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Discretization Error Analysis and Adaptive Meshing
Algorithms for Fluorescence Diffuse Optical

Tomography: Part I
Murat Guven, Laurel Reilly-Raska, Lu Zhou, and Birsen Yazıcı*, Senior Member, IEEE

Abstract—For imaging problems in which numerical solutions
need to be computed for both the inverse and the underlying for-
ward problems, discretization can be a major factor that deter-
mines the accuracy of imaging. In this work, we analyze the effect
of discretization on the accuracy of fluorescence diffuse optical to-
mography. We model the forward problem by a pair of diffusion
equations at the excitation and emission wavelengths and consider
a finite element discretization method for the numerical solution
of the forward problem. For the inverse problem, we use an opti-
mization framework which allows incorporation of a priori infor-
mation in the form of zeroth- and first-order Tikhonov regular-
ization terms. Next, we convert the inverse problem into a vari-
ational problem and use Galerkin projection to discretize the in-
verse problem. Following the discretization, we analyze the error
in reconstructed images due to the discretization of the forward
and inverse problems and present two theorems which point out
the factors that may lead to high error such as the mutual depen-
dence of the forward and inverse problems, the number of sources
and detectors, their configuration and their positions with respect
to fluorophore concentration, and the formulation of the inverse
problem. Finally, we demonstrate the results and implications of
our error analysis by numerical experiments. In the second part of
the paper, we apply our results to design novel adaptive discretiza-
tion algorithms.

Index Terms—Adaptive meshing algorithms, error analysis, flu-
orescence diffuse optical tomography.

I. INTRODUCTION

T HERE HAS been a growing interest in fluorescence
imaging due to its potential for the characterization of

biological processes at cellular and molecular levels [1]–[4].
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In particular, fluorescence diffuse optical tomography (FDOT)
offers the quantification, 3-D imaging, and depth retrieval of
fluorescence activity with high sensitivity, which can be used
for functional and molecular characterization of normal and
diseased tissues [5]–[7].

Like its analogue diffuse optical tomography, (see [8] and [9],
and the references therein), FDOT poses a computationally in-
tense imaging problem. This stems from the necessity of solving
a forward problem comprised of a pair of coupled partial dif-
ferential equations (PDEs) and an ill-posed integral equation
resulting from the linearization of the inverse problem whose
formulation relies on the solutions of the forward problem. In
general, no closed form solutions can be computed except for
specific domain geometries and optical medium properties [10],
[11]. Hence, one has to consider numerical solutions of the for-
ward and inverse problems. However, numerical solutions are
merely approximations to the actual solutions and they possess
error as a result of the discretization involved in the process of
solving them. Due to the interdependence of the forward and in-
verse problems, discretization of each problem typically leads
to error in the reconstructed images. While the effect of inverse
problem discretization on the imaging accuracy can be deduced
rather intuitively [12], errors due to the discretization error in
the forward problem solutions can also result in severe imaging
artifacts in optical tomography [12], [13].

There is a vast degree of work on the estimation and anal-
ysis of discretization error in the solutions of partial differential
equations (PDEs) [14]–[19]. A different approach is followed
in [20], [21] in which error in quantities of interest is related to
the discretization of the second-order elliptic PDEs. In the area
of parameter estimation problems governed by PDEs, relatively
little has been published. See for example [22], [23] for an a pos-
teriori error estimate for the Lagrangian in the inverse scattering
problem for the time-dependent acoustic wave equation and [24]
for a similar approach, and [25] for a posteriori error estimates
for distributed elliptic optimal control problems. In the area of
DOT, it was numerically shown that the approximation errors re-
sulting from the discretization of the forward problem can lead
to significant errors in the reconstructed optical images [13]. In
[26], we presented an approach for the analysis of the error in
reconstructed optical absorption images due to discretization,
which led to the development of new adaptive mesh generation
techniques [12]. In these studies [12], [26], the ill-posed nature
of the inverse problem was addressed by zeroth-order Tikhonov
regularization [27] and a collocation method was used for the
discretization of the inverse problem.
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The main premise in the first part of this work is to ana-
lyze the error in fluorescence optical imaging due to discretiza-
tion. In this respect, we identify the key factors specific to the
imaging problem that show how discretization of the forward
and inverse problems impacts the accuracy of the reconstructed
optical image. In particular, we focus on the estimation of the
fluorophore absorption coefficient in a bounded optical domain
where the light propagation at the excitation and emission wave-
lengths is modeled by a pair of coupled frequency-domain diffu-
sion equations with appropriate boundary conditions. We con-
sider an iterative linearization algorithm based on first-order
Fréchet derivatives to address the nonlinearity of the inverse
problem, and use the gradient descent algorithm to solve the re-
sulting optimization problem. Following each linearization step,
we formulate the inverse problem in the optimization frame-
work which enables us to incorporate a priori information in the
form of zeroth- and first-order Tikhonov regularization terms.
For the discretization of the forward problem, we use finite el-
ements with first-order Lagrange basis functions. Before we
discretize the inverse problem, we first convert the optimiza-
tion problem into a variational formulation which can be re-
garded as a boundary value problem with the assignment of suit-
able boundary conditions. Then we use projection by Galerkin
method with first-order Lagrange basis functions to discretize
the resulting inverse problem. Following the discretization of
the forward and inverse problems, we derive two new error esti-
mates which show respectively the effect of forward and inverse
problem discretizations on the accuracy of reconstructed optical
absorption coefficient of the fluorophore. Next we discuss the
major implications established by these estimates.

