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Abstract—We present a non-parametric regression open new opportunities in live cell imaging. Moreover,
method for den.oising 3D image sequences acquired V_iaframe rates can be increased without increasing radiation
fluorescence microscopy. The proposed method exploitsdose, which could be relevant to capture fast events at
:Ee r_ed“r}q[ancy_ of tht? 3Ef)ft|me '“format'?”d tg mF:p_rove sub-cellular levels. Finally, if the point spread function

€ sighal-to-noise ratio of Images corrupted by FOISSON- ¢ e gpiactive is not affected by denoising, images
Gaussian noise. A variance stabilization transform is first . . . .

may still be compatible with a deconvolution process.

applied to the image-data to remove the dependence be-__ " L .
tween the mean and variance of intensity values. This pre- This allows to significantly increase the performances of

processing requires the knowledge of parameters related deconvolution algorithms for images with low signal-to-
to the acquisition system, also estimated in our approach. noise ratios and as a consequence, the ability to detect
In a second step, we propose an original statistical patch- and track objects of interest.

based framework for noise reduction and preservation of  Currently, denoising is a widely studied but still open
space-time discontinuities. In our study, discontinuitis are problem in image processing. Many methods have been
related to small moving spots with high velocity observed oqcrihed in the literature, and a recent comprehensive
in fluorescence video-microscopy. The idea is to minimize review can be found in ’[1] [2]. Methods based on

an objective non-local energy functional involving spatie he full K led f noi L. bably th
temporal image patches. The minimizer has a simple form the tull knowledge of noise statistics are probably the

and is defined as the weighted average of input data Most efficient. In fluorescence video-microscopy, it is
taken in spatially-varying neighborhoods. The size of each €stablished that the low level of fluorescence is related

neighborhood is optimized to improve the performance of to a limited number of photons that can be modeled
the pointwise estimator. The performance of the algorithm as a Poisson process. Besides, additive electronic noise
(which requires no motion estimation) is then evaluated on is usua”y present even if a Coo”ng system is used on
both synthetic and real image sequences using qualitative the detector. Therefore the resulting images are assumed
and quantitative criteria. to be contaminated by a combination of Poisson and
Index Terms—Video-microscopy, fluorescence, image se-Gaussian noise. Several approaches have been introduced
quence denoising, patch-based approach, Poisson noisejo deal with such signal-dependent noise. In [3], the
vqriar_me stabilization, adaptive estimation, energy mini  5,thors proposed a maximum penalized likelihood es-
mization. timator for Poisson noise removal in very low count
situations. The problem is more challenging for Poisson-
l. INTRODUCTION Gaussian noise and another line of work consists in
Fluorescence video-microscopy is an investigati®tabilizing the noise variance using ad-hoc transforms.
tool used in biology for dynamics analysis at subFhe more common transform is the so-called Anscombe
cellular levels. Combined with fluorescent tags sudhansform [4] designed for Poisson noise. This transform
as genetically engineered fluorescent chimeric proteiwss further generalized to Poisson-Gaussian noise [5],
(e.g.Green Fluorescence Protein GFP), both confoedth satisfying results if the number of counts is large
microscopy and wide-field microscopy allow 3D liveenough and more recently for “"clipped" (under- and
protein imaging. Mainly used to analyze isolated cellsver-exposure) raw-data [6]. In the case of very low
confocal microscopy can also be usidvivo if com- count situations € 1 photons in average), the more
bined with endomicroscopy. Unfortunately, when ce#iophisticated Fisz transform allows one to better stabi-
viability needs to be preserved and photo-bleachitige Poisson noise [7], [8]. Finally, local estimation of
avoided, light exposure time must be limited, resultingnage-dependent noise statistics (assumed to be locally
in low signal-to-noise ratios. Gaussian) has also been investigated, especially in the
While improving the signal-to-noise ratio, denoisingase of adaptive Wiener filtering [9]-[11].
may allow us to reduce exposure time and therefore toDenoising temporal sequences is even more com-



