apply the
final deformations.

We emphasize that there is no theoretical guarantee that using
the true gradient will lead to a better solution. After all, the reg-
istration problem is nonconvex and any solution we find is a
local optimum. In practice however, the experiments show that
taking reorientation into account does significantly improve the
registration results. We believe that the reorientation provides
an additional constraint. The registration algorithm cannot arbi-
trarily pull in a faraway region for matching because this induces
the reorientation of tensors in other regions (cf. the famous “C”
example in large deformation fluid registration [18]). This ad-
ditional constraint acts as a further regularization, leading to a
better solution.

This paper extends a previously presented conference article
[47] and contains detailed derivations, experiments and discus-
sions left out in the conference version. The paper is organized
as follows. The Section II describes the computation of the FS
differential. We then present an overview of the diffeomorphic
Demons algorithm in Section I1I and discuss certain conventions
and numerical limitations of representing diffeomorphic trans-
formations. We extend the diffeomorphic Demons to tensor im-
ages in Section IV using the exact FS differential. We also pro-
pose a simpler and faster algorithm that ignores the reorientation
during the gradient computation. In Section V, we compare the
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two algorithms on a set of 10 DT brain images. Further discus-
sion is provided in Section VI.

To summarize, our contributions are as follows.

1) We derive the exact FS differential.

2) We incorporate the FS differential into a fast diffeomorphic

DT image registration algorithm. We emphasize that the
FS differential is useful, even if one were to use a different
registration scheme with a different model of deformation
or dissimilarity metric.

3) We demonstrate that the use of the exact gradient leads
to better registration. In particular, we show that using the
exact gradient leads to better tensor alignment over an en-
tire range of deformation, regardless of whether we use
LOG-SSD or EUC-SSD in the objective function. We also
show that the exact gradient recovers synthetically gener-
ated deformation fields significantly better than when using
an approximate gradient that ignores reorientation.

Our implementation allows for Euclidean interpolation and
EUC-SSD metric, as well as Log-Euclidean interpolation
and LOG-SSD metric.

4)

II. FINITE-STRAIN DIFFERENTIAL

Deforming a tensor image by a transformation s involves
tensor interpolation followed by tensor reorientation [3]. To
compute a deformed tensor at a voxel n, one first interpolates
the tensor to get the interpolated tensor 7'(n). Interpolation
schemes include Euclidean interpolation [3], Log-Euclidean
interpolation [6], affine-invariant framework [10], [22], [29],
[30], [32], Geodesic—Loxodromes [27], or other methods. In
this work, we focus on Euclidean and Log-Euclidean interpola-
tion since they are commonly used and computationally simple.
The FS differential we compute in this section characterizes
tensor reorientation. The following discussion is therefore
independent of the interpolation strategy.

Suppose the transformation s maps a point p to the point s(p).
Let u £ s — I be the displacement field associated with the
transformation s. Then

s(p) =p+u. (1)

Similarly, we denote s = I + u. Note that even for parametric
representation of transformations, such as splines, one can al-
ways derive the equivalent displacement field representation.

According to the FS tensor reorientation strategy [3] for non-
linear deformation, one first computes the rotation component
of the deformation at the nth voxel

R(n) = (J(n)J(m)T) "1/ I (n) (2)

where J(n) is the Jacobian of the spatial transformation s at the
voxel n

95, (n) 95z (n)

9y

95z (n)

oz
dsy(n) dsy(n)
9y
ds.(n) 9s.(n)
ox oy
Quy(n) Ou,(n)
oz dy
Ouy (n) Ouy (n)
oz dy
du(n) du(n)
oz dy

J(n) =
9s.(n)

Auy(n)
Oz
Ouy (n)
Oz
du.(n)
Oz

=T+

3)
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where u,,, u,, u. are the components of the displacement field
inthe x, y and z directions. R(n) is called a polar decomposition
of the matrix .J(n) and is therefore a function of the displace-
ment field u in the neighborhood of 7. Under the identity trans-
formation, i.e., zero displacements, .J(n) = I and R(n) = I.
Because of the matrix inverse in (2), to maintain numerical sta-
bility of the computations, the invertibility of the deformation
(corresponding to det(.J) > 0) is important.

The interpolated tensor 7'(n) is then reoriented, resulting in
the final tensor 7”(n)

T'(n) = R (n)T(n)R(n). 4)

For registration based on the FS strategy, it is therefore neces-
sary to compute the differential of rotation R with respect to the
transformation s. Using chain rule, this reduces to computing
the differential of rotation R with respect to the Jacobian .J. Let
dJ be the infinitesimal change in the Jacobian J. Then, as shown
in Appendix A, the infinitesimal change in the rotation matrix
R is computed as follows:
®
dR=—R |R"(tx(S)I = $)"'RY (R"); x (d.J");

(%)
where S = (JJT)/2, x denotes the 3-D vector cross product,
(+); denotes the ith column of (-) and @ is the operator defined

as
®

my \ 0 —m3 Mo
T A
m® = [ my = | mg 0 —my 6)
ms —mso My 0

This skew-symmetric operator is actually the matrix represen-
tation of cross-product, so that for two vectors a and b, a X b =
a®b. Itis introduced to simplify the notation in the already com-
plicated (5).

The detailed derivation, based on the pose estimation solution
[20] is presented in Appendix A. Let J;; be (4, j)th component
of J. Equation (5) tells us the variation of the rotation R in terms
of the components of the Jacobian J. In particular, 0R/9J;; is
computed by setting the matrix d.J in (5) to 0, except for (d.J);;
which is set to 1.

III. BACKGROUND ON DIFFEOMORPHIC REGISTRATION

In this section, we briefly review the diffeomorphic exten-
sion [42] of Thirion’s Demons algorithm [37]. We also discuss
numerical issues related to representing diffeomorphism by ve-
locity fields and optimization methods we use in this paper.

A. Diffeomorphic Demons for Scalar Images

We consider the modified Demons objective function [14] for
registering a moving scalar image M to a fixed scalar image F’

E(c,s) = ||271(F—Moc)||2+i2dist(s,c)-l—iReg(s) @)
[ or

where c is the dense spatial transformation to be optimized, s is
an auxiliary spatial transformation, o denotes composition and
|| - || denotes the Ly-norm of a vector (or vector field, depending
on the context). We can think of the fixed image F' and warped
moving image M o c as 1-D vectors of length N voxels. X is a
N x N diagonal matrix that defines the variability observed at a
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Data: A fixed image F' and moving image M.
Result: Transformation c so that M o c is “close” to F.