The error analysis presented in this work motivates the devel-
opment of novel adaptive discretization schemes. In the second
part of this work, we propose two novel adaptive mesh genera-
tion algorithms for the discretization of the forward and inverse
problems [28], and discuss and validate the potential computa-
tional savings and improvements in the accuracy of optical flu-
orescence imaging.

The outline of this paper is as follows. We describe the for-
ward model in the next section. In Section III, we state the
inverse problem formulation under iterative linearization and
discuss regularization to address ill-posedness. We next pose
the inverse problem as an optimization problem incorporating
a priori information and derive the variational formulation from
this optimization problem. Section IV details the discretization
of forward and inverse problems, respectively. In Section V, we
present the theorems which describe the error in fluorescence
imaging arising from these discretizations. In Section VI, we
demonstrate the dependency of the error to a number of spe-
cific factors in numerical experiments. Finally, in Section VII,
we conclude our discussion.

II. FORWARD PROBLEM

A. Notational Conventions

In this paper, we denote operators by capital cursive Latin
letters and matrices by bold capital Latin letters . Func-
tions are denoted by lowercase Latin or Greek letters. For a func-
tion , denotes its finite element approximation. We use bold

TABLE I
DEFINITION OF FUNCTION SPACES AND NORMS

to denote vectorized quantities such as , . Table I provides a
summary of key variables and function spaces and norms used
throughout the paper.

B. Forward Problem Derivation

We start with the coupled diffusion equations which describe
the light transport in a fluorescent medium of a bounded domain

with Lipschitz boundary

(1)

(2)

where , is the source operating frequency,
subscripts denote the excitation and emission wavelengths,

represents the optical fields, represents the isotropic
diffusion coefficients, and is the th excitation source. We
assume that the diffusion coefficients are known and they are
identical at both the excitation and emission wavelengths in
the closed domain; this implies ,

. The quantum efficiency is denoted by ; is
the absorption coefficient of the fluorophore and is the life-
time of the fluorophore. For the sake of exposition, we make
the following simplifying assumption that the frequency .
Subsequent developments can be extended to include multiple
frequencies where is known. The quantities and rep-
resent the absorption coefficient of the medium at the excitation
and emission wavelengths, respectively. Typically these are rep-
resented as

(3)

(4)

where the subscript denotes endogenous properties and de-
notes exogenous properties. Without loss of generality, we as-
sume that both and are nonnegative and bounded
on .

Let be the number of point sources at position for
. Based on the assumptions stated above, we use
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the following boundary value problem to model NIR light prop-
agation at the excitation wavelength due to the th source at

(5)

(6)

where . The Robin-type boundary conditions are

(7)

(8)

where , is a parameter governing the internal reflection
at the boundary , and denotes the directional derivative
along the unit normal vector on the boundary. In this work,
represents the th point source which is modeled by a Gaussian
function centered at source position [26].

In order to simplify the analysis of later sections, we make use
of the adjoint problem associated with (6) and (8). Let be
the number of detectors. Then, for a detector located at ,

(9)

(10)

where is the adjoint source. For a point adjoint source located
at the detector position , the following holds [8]:

(11)

where is the Green’s function of (6) and (8). Note that in this
paper, we model the point adjoint source by a Gaussian function
with sufficiently low variance, centered at [26].

The emission field at due to the source at is given by the
following nonlinear integral equation:

(12)

The relationship between and defined in (12) is non-
linear because is dependent on which in turn is related
to and the dependence of on is clear. In the next
section, we formally state the inverse problem and address the
nonlinearity by using an iterative linearization scheme based on
first-order Fréchet derivatives.