plex since there are currently no satisfactory methods image sequences, but requires intensive minimization
for processing fluorescence video-microscopy 3D inprocedures and the adjustment of several parameters.
age sequences contaminated by Poisson-Gaussian noisénlike the previous patch-based approaches [27], [31],
Most of them only restore each frame separately witf34], [36], we present in this paper a space-time patch-
out using the temporal redundancy of image seribssed adaptive statistical method for 3D+time video-
[12], [13]. When temporal coherence is exploited, inicroscopy image sequence restoration. As already men-
is usually recommended to consider a motion estim@gened, patch-based methods have been proposed for
tion/compensation stage as proposed for video denoisthgnoising image sequences, but, to our knowledge, only
[14]-[17] and, for instance, for low-dose fluoroscopgnisotropic diffusion and wavelet shrinkage have been
image sequence filtering [11]. This is especially truagpplied to 2D+time fluorescence video-microscopy [23],
for real-time imaging applications. Thus, Kuznetsov ¢24]. The main features of the proposed method have
al. recently proposed to use a temporal Kalman-Bu@jready been presented in a discrete setting at the IEEE-
filter to improve the quality of video-microscopy im-ISBI'0O8 conference [37]. In our approach, we propose
ages [18]. The main difficulty in video-microscopy idirst a variance stabilization step to be applied to the
to estimate the motion of small and similar objectdata in order to obtain independence between the mean
moving with high velocity in the image sequence. Tand the variance. Second, we consider spatio-temporal
overcome this problem, sophisticated methods (see [hpighborhoods to restore series of 3D images as already
but designed for still images have been adapted to videpsoposed for 2D image sequences in [36]. Our method
Wavelet shrinkage [19], [20], Wiener filtering [21] oris based on the minimization of an energy functional
PDE-based methods [22] are typical examples of sualnile exploiting image patches. The minimizer of this
methods. Some of them have been successfully adapteeérgy functional established in a continuous setting has
to video-microscopy [23], [24]. Recently, an extension & simple form and corresponds to a weighted average of
the non-local means filter [1] also related to the universiatensity values taken in spatially (and temporally) vary-
denoising (DUDE) algorithm [25] and the entropy-baseidg neighborhoods. The neighborhood size is adapted
UINTA filter [26], has been proposed to process imagan-line to improve the performance (in the sense of the
sequences. It assumes that an image sequence containsisk) of the pointwise estimator. No learning step
repeated patterns [27]. Noise can then be reduced diywavelet decomposition is required. Also, no motion
averaging data associated to the more similar patchessgtimation is involved as originally described in [36].
the image sequence. Finally, patch-based approachesFanally, the designed algorithm comprises only a few
now very popular in texture synthesis [28], inpaintingarameters which are easily calibrated.
[29] and video completion [30]. The remainder of this paper is organized as follows.
Nevertheless, searching similar examples in the whdle Section| I, we introduce the denoising problem in
image for denoising with the non-local means filter, ifuorescence video-microscopy. In Section Ill, we first
untractable in practice in 2D, and unrealistic for videpresent the generalized Anscombe transform and detail
sequences. As a consequence, a variant of this filter la@soriginal approach to estimate its parameters and cor-
been recently proposed in [31] in which the authorect the induced bias. Then, we introduce the space-time
use a pre-classification of the pixels of the sequenpatch-based estimator. In Section IV, we demonstrate
in order to speed up the denoising procedure. Anothée performance of the algorithm (controlled by a small
improvement introduced in [32] consists in collectinqlumber of parameters) on both synthetic and real video-
similar patches to build 3D arrays. A unitary transforrmicroscopy images and image sequences.
and a hard-thresholding are then applied to remove noise.
In the meanwhile, a general modeling framework based Il. PROBLEM STATEMENT
on signal theory and machine learning has been proposeth this section, we present a general framework for
by Elad etal. for image and video sequence analysis. Thmage sequence analysis in wide-field or confocal mi-
authors assume that the image is sparsely represertexscopy. Our study is limited to the restoration of
over an over-complete dictionary of atoms that are eithartifacts due to random noise. We do not consider
fixed (e.g. DCT) or learned from exemplar patches [33he issue of correcting the signal distortions due to
[34]. The approximation problem is then equivalent tdiffraction (e.g. deconvolution problem) but we will later
the minimization (using a K-SVD algorithm) of anshow the compatibility of the proposed method with a
energy functional involving a data term and a penaltyeconvolution post-processing step.
term that encodes sparsity [35]. This method is able toAcquired images correspond to stacks 1of to 60
produce impressive image denoising results, includisgices with an axial resolution (depth) lower than the



lateral one. Anisotropy in 3D microscopy can be an issa&d m. Nevertheless, Starck el. proposed in [41] an

for 3D wavelet methods, especially for processing stacksrative algorithm to estimate the gaig and the dark
with a limited number of slices due to boundary effectsurrent parameters from images.