Step 1. Choose a starting spatial transformation s(%) (represented by a displacement field)

Step 2. repeat

iii. Let ¢tD — s o exp(v(itD)

kernel is also typically Gaussian.
until convergence ;

Algorithm 1. Diffeomorphic Demons Algorithm

i. Given s, compute a stationary velocity field update v(*+1) by minimizing the first two terms of Eq. (7):

oD = argmin |E7H(F — M o s@ o exp(v))||>+ %djst(s(i), s® o exp(v)),
v

x

where v is an element of the Lie algebra g associated with the Lie group.
ii. If a fluid regularization is used, let v(t1) «— Kp iq x v(+t1). The convolution kernel is typically Gaussian.

iv. If a diffusion regularization is used, let (1) «— I + Ky » (1) — I); else let s(+1) « ¢(+1), The convolution

particular voxel. o, and o, are parameters of the cost function.
The instantiation of these parameters are further discussed in
Section V-B.

This formulation enables a fast and simple optimization that
alternately minimizes the first two terms and the last two terms
of (7). Typically, dist(c,s) = ||c — s||?, encouraging ¢ and s
to be close and Reg(s) = ||V(s — Id)||?, encouraging s to be
smooth. The regularization can also be modified to handle a fluid
model. We note that dist(c, s) and Reg(s) can together be inter-
preted probabilistically as a hierarchical prior on the deforma-
tion c [46].

For the classical Demons algorithm and its variants, the
objective function is optimized over the complete space of
nonparametric spatial transformations [14], [35], [37], [43],
typically represented as displacement fields. Unfortunately,
the resulting deformation might not be diffeomorphic. Instead,
Vercauteren et al. [42] optimize over compositions of diffeo-
morphic deformations, each of which is parametrized by a
stationary velocity field. At each iteration, the diffeomorphic
Demons algorithm seeks the best diffeomorphism parame-
terized by the stationary velocity v, to be composed with the
current transformation.

In this case, the velocity field v is an element of the Lie al-
gebra g and exp(v) is the diffeomorphism associated with v.
The operator exp(-) is the group exponential relating the Lie
Group G to its associated Lie algebra g. More formally, let
®,, (o) be the solution at time ¢ of the following stationary or-
dinary differential equation (ODE):

d
d—f = v(z) with initial condition z(0) = zo. (8)

We define
exp(v)(z) £ ®py(z) 2 w(z). )

An image M o exp(v) is therefore a deformed version of image
M obtained by transforming the coordinate system of M by
exp(v): a point z in the deformed coordinate system corre-
sponds to a point ®1,,(x) in the old coordinate system.

The above formulation of the Demons objective function fa-
cilitates a fast iterative two-step optimization. We summarize
the diffeomorphic Demons algorithm [42] in Algorithm 1 (see
algorithm at the top of the page). Steps 2(ii) to 2(iv) essentially
optimize the last two terms of (7). We refer the reader to [13],
[14] for a detailed discussion of using convolution kernels to
achieve elastic and fluid regularization. We also note that the
above formulation is quite general, and in fact the diffeomorphic

Demons algorithm can be extended to non-Euclidean domains,
such as the sphere [46].

B. Numerical Details in Velocity Field Representations

While v and ®1,(z) = exp(v)(z) = w(x) are technically
defined on the entire continuous image domain, in practice, v
and w are represented by vector fields on a discrete grid of
image points, such as voxels [37], [42] or control points [7],
[11]. From the theories of ODEs, we know that the integral
curves w = exp(v) (or trajectories) of a velocity field v(z, t)
exist and are unique if v(z, t) is Lipschitz continuous in z and
continuous in ¢ [12]. Uniqueness means that the trajectories do
not cross, implying that the deformation is invertible. Further-
more, we know from the theories of ODEs that a C" contin-
uous velocity field v produces a C" continuous deformation
field @, (x). Therefore, a sufficiently smooth velocity field re-
sults in a diffeomorphic transformation.

Since the velocity field v is stationary in the case of the one
parameter subgroup of diffeomorphism [5], v is clearly contin-
uous (and in fact C*°) in t. A smooth interpolation of v is con-
tinuous in the spatial domain and is Lipschitz continuous if we
consider a compact domain, which holds since we only consider
images that are closed and bounded.

To compute the final deformation of an image, we have to
estimate exp(v) at least at the set of image grid points. For ex-
ample, we can compute exp(v) by numerically integrating the
smoothly interpolated velocity field v with Euler integration.
In this case, the estimate becomes arbitrarily close to the true
exp(v) as the number of integration time steps increases. With
a sufficiently large number of integration steps, we expect the
estimate to be invertible and the resulting transformation to be
diffeomorphic.

The parameterization of diffeomorphism by stationary ve-
locity field is made popular by the use of the fast “scaling and
squaring” approach to computing exp(v) [5]. Instead of Euler
integration, the “scaling and squaring” method works by mul-
tiple composition of displacement fields

1
Q1 2ny0(7) =2 + ﬁ’“(x)
D1 on 1)y (2) = P17y, © Py janyy ()
Q1y(1) = @12y 0 P(1/2)0 (). (10)

While this method is correct in the continuous case, in the
discrete case, composition of the displacement fields requires
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interpolation of displacement fields, introducing errors in
the process. In particular, suppose ®@;,,(x) and Doy, (z) are
the true trajectories found by performing an accurate Euler
integration up to time fy and 2ty respectively. Then, there
does not exist a trivial interpolation scheme that guarantees
Doton () = Piyy 0 Pyyw(z). In practice however, it is widely
reported that “scaling and squaring” tends to preserve invert-
ibility even with rather large deformation [5], [7], [42]. In this
work, we employ trilinear interpolation because it is fast. We
find that in practice, the transformation is indeed diffeomorphic.
Technically speaking, since we use linear interpolation for the
displacement field, the transformation is only homeomorphic
rather than diffeomorphic. However, we will follow the con-
vention of [5], [7], [42] which call the resulting homeomorphic
transformations diffeomorphisms.