III. INVERSE PROBLEM

Given sources and detectors, we define to be the
measurement for a detector at position , , due
to a source at , . The individual measurements
can be grouped into the vector form

(13)

where the th measurement satisfies the following model:

(14)

Our objective is to recover the quantity using the measure-
ment vector based on the nonlinear integral equation (14) for
each th pair. In this model, we assume that the measure-
ments are noise-free. This assumption allows us to eliminate the
effect of noise in our error analysis, and to focus primarily on
the effect of the discretization error.

In the next subsection, to address the problem of nonlinearity
in (14), we select an iterative linearization scheme based on
first-order Fréchet derivatives. Next, to address the ill-posed-
ness, we discuss regularization in an optimization framework
and incorporation of a priori information about the unknown
image . Then by taking the derivative of the resulting opti-
mization problem and defining appropriate boundary conditions
for it, we convert this optimization problem into a boundary
value problem. In the final subsection, we show the variational
formulation of the boundary value problem and comment on the
existence and uniqueness of the solution.

A. Iterative Linearization

Consider an infinitesimal perturbation on , [3], [29]

(15)

Then at each linearization step, the corresponding perturbation
in the emission field at detector position due to the th

source at is given by the following linear integral equation:

(16)

where is the solution to the boundary value problem (9), (10)
and is the solution to the boundary value problem (5) and
(7) where in (5) is replaced by . In (16),
the first integral results from the right-hand side of (6), while
the second and third integrals originate from the dependence of
respectively and on the unknown fluorophore absorp-
tion coefficient. We note that the kernels of the second and third
integrals are much smaller than the kernel of the first integral.
Therefore, the first integral in (16) dominates and the last two
terms can be neglected. As a result, inverse problem at each lin-
earization step reads

(17)
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To simplify the notation, we introduce
which represents the unknown perturbed fluorophore absorp-
tion coefficient scaled by the quantum efficiency and assume
that is known and . Furthermore, noting
that the emission and excitation subscripts are fixed for the du-
ration of this analysis, we represent and

, suppressing the dependence of these
functions.

We define to be the differential measurement at the th
detector due to th source normalized with respect to a known
background fluorophore absorption. Let .
Using (17) we model as follows:

(18)

We represent the differential measurements corresponding to in-
dividual source-detector pairs as elements of a vector

Then

(19)

where is a vector of operators whose
th entry acting on corresponds to (18). Although all

norms on a finite-dimensional space are equivalent, we select the
norm on the range of to be the norm as this proves useful in
later analysis. Then an upper bound for the linear operator can
be given by

(20)

The boundedness and the finite-dimensional range of operator
means it is compact [30]. We define the adjoint operator

acting on the vector as

(21)

where for and
.

Let , we have

(22)

where

(23)

Then an alternate form of (19) can be expressed as follows:

(24)

where . Note that is compact since is compact.
Therefore, (24) is ill-posed.

In the next subsection, we address the ill-posedness in an op-
timization framework by incorporating regularization terms.

B. Inverse Problem as an Optimization Problem and
Regularization

In this subsection, we address the ill-posedness of (24)
through regularization in the optimization framework which
provides a suitable means for the incorporation of a priori
information about the solution. In this respect, we consider
the following minimization problem where we seek a solution

(25)

where the smoothness on the solution is imposed
through the use of appropriate regularization terms. The func-
tional in (25) can be decomposed into two parts, and
as follows:

(26)

where measures the difference between the predicted and
actual measurements

(27)

and the regularization term contains the a priori information.
In this work, we assume that a priori information on the image
and image gradient is available. Let denote the a priori in-
formation on the image and
denote the a priori information on the image gradient. We in-
corporate the a priori information via zeroth- and first-order
Tikhonov regularization terms as follows [31]:

(28)

where is the image gradient and are regulariza-
tion parameters. Using (27) and (28), the minimization problem
(25) can be rewritten as follows:

(29)

There are a number of methods in choosing appropriate reg-
ularization parameters, see [32]–[36]. In this work, we assume
that and are properly chosen and focus on deriving dis-
cretization error estimates. In the next subsection, after defining
appropriate boundary conditions, we consider the equivalent
variational formulation of the minimization problem in (29).
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C. Inverse Problem as Boundary Value Problem and
Variational Formulation

In this work, we follow a finite element method for the
discretization of the inverse problem. Due to incorporation of
the regularization term on the gradient of the solution, a natural
step is to formulate the minimization problem as a variational
one. In this subsection, we describe the derivation of the vari-
ational problem formulation of the inverse problem by first
considering the first-order optimality condition for the mini-
mization problem (29). Next, with the aid of properly chosen
boundary conditions, we transform the optimization problem
into a boundary value problem (BVP), which is followed by
the variational formulation of the BVP. Finally, we show that
a unique solution exists to the variational formulation of the
regularized inverse problem.