The processed images depict tagged proteins appearintstead, we propose an approach based on a linear
as bright particles of siz€ to 10 pixels and moving regression in the 2D-spa¢&|Z;], Var[Z;]). This method
with speeds ranging frorh to 10 pixels per frame. The has been previously sketched in [42] and we provide here
small amount of light collected by sensors and thermatlditional details and some improvements. A similar
agitation in electronic components induce a Poissoapproach has been since described in [24], [43]. From
Gaussian noise. Accordingly, we assume the followir@), we have

affine stochastic model:
Zi = goN; + ¢, 1) VarZ;] = g20; + o2
where Z; 2 Z(x;) is the observation at space-time lowhich yields
cationz; € R?, i € 1,...,n} andd the dimension of
{ } Var[Z;] = goE[Z;] + 052 — gom. (4)

the space-time domain. The gain of the overall electronic
system is denotegh. The numberV; of collected photo- |t follows that a linear regression in the 2D-space
electrons at pixel:; is a random variable assumed t9E[Z;], Var[Z;]) provides an estimation of the two pa-
follow a Poisson distribution of parametér = 6(x;) rametersgy andepc = o2 — gom. Accordingly, (2) can

with density:p(NN;) = (’NN# Finally, the dark current be written as

is treated as a Gaussian white noise of mBé&n| = m 2 3,

and variance Vdt;] = o2. In our model, the two random Taa(Z:) = gO\/QOZi + g% *épc- (5)
variablesN; ande; are independent. Finally, we denote

A In order to get uncorrelated estimates of the local mean
fi = f(@i) = gof(xi) +m. and of the local variance, it is crucial to partition the

In this paper, we consider the problem of estimating g4 e _time volume into non-overlapping blocks. Instead
at each pixel; from noisy dataZ;. A root-unroot strat- ¢ gefining in advance the size of these blocks, we

egy [38] is consid_ered to deal with the Poisson-(‘?aus&ﬁﬂ)pose to divide the image using a quadtree/octree
noise context Wh'_le a patch-based functional yields aa'“'%gmentation procedure. Each region is recursively di-
estimator of the intensity value whose parameters &f&o into four/eight smaller regions if the variance of
estimated in an iterative fashion. the dataZ; in the current region is not explained by
the variance of the noise. The variance in a regi®n
containing|R| pixels is given by:Sz(R) = > ,cr(Zi —
A. Noise variance stabilization ﬁ > ieR Z;)?/(|R| — 1). The variance of the noise is
1) Definition: The Anscombe transform is the morelefined byS.(R) = >_,cr(ri — ‘—}ﬂ 2 jeR ri)?/(|R| = 1)
commonly-used transform for stabilizing the variance afhere the pseudo-residualsare defined by (see [44]):

Ill. PROPOSED METHOD

Poisson noise [4]. Murtargh el. considered a more 1

general Anscombe transform (GAT) for Poisson and i = \/ﬁAZi- (6)

Gaussian noise [39]. Using the notation introduced in _ _

(1), the GAT can be expressed as: Here AZ; denotes the Laplacian operator involv-
ing [ = 2d + 1 surrounding pixels and is de-

Tan(Z) = 2\/9021. + §g§ +o02—gm. (2) fined for a d-dimensional space asAZ;, = [Z; —
9o 8 ¢_(Z(zj + s;) + Z(z; — s;)) with s; a vector
Note that variance stabilization and skewness correctisfmose;jth coordinate isl and the othef). Furthermore,
are incompatible. a Fisher test is used to compare the two variances:
2) Parameter estimation:In contrast to the usualmin(Sz(R), Se(R))/ max(Sz(R),S:(R)) S Ty, |1

parameter-free Anscombe transform, the GAT requirgse thresholdl,,, |-, corresponds to ther-quantile
the setting (or the estimation) of a small set of paranof F-distribution with|R| — 1 degrees of freedom. This
eters,go, o2 and m, related to the acquisition systemprocedure results in a partition of the image into regions
In [40], the authors proposed a bias-variance trade-@ffth homogeneous variance. Figure 1 shows an example
criterion to determine the parameters of their multi-scaté such an image partition. Finally, estimates of pairs of
variance stabilization transform. However, they do nédcal mean and variance can be then robustly estimated

provide the method to estimate the parameigiso?  within these regions. The mean can be estimated using a