C. Gauss—Newton Nonlinear Least-Squares Optimization

We now focus on the optimization of step 2(i) of the diffeo-
morphic Demons algorithm. We choose dist(s, s o exp(v))=
s~ Tosoexp(v)[|? = [[exp(v)[2 = Jul2, where u = exp(v) -
1. We “subtract” the identity transformation from the resulting
deformation field so that the identity transformation carries no
penalty. The objective function in step 2(i) can then be written
in a nonlinear least-squares form

s [ ==
[
=los(v)|1? (13)

where we define ¢'(s) = L Y(F — M o s) and ¢*(v) =
(1/0.) exp(v). Using Taylor series expansion around v = 0,
we can write (13) as

2

_ Dz (0) )
Ey(v) = ‘ ws(0) + [sz(())} v+ O(||v||?)|| - (14)
To interpret (14) for 3-D images with N voxels,
let v be a 3N x 1 vector of components:

{va(1), 'U;l{(l)v vz(1), .. vz(IN), Uy(N) v:(N)}.
Then D¢ (0) is a N x 3N block diagonal matrix, whose nth
block corresponds to a 1 X 3 matrix

Opp (5 0 exp(v))

Ol (soexp(v)) Oexp(v)(n)
8eXp('U>(n) 8’0(,”’) v(n)=0
(16)
Il (s 0 exp(v))
— Z¥mi\° " PAPAT)) 17
86)(1:)('1))(71) v(n)=0 ( )
9y, (s 0 w)
_ Opn(sow) 18
a’U)(’l’l) w(n)=n ( )
=-Y"Yn)V(M o s)(n) (19)

where w(n) = exp(v)(n) = ®1,(n) is the transformation of
voxel n and is the identity transformation when the velocity
v = 0. In (17), we utilize the fact that the differential of the
exponential map at v = 0 is the identity. V(M o s)(n) is the
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spatial derivative of the image intensity at voxel n of the warped
moving image M o s. _

Similarly, we can show that sz (0) = (1/04)Isnx3n Where
Iisa 3N x 3N identity matrix. The Gauss—Newton optimiza-
tion method ignores the O(||v||?) term within the norm in (14),
leading to the classical linear least-squares problem. In partic-
ular, (14) can then be rewritten as

YSTYF - Mos)
0
_y—1
+[ El(IV(Mos))]v
oo 13N x3N
= [Ib - Av]?

Es(v) =

2
(20)

21

which is a linear least-squares problem. Independently of the
size of the matrices, it is easy to solve the resulting linear system
Av = b since the equations for each voxel can be decoupled
from all other voxels. With the help of the Sherman-Morrison
matrix inversion lemma, no matrix inversion is even needed
to invert the resulting small system of linear equations at each
voxel [42].

We note that the original Demons algorithm [37] replaced
V(M o s) by VF. This is justified by the fact that at the op-
timum, the gradient of the warped moving image should be al-
most equal to the gradient of the fixed image.

IV. DT-REFIND: TENSOR IMAGE REGISTRATION

A. Diffeomorphic Demons for Vector Images

Before incorporating the FS differential for tensor regis-
tration, let us extend the diffeomorphic Demons algorithm to
vector images. In addition to helping us explain our complete
algorithm, the derivation will also be useful for computing up-
date steps when ignoring tensor reorientation in Section IV-D.
We define a vector image to be an image with a vector of inten-
sities at each voxel. We can treat a vector image like a scalar
image in the sense that each vector component is independent
of the other components. Deformation of a vector image works
just like a scalar image, by treating each component of the
vector separately.

It is fairly straightforward to re-derive the results from the
previous section for vector images. Let K be the dimension of
the intensity vector at each voxel. For convenience, we define
F,, to be the K x 1 intensity vector of the nth voxel, F;, =
{F.(1),...,F,(K)}, and F to be the NK x 1 vector of all
image intensities F' = {F},..., Fx}. Then the diffeomorphic
Demons algorithm from the previous section applies exactly to
vector images except that in (20), V(M o s) is now a sparse
N K x 3N block diagonal matrix, where each block is K x 3. In
particular, the nth block of V(M os) contains spatial derivatives
of M o s at voxel n

V(M o s)(n)
9(Mos), (1)
ox

O(Mos), (1) 9(Mos), (1)
oy Oz

: : (22)
O(Mos),(K) 9(Mos)n(K) d(Mos),(K)

ox Jy 0z

The resulting least-squares linear system Ax b is slightly
harder to solve than before. However, for each voxel n, we only
have to solve a 3 x 3 linear system for the velocity vector update
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v(n). The solution of the system is also more stable as there are
more constraints.

B. DT-REFinD: Diffusion Tensor Registration With Exact FS
Differential

We will now extend the Demons algorithm to DT images.
A DT image is different from a vector image because of the
additional structure present in a tensor. In particular, the space
of symmetric positive definite matrices (tensors) is not a vector
space. When deforming a DT image, reorientation is also nec-
essary. We extend the diffeomorphic Demons registration of
vector images to tensor images.

In this work, we use the modified Demons objective function
(7) and the FS reorientation strategy in our registration. The ob-
jective function in step 2(i) of the Demons algorithm, shown in
(11) for scalars, becomes

2

ES(U):H I ey | ey
([ 0 exp ]|
_H[ ©*(v) ] 24
— llp ()12 05)

Here, iF — RT (M o s 0exp(v)) RH2 is the Euclidean sum of
squares difference (EUC-SSD) between the tensor images. In
particular, F' can be seen as a 9NV x 1 vector by “rasterizing”
the 3 x 3 order 2 tensor at each voxel into a column vector.
M o s o exp(v) should be interpreted as the interpolated
tensor image. In practice, since the tensors are symmetric,
we can work with 6N x 1 vectors to represent tensors and
increase the weights of the entries of ¥ ! corresponding to the
nondiagonal entries of the tensors by /2. Each interpolated
tensor is then reoriented using the rotation matrix R of each
voxel and “rasterized” into a column vector. Note that R is
implicitly dependent on the transformation soexp(v). The term
||F — RT (M o so0exp(v)) RH2 computes the SSD between
each tensor of the fixed image and the corresponding reoriented
and interpolated tensor in the warped moving image, by treating
each tensor as a vector and adding the SSD for all voxels.