The solution of (29) satisfies , where
is the gradient with respect to the th direction for ,

2, 3. In particular, if , the Gâteaux
derivative [37] is defined by

(30)

Taking the Gâteaux derivative of (29) with respect to and
setting it equal to zero yields

(31)

where

(32)

Note that is composed of known terms from a priori infor-
mation and measurements.

We consider (31) with the following Neumann boundary con-
dition:

(33)

where is the directional derivative of along the unit
normal vector at the boundary . The boundary condition in
(33) implies that no changes in the perturbed fluorophore con-
centration occur across the boundary.

At this point, one can consider a finite difference scheme for
the solution of the inverse problem which is posed as a boundary
value problem (31)(33). However, as our goal in this paper is to
apply a finite element scheme for the discretization of the BVP,
we obtain the corresponding variational (weak) problem. Hence,
we multiply both sides of (31) by a test function ,
and integrate over . Applying Green’s first theorem to the last
term on the left and using the boundary condition in (33), we
obtain

(34)

A more convenient way to express (34) is through a bilinear
form. Thus, we define

(35)

(36)

where the inner product is defined by

Hence, (34) can be expressed as

(37)

It can be shown that the bilinear form (35) is bounded and co-
ercive for regularization parameters [30]. Thus, by
the Lax–Milgram lemma, a unique solution exists for the regu-
larized inverse problem (37) for each pair of used in
the formulation of the Galerkin problem (34) [30], [38]. For an
explicit statement of the Lax–Milgram lemma, see Appendix A.

In the following section, we describe the discretization
methods selected in this paper for each of the separate forward
and inverse discretizations as well as the combined forward and
inverse discretization.

IV. DISCRETIZATION BY FINITE ELEMENT METHOD OF THE

FORWARD AND INVERSE PROBLEMS

In the following subsections, we first discuss the variational
formulation and finite element discretization of the forward
problem. In practice, for arbitrary domains and background
optical properties, no analytical solutions exist for the for-
ward problem when it is defined in a variational form. Thus,
we discretize the forward problem and obtain finite-dimen-
sional approximations of and , for ,

.
Next, we use the finite element solutions of the forward

problem in the inverse problem formulation, which implies an
approximation to the inverse problem. The resulting inverse
problem in general does not possess a closed form solution.
Therefore, finding the solution calls for numerical techniques.
We discuss the discretization of the resulting approximate
inverse problem using projection by Galerkin method.

A. Discretization of the Forward Problem

In this subsection, we discuss the forward problem discretiza-
tion. We express the coupled PDEs in their variational form in
order to apply a finite element method.

To do so, we multiply (5) by a test function ,
and apply Green’s theorem to the second derivative term. Then
using the boundary condition in (7) we have

(38)
It can be shown that a unique solution for (38) exists and is
bounded [38], [39]. Similarly, for a test function ,
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the variational form for the adjoint forward problem (9), (10)
becomes

(39)
for which it is possible to show that a unique, bounded solution
exists as well.

Let denote the piecewise linear Lagrange basis func-
tions. We define , , as the finite
dimensional subspace spanned by , .
Note that are associated with the set of points ,

, on . Similarly, we define ,
, as the finite-dimensional subspace spanned by

, , which are associated with the set of
points , .

Next, the functions in (38) and in (39) are re-
placed by their finite-dimensional counterparts

(40)

(41)

The representation is an approximation to the func-
tion for each source (detector). This means that for each
source and detector, the dimension of the solution can be dif-
ferent; the parameters can vary for each and , respec-
tively. The finite-dimensional expansions are therefore depen-
dent on the parameters as represented by the superscript.
However, we suppress this cumbersome notation as the depen-
dence is clearly understood.

Substitution of (40), (41) into the variational forward problem
(38), (39) yields the matrix equations

(42)

(43)

for and . Here
and are the finite element matrices and and are

the load vectors resulting from the finite element discretization
of the forward problem.

Let denote the set of linear elements used to discretize
(38) for , where is the number of elements

for the th source such that for all .
Similarly, let denote the set of linear elements used to
discretize (39) for where is the number of

elements for the th detector such that for all
.

A bound for error and between and re-
spectively on each finite element can be given by [38]

(44)

(45)

where is a positive constant, and
denote the and norms, respectively on ;

and is the diameter of the smallest ball containing the
finite element in the solution .

In the next subsection, these approximate solutions to the for-
ward problem are substituted into the inverse problem operator.
The error is estimated based on the resulting operators with ap-
proximations.