Equation (23) can also be interpreted as the LOG-SSD be-
tween tensors if ' and M are the Log-Euclidean transforms of
the original tensor images, obtained by converting each tensor
T in the original image to a log-tensor log(7"). Note that log(7")
is simply a symmetric matrix [6]. M o s o exp(v) is then the in-
terpolated log-tensor image. RT (M o s o exp(v)) R is the in-
terpolated and reoriented log-tensor image, since

log(RTTR) = RT log(T)R (26)
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for any rotation matrix R. Therefore, tensor reorientation
followed by Log-Euclidean transformation is the same as
Log-Euclidean transformation followed by reorientation. This
is convenient since we can perform a one time Log-Euclidean
transformation of the tensor images to log-tensor images before
registration and convert the final warped log-tensor images to
tensor images at the end of the registration.

In this case, D? (0) is a sparse 9N x 3N matrix. One
can interpret D? (0) as N x N blocks of 9 x 3 matrices.

In particular, the (n,j)th block [D’,;?1 (0)}
(00L(s 0w)/on()|
w = exp(v) = Py, and n, j are also voxel indices. Using the

chain rule, the product rule and the fact that the differential of
the exponential map at v = 0 is the identity, we get

Dz (0)]

~is equal to
nj

, where we remind the readers that
=0

o 900) Lugy=o 27)
_ N Aol (s ow) Ow(k)
_; dw(k)  3v() |uj)=0 (28)
_ Qenlsow)
T 00() g (29)
B [aaiu(% (M o5 0w(n)) R(n)
1y 2Mosowm)) b,
+ R"(n) 5uli) R(n)
T osowln 9R(n)
+R"(n) (M (n)) 8w(j)} .
(30)

where w is the identity transformation when the velocity v = 0.

Recall that R(n) is a function of the Jacobian of displacement
field J(n) at the voxel n and that (3) gives an analytical ex-
pression of J(n). In practice, J(n) is defined numerically using
finite central difference as shown in (31) at the bottom of the
page where {n,_, Nyt Ny—, Ny4,N-—, Ny } are the neighbors
of voxel n in the z, y and z directions, respectively. Therefore
wy (N, ) denotes the y-coordinate of n, 4 after transformation
w(ngy) and w,(n,_) denotes the y-coordinate of n,_ after
transformation w(n,_). Az, Ay and Az are the voxel spac-
ings in the x, y and z directions respectively. Using the differ-
ential of R (5) and the expression of J (31), we can compute
OR(n)/0w(j) using the chain rule. Appendix B provides the
detailed derivation. This definition of .J implies

[Dfl (0)]m = YY) RT (n)V(M o s)(n)R(n)  (32)

50Wg (Npy ) —S0Wg (Ng_)

50Wg (Ny4 ) —50wg (Ny_)

s0wWg (n2y )—sowg(n._)

2Ax 2Ay 20z
_ sowy (Ngy)—sowy (ng_) sowy (ny4 ) —sowy (ny_) sowy (n.4)—sowy(n._)
J(n) - 2Azx 2Ay 2Nz (31)
sow. (ngy)—sow.(ng_) sow; (ny4)—sow;(n,_) sow.(n.q)—sow.(n._)
2Ax 2Ay 2Nz
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and for neighbor j of voxel n, we get

[Df‘ (O)LJ = -2 !(n) %&T;)(Mo s) (n)R(n)
+RT(n)(Mos)(n)g§E?; o

Note that the first and second terms in the above expression are
transpose of each other. Therefore, for n # j, the (n, j)th block
of D#"(0) is zeros if voxels n and j are not neighbors.

As before, D’f2 (0) = (1/02)I3nx3n- In summary, we have
computed the full gradient of our objective function

Dg'(0) }

34
élsNst (34)

D7) - |

where (1/02)1 is a constant diagonal matrix, while D?'(0) is
a sparse 9N x 3N matrix.

C. Gauss—Newton Nonlinear Least-Squares Optimization

From the previous sections, we can now write

(o) ~ H [E—l(F - ROT(M o s)R)}
1 2
+ [Di(lo)}v (35)
—|Ib— A (36)

The resulting least-squares problem is harder to solve than be-
fore, since the linear systems of equations cannot be separated
into voxel-specific set of equations. However, the sparsity of the
matrix makes the problem tractable. In practice, we solve the
linear systems of equations using Gmm-++, a free generic C++
template library for solving linear sparse systems.2 At the finest
resolution, solving the sparse linear system requires about 60 s.
This is the bottleneck of the algorithm. However, due to the fast
convergence of Gauss—Newton method, we typically only need
to solve the linear systems 10 times per multiresolution level.
The resulting registration takes about 15 min on a Xeon 3.2 GHz
single processor machine.

The efficiency of the Demons algorithm for scalar images
comes from separating the optimization into two phases: op-
timization of the dissimilarity measure and optimization of the
regularization term. This avoids the need to solve a nonseparable
system of linear equations when considering the two phases to-
gether. Because of the reorientation in tensor registration, we
have to solve a sparse system of linear equations anyway. In
this case, we could have incorporated the optimization of the
regularization term together with the optimization of the dissim-
ilarity measure without much loss of efficiency. In this work, we
keep the two phases separate to allow for fair comparison with
the case of ignoring the reorientation of tensors in the gradient
computation (see Section IV-D) by using almost the same im-
plementation. Any improvement must then clearly come from
the use of the true gradient and not from using a one-phase op-
timization scheme versus a two-phase optimization scheme.

2http://home.gna.org/getfem/gmm_intro

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 12, DECEMBER 2009

D. Classical Alternative: Ignoring the Reorientation of
Tensors

Previous work [2] performs tensor registration by not in-
cluding the reorientation in the gradient computation, but
reorienting the tensors after each iteration using the current
estimated displacement field. To evaluate the utility of the true
gradient, we modify our algorithm to ignore the reorientation
part of the objective function in the gradient computation.
In particular, we can simplify the Gauss—Newton optimiza-

tion in the previous section by setting [D’;?l (0)} = 0 and

nj
[Dg’l (o)] = —5(n)='V (RT (n)(M o s)R(n)), effectively
ignoring the effects of the displacement field of a voxel on the
reorientation of its neighbors. Note that [D’fl (0)} is slightly
different from before because we directly use the ngradient of
the warped and reoriented image. In each iteration, we treat
the tensor like a vector, except when deforming the moving
image. The resulting least-squares problem degenerates to that
in Section IV-A. The algorithm is thus much faster since we
only need to invert a 3 X 3 matrix per voxel at each iteration.
Registration only takes a few minutes on a Xeon 3.2 GHz single
processor machine.

V. EXPERIMENTS

We now compare the DT-REFinD algorithm that uses the
exact FS differential with the classical alternative that uses an
approximate gradient and a basic Demons algorithm that uses
the fixed image gradient.

A. Data and Preprocessing

We use 10 DT images acquired on a Siemens 1.5T scanner
using an EPI sequence, consisting of healthy volunteers with
the following acquisition parameters: echo time = 110 ms; 25
diffusion gradients, image dimensions = 128 x 128 x 60; image
resolution = 1.875 mm x 1.875 mm x 4 mm. These images
are kindly contributed by Dr. Ducreux, Bicétre Hospital, Paris,
France.

We first use morphological operations to extract a foreground
mask from the diffusion weighted (DW) images of each of the
10 DT images. This involves an automatic thresholding of any
single DW image, except the baseline, so that the skull and the
eyes do not interfere in the mask calculation. The threshold
is chosen so that the mask contains the entire brain. This in-
evitably contains some outliers in the background. Then, a se-
quence of erosions with a ball of radius 1 voxel is performed
to remove outliers (3 to 4 iterations are sufficient), which re-
sults in a set of connected components ensured to lie within
the brain. Finally, we use conditional reconstruction to create
the final mask. This involves dilating the connected components
while intersecting the result with the initial mask, and repeating
this process until convergence. Doing so allows the connected
components to grows within the brain while ensuring the back-
ground outliers are canceled. If holes are still present in the
mask, a hole filling algorithm can be applied (a simple morpho-
logical closing is generally sufficient).
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B. Implementation Details

We perform pairwise registration of DT images via a standard
multiresolution optimization, by smoothing and downsampling
the data for initial registration and using the resulting registra-
tion from a coarser resolution to initialize the registration of a
finer resolution. We find that 10 iterations per multiresolution
level were sufficient for convergence. When computing the SSD
objective function, only voxels corresponding to the fixed image
foreground are included.

There are three main parameters in the algorithm: the diag-
onal variability matrix ¥, and the tradeoff parameters o, and
or. % could be, in principle, estimated from a set of diffusion
tensor images via coregistration. Since we deal with pairwise
registration, we set X to be a constant diagonal matrix. Con-
sequently, because the local optimum is determined by the rel-
ative weighting of X, o, and op, we simply set X to be the
identity matrix. o, determines the step-size taken at each iter-
ation, which affects the stability of the registration algorithm
[42]. Therefore, we empirically set o, so that the update at each
iteration is about 2 voxels. The relative values of o, and o de-
termine the width of the kernel used to smooth the deformation
field. Once o, is determined, the value of o1 determines the
warp smoothness.

As previously shown [14], it does not make sense to com-
pare two registration algorithms with a fixed tradeoff between
the dissimilarity measure and regularization, especially when
the two algorithms use different dissimilarity measures and/or
regularizations. Furthermore, one needs to be careful with the
tradeoff selection for optimal performance in a given applica-
tion [44].

In this work, we compare the algorithms over a broad range
of kernel sizes. We note that larger kernel sizes lead to more
smoothing and thus smoother warps. Because kernel sizes are
not comparable across the different algorithms we consider, we
use harmonic energy as a more direct measure of warp smooth-
ness. We define the harmonic energy to be the average over all
voxels of the squared Frobenius norm of the Jacobian of the dis-
placement field. Note that the Jacobian of the displacement field
corresponds to the Jacobian of the transformation defined in (3)
without the identity. Therefore lower harmonic energy corre-
sponds to smoother deformation.

C. Evaluation Metrics

To assess the alignment quality of two registered DT images,
we use a variety of tensor metrics [2], [9], [21]. Let D be a dif-
fusion tensor. We let A1, Ao, A3 be its eigenvalues in descending
order with corresponding eigenvectors e, €3, e3. We denote
(M) the average eigenvalues. Similarly, let D’ denote another
diffusion tensor with corresponding eigenvalues A}, A}, A5 and
eigenvectors e, ey, e4. The following measures are averaged
over the foreground voxels of the fixed image. This in turn al-
lows us to average results across different registration trials by
normalizing for brain sizes.

1) Euclidean Mean Squared Errors (EUC-MSE): squared

Frobenius norm of D — D’.
2) Log Euclidean Mean Squared Errors (LOG-MSE): squared
Frobenius norm of log(D) — log(D’).
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3) 1—Overlap: 1 — (ZL AN (e - e)2 /S0 Aixg).
Note that the EUC-MSE and LOG-MSE correspond to the SSD
and LOG-SSD dissimilarity metrics we employ during registra-
tion. In additional to these tensor metrics, we also consider the
following scalar measures [1], [9]. The dissimilarity between
two tensors is defined to be the sum of squared differences
between these scalar measures, averaged over the foreground
voxels.

1) FA(Fractional Anisotropy)

%ﬂur4»f+ur4»f+uy4»f)

/2 (Af + 23+ A3)).

2) LFA (Logarithmic Anisotropy): FA computed for log(D).

3) ADC (Apparent Diffusion Coefficient): Trace(D) = 3(\).

4) VOL (Volume): det(D) = A1 A2 As.

5) CL (Linear Anisotropic Diffusion): (A1 — A2/3(})).

6) CP (Planar Ansiotropic Diffusion): (2(Aa — A3)/3(A)).

7) CS (Spherical Anisotropic Diffusion): (3A3/3(A)).

8) RA (Relative Anisotropy):

(V0= 00"+ = )"+ (30 = VBN ).

9) VR (Volume Ratio): (A1 A2A3/(A)?).

10) DISP (Dispersion): v/(A2 + A3/2A1).

11) ;.

12) As.

13) As.
A question then arises over whether these scalar measures
should be computed after deforming the moving image or
computed on the unwarped moving image and then interpolated
with the deformation field. The latter is attractive because the
result is independent of the tensor reorientation and interpola-
tion strategies. On the other hand, since registration is almost
never an end-goal—the deformed tensor images are presum-
ably used for other tasks, one could argue that it is important
to measure the quality of the deformed tensors. Therefore, in
this work, we consider both strategies. Finally, we define the

average distance between two deformation fields c; and c» to
be

LS (37)

né€foreground

ller(n) = ca(n)]| 2

where N is the number of foreground voxels. We compute the
average difference in the deformation fields obtained by the dif-
ferent methods to evaluate how different the deformation fields
are. We find that the average difference in the deformation fields
between the exact gradient method and the approximate gra-
dient method ranges from 2 mm at low harmonic energy to 5 mm
at high harmonic energy (cf. image resolution = 1.875 mm X
1.875 mm x 4 mm). The average difference in the deformation
fields between the fixed image gradient method and the other
two methods ranges from 3 mm at low harmonic energy to 8§ mm
at high harmonic energy.