B. Simultaneous Discretization of the Forward and Inverse
Problems

We substitute the finite element solutions ,
and , of the forward problem into
in the operators defined by (18) and (21). The resulting
approximate operators are denoted by tildes and , indi-
cating that the finite element solutions of the forward problem
are used. By so doing, we arrive at the approximate variational
problem formulation

(46)

In (46), and are given, respectively, by

(47)

(48)

where

and

Next, we discretize the functions and . Let
denote a sequence of finite-dimensional subspaces of dimen-
sion , spanned by the first-order Lagrange basis functions

which are associated with the set of points
, , on . We replace and in (37) by

their respective, finite-dimensional counterparts and

(49)

(50)
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where and are unknown coefficients. As it is clear that the
finite-dimensional expansions are dependent on the parameter

, this dependence is hereafter suppressed. Substituting (49),
(50) into (46) we arrive at

(51)

This can be transformed to a matrix equation

(52)

where represents the unknown coeffi-
cients in the finite expansion of (50) and and are re-
spectively the finite element matrix and the load vector resulting
from the projection of (46) by Galerkin method.

Let denote the set of linear elements used to discretize
(46) for , where is the number of elements
such that . Note that the inverse problem mesh

is independent to the meshes and , which are
used to discretize the forward problem. Similar to the forward
problem, a traditional error estimate for error between and

on each finite element can be given by

(53)

where is a positive constant, and denote the
and norms, respectively on ; and is the diameter

of the smallest ball containing the finite element in the
solution .

V. ANALYSIS OF THE ERROR IN FLUORESCENCE IMAGING

DUE TO DISCRETIZATION

In this work, we consider the solution of the problem stated in
(37) to be exact solution since neither the forward problem nor
the inverse problem is discretized. Our objective is to examine
the error in fluorescence absorption imaging due to the finite el-
ement discretization of the forward and inverse problems. Then
the error analysis can be used in the design of adaptive meshes
that could reduce the total error in the reconstructed images due
to discretization.

We have divided this section into two subsections: In the first
subsection, we derive an estimate for the error in fluorescence
absorption imaging due to the forward problem discretization as
described in the previous section. Thus, the first error we find is
the difference , where satisfies the exact inverse
problem (37) and satisfies the approximate inverse problem
(46). Note that the inverse problem is not discretized for this
case.

In the second subsection, we analyze the error in the recon-
structed fluorophore absorption coefficient resulting from the fi-
nite element discretization of the inverse problem. Therefore,
we examine the error between the solution of (46) and the
solution of (51), i.e., . In this case, the error
is due entirely to the discretization of the approximate inverse
problem (46).

Finally, we define the total error as the difference between
the exact solution of (37) and of (51) in terms of the two
contributors

(54)

In the following, we analyze each of the error contributors and
derive estimates in the form of upper bounds of the norm
of these errors.

A. Error in Fluorescence Imaging Due to Forward Problem
Discretization

The following theorem presents a bound for the of the
error , where satisfies the exact inverse problem
(37) and satisfies the approximate inverse problem (46).

Theorem 1: Let denote the set of linear elements used
to discretize (38) for ; such that
and is the diameter of the smallest ball that contains the th
element in the solution , for all . Similarly, let

denote the set of linear elements used to discretize (39)

for ; such that and is the
diameter of the smallest ball that contains the th element in
the solution , for all . Then a bound for the

error between the solution of (37) and the solution of (46)
due to the approximations and is given by

(55)

where are regularization parameters.
Proof: The proof of this theorem is given in Appendix D.

The error estimate (55) shows the specific effect that the for-
ward problem discretization has on the accuracy of the inverse
problem solution. In this respect, for the forward problem,
Theorem 1 suggests a discretization criterion for the forward
problem which includes the accuracy of the inverse problem
solution, in addition to the accuracy of the forward problem
solution. First, the forward problem discretization should in-
clude the discretization of each solution and . Second,
to keep the total error bound low, the of the th element
in solution has to be small when

is large on this element; and the
of the th element in solution has to be small when

is large on
this element. Note that or is large on the ele-
ment close to the th source or the th detector, respectively, and
the value of the terms

and depend on the
absorption coefficient of the fluorophore and its position with
respect to the sources and detectors. Therefore, finer elements
near the designated source or detector as well as near the
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heterogeneity may result in a lower error bound. The traditional
error estimates (44) and (45) only depend on the smoothness
and support of and and the finite-dimensional space of
approximating functions. Traditional error estimates require to
keep or small where or is large,
respectively. However, lower error bound in (44) and (45) only
guarantees to reduce the error in the solution of the forward
problem, and may not necessarily reduce the error in the solu-
tion of inverse problem.

Furthermore, it is clear that other factors can lead to a higher
error bound. The regularization parameters scale the sum of
the terms. Thus, choosing smaller values for results in
a higher error estimate. Note, too, that since the error bound is
a sum over all sources and detectors, increasing the number of
either can have an impact on the error estimate.

B. Error in Fluorescence Imaging Due to Inverse Problem
Discretization

In the following theorem, we present a bound for the
norm of the error between the solution of (46) and the
solution of (51).

Theorem 2: Consider the Galerkin projection of the
variational problem (46) on a finite-dimensional subspace

using a set of linear finite elements ,
, whose vertices are at , , such

that , and let be the diameter of the smallest
ball that contains the th element. Assume that the solution
of (46) also satisfies . Then a bound for the error

in the solution of (51) with respect to the solution of
(46) can be given by

(56)

where are regularization parameters.
Proof: The proof of this theorem is given in Appendix E.

The error estimate (56) shows that the error bound for the dis-
cretization of inverse problem not only depends on the inverse
problem solution itself, but also on the solutions of the forward
problem. The first term in the bracket of (56) shows that the term

is scaled by the finite element solutions of the forward
problem . This implies that the error
bound is dependent on the location of the heterogeneity with re-
spect to the sources and detectors. The second and third term
in the bracket suggest that keeping the mesh size small where

is large, can help to lower the error bound, but it also
depends on the regularization parameters and . Comparing
(56) with the traditional error estimate (53), (56) suggests a dis-
cretization criterion based on the inverse problem solution ,

the forward problem solutions and , as well as the spa-
tial relationship among these solutions. This also implies that
simply keeping the mesh parameter small over regions where

is large, as indicated in (53), may not ensure a lower
error bound, thereby a reduction of the error in the reconstructed
image because of the dependence of the bound on the location
of the heterogeneity with respect to the sources and detectors.

Similar to Theorem 1, the regularization parameters
and the number of sources and detectors also affect the error
bound.

Combining results of Theorems 1 and 2 and rearranging the
terms, both error estimates can be viewed in a single bound. Let

for all and .
Then

(57)

We note that the error estimates in Theorem 1 and 2 can be
extended to show the effect of noise as an additional error source
[26].

C. Error in Iterative Linearization

The error bounds described in the previous subsections only
address one linearized step of the nonlinear inverse problem. To
consider all iterative linearization steps, we use the following
method to describe the propagation of errors at each lineariza-
tion step:

Let and represent the solution to (37) and (51)
at the th linearization step, respectively. The absorption coef-
ficient as given in (15) at the end of the th iteration step

is , where is an initial
guess for the value of the background absorption coefficient, and

contains discretization error with respect to the exact so-
lution . Three errors are introduced at the th iteration step.
The first is due to the finite element discretization of the inverse
problem. The next is due to finite element discretization in the
forward problem by the error in operators
and the corresponding measurement vector error in

. Finally, and , which are related to each other,
appear as the coefficient in the forward problem (5)–(7) and the
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Fig. 1. Setups used for the simulation studies 1 and 2. The squares and triangles denote the detectors and sources, respectively. (a) Optical domain and source-
detector configuration for Simulation study 1. (b) Optical domain and source-detector configuration for Simulation study 2. The radius of the circles is 3 mm.

adjoint problem (9), (10), respectively. Then, the error in the so-
lution at each step will propagate and lead to an additional
error in and at the th step in addition to the discretiza-
tion error analyzed before.

If the exact solution (without any discretization error)
after th iteration step is given by

, then the error in at the th it-
eration is bounded by

(58)

VI. NUMERICAL EXPERIMENTS

To demonstrate the implications of Theorem 1 and 2, we per-
formed a series of numerical experiments. In the first simulation,
we considered a series of image reconstructions to show how the
error, in reconstructed images due to discretization, changes as
the absorption coefficient of the fluorophore increases. In the
next set of experiments, we showed the effect of the relative
position of the fluorophore concentration with respect to the
sources and detectors on the accuracy of reconstructed images.

We first describe the numerical phantom, data generation and
image reconstruction procedures, and next, describe the results
of numerical simulations.