The average distance can also be used to measure inverse con-
sistency. Without the availability of ground truth deformation,
inverse consistency [17] can be used as an indirect assessment of
deformation quality. In particular, given a deformation c;; from
subject ¢ to subject j and c;; from subject j to subject 7, inverse

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:55 from IEEE Xplore. Restrictions apply.



1922

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 12, DECEMBER 2009

(a) Moving image

(b) Fixed image

(d) Registered
(exact grad.)

(c) Registered image (ap-
prox. grad)

image

Fig. 1. Qualitative comparison between the exact FS gradient and the approximated gradient for registering a pair of subjects using the Log-Euclidean framework
and the same parameters in the registration. (a) Moving image. (b) Fixed image. (c) Registration using the approximated moving image gradient. (d) Registration
using the exact FS gradient. Volumes were slightly cropped for better display. Exact gradient achieves better alignment of fiber tracts with a smoother displacement
field. Tensors in the anterior limb of the internal capsule, highlighted in (b) and (d) are coherently oriented in a north-east direction. However, in (c), the directions
of the tensors are more scattered. Furthermore, the volume of the tensors in (c) is swollen relative to (b) and (d). Numerically, the exact FS gradient has lower SSD

with a smoother deformation field (not shown).

consistency is defined to be the average distance between the
displacement field associated with the composed warp ¢;; o cj;
and a zero displacement field.

D. Qualitative Evaluation

Fig. 1 shows an example registration of two subjects from our
data set. Visually, DT-REFinD results in better tract alignment,
such as the anterior limb of the internal capsule highlighted in
the figure. See figure caption for more discussion. In this partic-
ular example, DT-REFinD also achieves a better Log-Euclidean
mean-square-error (LOG-MSE) and smoother deformation as
measured by the harmonic energy.

E. Quantitative Evaluation I

To quantitatively compare the performance of the exact FS
gradient, the approximate gradient and the fixed image gradient,
we consider pairwise registration of the 10 DT images. Since
our registration is not symmetric between the fixed and moving
images, there are 90 possible pairwise registration experiments.
We randomly select 20 pairs of images for pairwise registra-
tion. By swapping the roles of the fixed and moving images,
we obtain 40 pairs of image registration. From our experiments,
we find that the statistics we compute appear to converge after
about 30 pairwise registrations, hence 40 pairwise registrations
are sufficient for our purpose.

Even though we are considering algorithms with the same
dissimilarity measure and regularization (and effectively the
same implementation) but different optimization schemes, we
find that for a fixed-size smoothing kernel, using the exact FS
differential tends to converge to a solution of lower harmonic
energy, i.e., a smoother displacement field. Smaller harmonic
energy implies a smoother deformation, providing evidence
that the reorientation acts as an additional constraint for the

registration problem. To properly compare the algorithms,
we consider smoothing kernels of sizes from 0.5 to 2.0 in
increments of 0.1. In particular, we perform the following
experiment.

For each pair of subjects and for each kernel size

i) Run the diffeomorphic Demons registration algorithm
using Euclidean interpolation and EUC-SSD using:
(a) Exact FS gradient (DT-REFinD).
(b) Approximate gradient by ignoring reorientation.
(c) Fixed image gradient. This is the gradient proposed
in Thirion’s original Demons algorithm [37].

ii) Repeat (i) using Log-Euclidean interpolation and LOG-
SSD.

iii) Use the estimated deformation fields to compute the
tensor and scalar measures discussed in Section V-C
using FS reorientation or PPD reorientation.

iv) Compute the inverse consistency of the deformations
from subject 7 to subject j and from subject j to subject ¢.

For a given smoothing kernel and registration strategy,
registering different pairs of images leads to a set of error
metric values corresponding to different harmonic energies. To
average the error metric values across different pairs of images
and to compare registration results among different strategies,
for each registration, we linearly interpolate the dissimilarity
metric (EUC-MSE, LOG-MSE, and so on) over a fixed set of
harmonic energies sampled between 0.03 to 0.3. This allows us
to average the error metric across different pairs of images and
compare different strategies at a given harmonic energy.

1) Tensor Alignment: Fig. 2 shows the error metrics (av-
eraged over 40 pairwise registrations) with respect to the har-
monic energies when using the dissimilarity metric EUC-SSD,
euclidean interpolation and FS reorientation for registration.
The final deformations were applied using FS reorientation.
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Fig. 2. Comparison of exact FS gradient, approximate gradient and fixed image gradient over an entire spectrum of harmonic energy (x-axis) using EUC-SSD,
Euclidean interpolation and FS reorientation for registration. The final deformations are applied using FS reorientation. We find that the exact FS gradient method

achieves the best performance.

Fig. 3 shows the corresponding plot when applying the final
warps using PPD reorientation. In both cases, we find that
at all harmonic energy levels, the exact FS gradient method
achieves the lowest errors. The approximate gradient method
outperforms the fixed image gradient method.

As mentioned earlier, the scalar measures, such as FA, can
be computed after deforming the moving tensor image or
computed on the unwarped moving image and then deformed.
Figs. 2 and 3 show results based on the former strategy. We
obtain similar results using the latter strategy, but omit them
here for brevity.

The amount of improvement increases as the harmonic ener-
gies increase. In our experiments, a harmonic energy of 0.3 cor-
responds to severe distortion (pushing the limits of the numer-
ical stability of scaling and squaring), while a harmonic energy
of 0.03 corresponds to very smooth warps. In previous work, we
showed in the context of image segmentation that extreme dis-
tortion causes overfitting, while extremely smooth warps might
result in insufficient fitting [44]. Only a concrete application can
inform us of the optimal amount of distortion and is the sub-
ject of future studies. For now, we assume a “safe” range for
assessing the algorithm’s behavior to be between harmonic en-
ergies 0.1 and 0.2. From the values in Figs. 2 and 3, we conclude
that the exact FS gradient provides an improvement of between
5% to 10% over the approximate gradient in this “safe” range
of harmonic energies.