A. Description of the Phantom, Data Generation and
Reconstruction

For both simulation studies, we considered a
cubic domain shown in Fig. 1(a). We placed 25 sources

and 25 detectors evenly on two 5 5 grids at the bottom and top
surface of the domain, respectively. The circular heterogeneity
represents the fluorophore concentration with constant absorp-
tion coefficient and radius 3 mm, embedded in an optically
homogeneous background with at both ex-
citation and emission wavelengths. We set the diffusion coeffi-
cient for and the refractive index
mismatch parameter for the boundary. Using the param-
eters above, we simulated the fluorescence data by solving the
coupled diffusion equations (5) and (6) with their corresponding

boundary conditions (7) and (8) on a fine uniform grid with
nodes.

To demonstrate the effect of discretization, we considered
three image reconstruction scenarios corresponding to three dif-
ferent meshing schemes.

1) To obtain an accurate solution, we solved the forward
problem on a very fine uniform mesh with
nodes and obtained the corresponding finite element
solutions, which we assume has negligible error due to
discretization. Next, we formulated the inverse problem
with these finite element solutions and discretized the
resulting variational inverse problem on the same uniform
mesh. As a result of using very fine meshes, we assume
that the solution of the inverse problem on this mesh,
denoted by , has negligible error that can be attributed
to discretization. Therefore, we used as a baseline for
comparison.

2) To demonstrate the effect of discretization of the forward
problem, we solved the forward problem on relatively
coarse mesh shown in Fig. 2(a). Then, we used the fine
uniform mesh with nodes to compute the in-
verse problem solution. We denote this solution by and
assume that it possesses error with respect to the baseline
image due to only the forward problem discretization.

3) To demonstrate the effect of discretization of the inverse
problem, we discretized the forward and inverse problem
on two coarse meshes shown in Fig. 2(a) and (b), respec-
tively, and computed the solution of the resulting inverse
problem. We denote the solution by and assume that it
possesses error with respect to the solution due to only
the inverse problem discretization.

We note that for each case the forward problem was solved
with the same parameters as the data generation with the excep-
tion of the mesh size.

For the inverse problem, we chose the regularization param-
eters as small as possible, yet large enough to enable a robust
image reconstruction. In this respect, appropriate values for the
regularization parameters were empirically selected as

and . We assumed that no a priori in-
formation were available about the image or its gradient, hence
we set and .

Note that our simulation study is performed using a C++ fi-
nite element library—deal.II [40]. We used hexahedral finite el-
ements associated with trilinear Lagrange basis functions to dis-
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Fig. 2. Coarse uniform meshes used to discretize the forward and inverse problems in the Simulation studies 1 and 2. The mesh is cut through to show the mesh
structure inside. (a) The coarse uniform mesh with ��� ��� �� nodes used to discretize the forward problem. (b) Coarse uniform mesh with ��� ��� � nodes
used to discretize the inverse problem.

TABLE II
� ��	 NORM OF THE ERROR RESULTING FROM FORWARD AND

INVERSE PROBLEM DISCRETIZATIONS IN THE RECONSTRUCTED OPTICAL

IMAGES IN SIMULATION STUDY 1. ABSORPTION COEFFICIENT �
OF THE FLUOROPHORE IS GIVEN IN 
�

cretize both the forward and inverse problems. Then we used the
Gaussian quadrature method to evaluate the integrals in the vari-
ational problems given in (38), (39) and (51) [41]. While solving
the forward (or inverse) problem, we evaluated the value of the
inverse (forward) problem solution at the Gaussian quadrature
points associated with the forward (inverse) problem mesh.

B. Simulation Results

We performed two sets of numerical experiments to show
the effect of fluorophore concentration and fluorophore loca-
tion on the error in reconstructed images due to discretization.
In the first simulation study, we consider the geometry shown
in Fig. 1(a). To show the effect of fluorophore concentration
on the error in reconstructed images resulting form discretiza-
tion, we chose 5 data sets corresponding to 5 different values
for . In the
second simulation study, we considered the geometry shown in
Fig. 1(b). To show the effect of the fluorophore location on the
error due to discretization in reconstructed images, we simu-
lated 5 data sets corresponding to 5 different positions of the
circle centered at: (0,0, 0.8), (0,0, 0.4), (0,0,0), (0,0,0.4) and
(0,0,0.8), respectively. Note that the center of the square domain
is positioned at (0,0,0). The absorption coefficient of the fluo-
rophore concentration was set to . Tables II
and III show the error in the solutions and due to forward
and inverse problem discretizations, respectively, in two sets of
simulations.