To better appreciate the improvements, Fig. 4 shows the dif-
ference in errors by subtracting the error metric values of the
approximate gradient method from the error metric values of
the exact gradient method when using the dissimilarity metric
EUC-SSD, Euclidean interpolation and FS reorientation for reg-
istration. The final deformations were applied using FS reorien-
tation. The error bars indicate that the exact gradient method
is statistically significantly better than the approximate gradient
method over the entire range of harmonic energies and all the
error metrics (p < 1075 for almost entire range of harmonic en-
ergies). We emphasize that the improvements persist even when
we evaluate a different dissimilarity measure or use a different
reorientation strategy from those used during registration.

Similarly, we find that the exact FS gradient method achieves
the lowest errors when using LOG-SSD similarity metric and
Log-Euclidean interpolation for registration, regardless of
whether FS or PPD reorientation was used to apply the final
deformation. We omit the results here in the interest of space.

2) Inverse Consistency: Fig. 5 shows the inverse consistency
errors (averaged over 20 sets of forward and backward pair-
wise registrations) with respect to the harmonic energies. Once
again, we find that all harmonic energy levels, the exact FS gra-
dient method achieves the lowest errors, regardless of whether
EUC-SSD and Euclidean interpolation or LOG-SSD and Log-
Euclidean interpolation were used. Similarly, the approximate
gradient method outperforms the fixed image gradient method.
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Fig. 3. Comparison of exact FS gradient, approximate gradient and fixed image gradient over an entire spectrum of harmonic energy (x-axis) using EUC-SSD,
Euclidean interpolation and FS reorientation for registration. The final deformations are applied using PPD reorientation. We find that the exact FS gradient method

achieves the best performance.

F. Quantitative Evaluation I1

We perform a second set of experiments to evaluate the algo-
rithm’s ability to recover randomly generated synthetic warps.
Given a DT image, we first generate a set of random warps by
sampling a random velocity at each voxel location from an inde-
pendent and identically distributed (I.I.D.) Gaussian. The fore-
ground mask is then used to remove the velocity field from the
background voxels. The resulting velocity field is smoothed spa-
tially with a Gaussian filter. We compute the resulting displace-
ment field by “scaling and squaring.” This displacement field is
used to warp the given DT image using Log-Euclidean interpo-
lation. We use either FS or PPD to reorient the tensors. L.ID.
Gaussian noise is added to the warped DT image.

We pick a single DT image and generate 40 sets of random
warps. We obtain an average displacement of 9.4 mm over the
foreground voxels. The average harmonic energy is 0.15. We
then perform pairwise registration between the DT image and
the warped DT image using LOG-SSD. Once again, we con-
sider a wide range of smoothing kernel sizes. We also compute
the registration error defined to be the average difference be-
tween the ground truth random warps and the estimated defor-
mation field specified in (37). Note that without registration, i.e.,
under the identity transformation, the average registration error
is 9.4 mm.

Fig. 6 shows the registration errors (averaged over 40 trials) of
the three gradients we are considering. From the plots, when the
synthetic warps were applied using FS reorientation, the exact

FS gradient recovers the ground truth warps up to 1.56 mm or
17% error with respect to the average 9.4 mm random warps.
The approximate gradient achieves 2.34 mm or 25% error. Fi-
nally, the fixed image gradient achieves 2.73 mm or 29% error.
Therefore, the exact FS gradient achieves an average of (2.34 —
1.56)/2.34 x 100 = 33% and 43% reduction in registration er-
rors compared with the approximate gradient and fixed image
gradient, respectively.

When the synthetic warps were applied using PPD reorienta-
tion, the exact FS recovers the ground truth warps up to 2.80 mm
or 30% error with respect to the average 9.4 mm random warps.
The approximate gradient achieves 3.20 mm or 34% error. Fi-
nally, the fixed image gradient achieves 3.50 mm or 37% error.
Therefore, the exact FS gradient achieves an average of 13%
and 20% reduction in registration errors compared with the ap-
proximate gradient and fixed image gradient respectively.

Consistent with the previous experiments, using the exact
FS gradient leads to the lowest registration errors regardless
of whether FS or PPD reorientation were used to apply the
synthetic deformation fields. We note that the registration er-
rors inevitably increase when PPD were used to apply the syn-
thetic deformation field, since we use FS reorientation during
registration.

VI. DISCUSSION AND FUTURE WORK

Since Gauss—Newton optimization allows the use of “big
steps” in the optimization, it might cause the approximate
gradient to be more sensitive to the reorientation. It is possible
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Fig. 4. Comparison of exact FS gradient and approximate gradient over an entire spectrum of harmonic energy (2:-axis) using EUC-SSD, Euclidean interpolation
and FS reorientation for registration. The final deformations are applied using PPD reorientation. Y -axis shows the difference in errors obtained by subtracting
the error metrics of the approximate gradient method from the error metrics of the exact gradient method. Negative values imply that the exact gradient method
outperforms the approximate gradient method. The error bars show the statistical variability (and thus significance) of the results.
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inverse-consistency errors averaged over 20 sets of forward and backward pairwise registrations. We find that the exact FS gradient method achieves the lowest

errors.

that other optimization methods, such as the conjugate gradient,
might improve the results of using the approximate gradient,
by allowing for “smaller steps” and reorient after each “small
step.” Possible future work would involve comparing the
exact gradient and approximate gradient under an optimization
framework that takes small steps in the optimization procedure.

However, from optimization theory and from our experience,
Gauss—Newton method requires much fewer iterations to con-
verge than conjugate gradient. Furthermore, conjugate gradient
requires a line search, resulting in many function evaluations.

Function evaluations are quite expensive in our case, because of
the need to reorient and perform “scaling and squaring” of the
velocity field. On the other hand, we find that in practice, line
search is not necessary with Gauss—Newton optimization.

We should also emphasize that ignoring the gradient of the
reorientation term can lead to registration errors that cannot
be recovered regardless of any gradient-based optimization
scheme. For example, consider the registration of a 2-D diffu-
sion tensor image consisting of only horizontal tensors and a
2-D diffusion tensor image consisting of tensors orientated at
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a 10° angle. In this case, VF and VM are both zeros, so the
approximate gradient and fixed image gradient updates are both
zeros. In contrast, the exact gradient update is nonzero due to
the reorientation.

In our experiments, we show that using the exact gradient re-
sults in better inverse consistency than the approximate gradient.
However, the inverse consistency is not perfect. Incorporating
an inverse consistency constraint as suggested by the recent ex-
tension of the diffeomorphic Demons algorithm [41] should not
be difficult.