TABLE III
� ��	 NORM OF THE ERROR RESULTING FROM FORWARD AND INVERSE

PROBLEM DISCRETIZATIONS IN THE RECONSTRUCTED OPTICAL IMAGES

IN SIMULATION STUDY 2

The results in Tables II and III show the following.
i) The error due to both the forward and inverse problem

discretization is comparable to the norm of the accurate
solution . This indicates that the error due to dis-
cretization can be a significant factor that determines the
accuracy of fluorescence imaging.

ii) The error in reconstructed images due to the forward
problem discretization is larger as compared to the error
due to the inverse problem discretization. This shows the
effect of the accuracy of the forward problem solutions in
reconstructed images. This result is consistent with The-
orem 1 which states the interrelatedness of the forward
and inverse problem discretization in terms of the error
in reconstructed images.

iii) The error due to discretization increases nonlinearly
with the increasing absorption coefficient of the
fluorophore, and also increases when the fluorophore
concentration moves closer to the detectors. The results
show the dependency of the discretization error on image
and/or geometry specific factors such as the value of fluo-
rophore absorption coefficient and its position. The effect
of image and geometry specific factors is not indicated
by the traditional error estimate, but clearly spelled out
by the error estimates in Theorems 1 and 2.

In the second part of this work [28], we present two novel
adaptive mesh generation algorithms developed based on the
theorems presented in this paper.
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VII. CONCLUSION

In this work, we analyzed the error in fluorescence diffuse op-
tical tomography resulting from the discretization. We presented
the results of the error analysis in two theorems which provide
two estimates for the error in the reconstructed absorption co-
efficient of the fluorophore resulting from the discretization of
the forward and inverse problems, respectively. These theorems
show that the error in the reconstructed optical image due to the
discretization of each problem is affected by the absorption co-
efficient value of the fluorophore, the number of source-detector
pairs, their locations with respect to the fluorophore concentra-
tion and the regularization parameters that are used to address
the ill-posedness of the inverse problem.

To demonstrate the dependency of the error due to discretiza-
tion on various medium parameters, we conducted a series of
simulation experiments. The first set of experiments shows the
dependence of the error due to discretization on the absorption
coefficient of the fluorophore. The second set of experiments
show that the location of the fluorophore concentration with re-
spect to the sources and detectors can be an important factor that
determines the extent of the error resulting from discretization
in the reconstructed optical image.

APPENDIX A
LAX–MILGRAM LEMMA

Given a Hilbert space , a continuous, coercive, bilinear
form and a continuous linear functional , there exists
a unique such that

(59)

The proof may be found in [38]. As a direct consequence of this
lemma, an upper bound on may be established as

(60)

where is the coercivity constant and is the dual space of
.

APPENDIX B
DEFINITION OF DUAL NORM

The dual norm of is defined by [38]

(61)

where denotes the norm of which is the dual
space of .

APPENDIX C
COERCIVITY OF

Recall . Thus and from the positive
parameters , we see

(62)

where is the coercivity constant.

APPENDIX D
PROOF OF THEOREM 1: ERROR ESTIMATE DUE TO FORWARD

PROBLEM DISCRETIZATION

Subtracting from both sides of (46) yields

(63)

Adding and subtracting on the right hand side of (63) leads
to

(64)

Then following the Lax–Milgram Lemma in Appendix A, the
error is bounded by

(65)

where is defined in Appendix B.
Clearly,

(66)

Note that the dual norm of the functional is
defined by

(67)

Hence,

(68)

Following [26], we express

(69)
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where and are the discretization
errors.

Then if we expand the integral on as a summation of the
integral on the finite element , and ,

, an upper bound for becomes

(70)

Next, following a similar argument as in (67) and (68), we
obtain

(71)

Using the definition of in (32), an upper bound for
is given by [26]

(72)

A bound for can be obtained by using (18)

(73)

Finally, to compute an upper bound for , we expand
the norm computed on as a summation on the finite
elements , and ,

(74)

In the end, using the discretization error estimates (44) and (45)
leads to the theorem.

APPENDIX E
PROOF OF THEOREM 2: ERROR ESTIMATE DUE TO INVERSE

PROBLEM DISCRETIZATION

Taking (46) as the starting point, by coercivity we can write

Let . Then the above inequality is equivalent to

since and the error is orthogonal to the
finite-dimensional subspace with respect to the norm induced
by the bilinear form. Noting

(75)

it is clear

(76)

Cancel terms

(77)

Let be the interpolant of and be the
interpolation error. Then the first term in the bound (77) can be
expanded as follows:
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Then, if we expand the integral on as a summation of the
integral on the finite element ,

The remaining two terms in (77) can be expressed in a straight-
forward way

Assume that our solution also satisfies . Then a
bound for the interpolation error and its gradient on each ele-
ment can be given by [38]

(78)

(79)

where is a positive constant, and are respectively
the and norms on and is the diameter of the smallest
ball containing the finite element . Finally, substituting (78)
and (79) into (77) proves the theorem.
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