An interesting observation from the synthetic warp experi-
ment in Section V-F is that the best registration occurs when the
kernel size is such that the harmonic energy is about 0.14, which
is close to the average harmonic energy of the synthetic warps.
In practice, no ground truth deformation is available, making
selection of the optimal kernel size difficult. Furthermore, we
believe the amount of deformation required is dependent on the
application of interest; the appropriate kernel size is likely to
vary with applications.

It may also be the case that different anatomical regions might
require different optimal warp smoothness. While using a dif-
ferent kernel at each spatial location is possible, this would re-
duce the efficiency of the demons algorithm. More importantly,
it becomes unclear whether step 2 of the demons algorithm (spa-
tial smoothing) is justified. To get around such a situation, one
could instead shift the burden to step 1 of the demons algo-
rithm. In this paper, the variability matrix X is set to be the iden-
tity matrix. Allowing for a nonconstant diagonal matrix > will
effectively result in spatially varying warp smoothness, since
smaller values of the nth diagonal entry place greater emphasis
on matching the nth tensor of the fixed image to the moving
image. Estimating ¥ and an optimal registration regularization
tradeoff is an active area of research [4], [19], [33], [40], [44],
[45] that we do not deal with in this paper.

The exact FS differential is useful even with a different model
of deformation or dissimilarity metric from the ones we employ
in this paper. Mutual Information (MI) has been proposed as a
criterion to register diffusion images [16], [28], [39]. Because
MI can handle nonlinear change in intensities across images, it
can potentially handle diffusion image registration without any
reorientation. In fact, [39] suggests that MI without reorienta-

tion results in better registration than MI with iterative reorien-
tation with either FS or PPD. Future work could involve testing
their observation when reorientation is properly taken into ac-
count using the analytical differential we presented in this paper.

VII. CONCLUSION

In this work, we derive the exact differential of the FS
reorientation. We propose a fast diffeomorphic DT image
registration algorithm DT-REFinD using the exact FS differ-
ential. We show that the use of the exact gradient achieves
better tensor alignment than the approximate gradient which
ignores reorientation, over an entire spectrum of harmonic
energies. The improvements persist even if we use an error
metric different from the objective function we optimize and
if we use PPD reorientation for applying the final deforma-
tion. We also show that the exact gradient method recovered
randomly generated warps significantly better than the approx-
imate gradient method—1.56 mm versus 2.34 mm error on
average. DT-REFinD has been incorporated into the freely
available MedINRIA software, which can be downloaded at
http://www-sop.inria.fr/asclepios/software/MedINRIA.

APPENDIX A
FS DIFFERENTIAL

In [20], the differential of the matrix r = A(ATA)~(1/2) is
derived, where A = Y X7 and Y and X are 3 x n matrices. In
the context of [20], X contains the measured coordinates of a set
of labeled points and Y contains their measured positions after
rigid body motion. X and Y can be used to estimate the rotation
component of the rigid motion r using the least-squares estimate
r = A(AT A)~(1/2)_ Finding the differential dr in terms of X
and Y therefore allows the error analysis of the estimate 7 when
the measurements X and Y are noisy.

From rr = I and (r + dr)T (r + dr) = I, we get drr™
—rdrT by ignoring second order terms [20]. Defining &r
drr™, we have

A

6r 2 drrT = —rdrT = =67 (38)
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From (38), 67 is a skew symmetric matrix, and therefore takes
the form

0 —1ms3 ms9
§r=1 ms 0 —my | £Em®. (39)
—Mmy mi1 0

We define vec(6r) = (mq,mg,ms)T and § = (ATA)V/2.
Then, the major result of [20] can be expressed as follows:

vee(8r) = r(tr(S)I — )"t
: (Z(rx) x dY; + (rdX); x Y) (40)

where (-); denotes the ith column of () and x denotes the cross
product operator.
Recall that we are interested in dR, where R =

(JJT)=(1/2) ] By setting J = AT and § £ (ATA)Y/? =
(JJT)1/2, we obtain R = rT and dR = dr” . Therefore

or ) —rdrT = —rdR. 41)
Since r'r = I, by multiplying (41) by 77", we obtain

dR = —rT6r = —Rér. (42)

By setting, X = Tand A =YI" =
expression for dR

JT, we finally arrive at the

dr 2 _Rsr

(40)

—R|r(tr(S)I - 8)~ T

@
(43)

: (Z(TX) x dY; + (rdX); x Y)

D
RT(tx(S)I - S) 'R (RT); x (dJT)i]

=—R

(44)

where we have used the fact that dX = dI = 0.

APPENDIX B
ROTATION DERIVATIVES

For completeness,
ORM)/ow()|,
of voxel n. Recall that {n,_,n.4,ny_,nyt,no,noy}
are the neighbors of voxel n in the z, y and z direc-
tions respectively. g, u,,u, are the components of
the displacement field in the =z, y and 2z directions.

For denote (IR(n) /0w ()| =

we now derive the expressions for
, where j are the neighboring voxels
J

convenience, Wwe
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); (OR(n)/ 0w, (7)), (OR(n)/0w-(j))} =

)
1)) }. Using the chain rule, we have

{(OR(n)/Owx(j
{(OR(n)/Owy(j
_OR(n)

Owg(nay )

B OR(n)
- %: %: dJ;j(n)

awk(nz-l-) Wi (Nay )=Nay
OR(n)  9Jmi(n)
— BJml(n) 8(3 o wm(nr-l'))
awk(nx+)
1 OR(n)

2T 2= 9 (n) bnz+)

9Jij(n)

A(s 0 Wy (Mz4))

(45)

(46)

Wi (Na4 ) =Nat

(47)

The second and third equalities come from evaluating
(0Jij(n)/9(s 0 Wy, (nyy))), which are mostly zeros. No-
tice that J,,1(n) and J,,x(n,y) are evaluated at two different
voxels. Similarly, we have

OR(n) 1 OR(n)

Qwg(ne—) 20w 4= 8Jm1(n)‘]mk(nx7)
835(521) - 2iy - 8?322) Jimk(ny+)
335(2)_) :_2;@ . rffii?i) Tk (1)
335&2) - 2iz . aiii% Tmk(n2+)
agﬁfz)_) - 2iz anfi())Jmk(nz—). (48)
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