4) Un-biased inverse GATAfter variance stabiliza-
tion, one can apply an algorithm designed for Gaussian
noise to the transformed datg);},c;,,) and get an
estimateu of the underlying function: defined on the
image domaif2 ¢ R?, with d the space-time dimension.
At location z; € Q we haveY; = u(x;) + & with &

a Gaussian centered white noise of variariceThen
inverting the Generalized Anscombe Transform yields to
an estimatef = TGA~1(@) of the functionf. However,
this procedure would introduce an additive bias. When
the number of counts is high and when the number of
samples is large enough, the bias tends$ tt. Figure 2
Fig. 1. Partition of the image domain using a quadtree segmentatfHH_Strates _th|$ effect on the es“_matlon of t_he cou_nt_ of a
based on the comparison of the local variance of the image and fR@isson distributed random varialfleThe bias exhibits
local variance of the noise. The image corresponds to the exposgrebehavior that can be heuristically approximated by
fime of 500ms as shown in Fig. 8. (1 — exp(—1.36))/4 where the coefficient.3 has been
estimated from the simulation shown in Fig. 2. Sirtce

) ) ) _is unknown, an interative procedure is used to estimate
robust M-estimator (using a Leclerc influence functionh pias correction operatet ,r(f) defined as:
[45] while an estimate of the variance of the noise is pro-

vided by the “Least Trimmed Square” robust estimator  C - (f)(z;) = % (1 _ e1.3f(acz)+CAT(f)(xi)>
[46].

Given empirical estimates of the mean and the vaiithere f(z;) is the value obtained by directly inverting
ance, a robust linear regression provides the valuestigé Anscombe transform at point. Finally, the unbi-
parametersgy and epc. The Generalized Anscombeased estimate is given bfmnbmsed = f+ Cyr. This
Transform is then applied to the input daia;};c;1,; experiment contradicts the conclusion drawn in [5]. In
to produce new input dat@y; = 7ga(Z:)}ic[1,n) With  particular, the Anscombe transform performs well for
Gaussian statistics. Finally, in order to be able to genergte- 3 instead ofé > 30, which is reasonable for our
images with the same noise signature defined by thpplication.
triplet (go, 0=, m), one has to estimate first the parame-
ters of the dark current. andm. In most images, theseg  patch-hased space-time estimation
two parameters can be deduced from the variance anﬁi . . , :

n this section we first extend the continuous non-

the intensity values corresponding to the darker regions. ) . )
y . P .g . ' reg local patch-based functional introduced by Kinderman
3) Image quality assessmenEvaluating the image

L ) S . %t al. in [49]. Given its fixed point solution we derive an
quality, is an important step in video-microscopy as |

: . : _..other functional also related to [50]. We finally present a

will allow to measure the errors involved in the quantifi-,. o S )

. . - . djscretization of the minimizer and a method to estimate

cation steps [47]. It is worth noticing that the Generalize
. itS parameters.

Anscombe transform provides a way to evaluate the

image quality of acquired images. Once stabilized, t

\?V?]IE:Z \i/ﬁ:;arg%é;g;pzcr:gdet%;e Ibh?in;cr)\?:(:zn?/\c/)sscgrl] ‘ogal patch-based functional for denoising and deblurring
define th fg” wing Poi nFC>I K Sianal t N e R tiimages. This functional is built upon a new norm which
efine the foflowing Foisson Feak signal to NoIse Raliie asures the degree of similarities between patches. We

propose to extend it as follows:

- i o ) = 2 Jo(u(@) — uo(x))? dz

Instead of the image contrast, this measure could a u(z+t)—u(y+t))? z—y

involve the contrast of objects using a background su§392 ¢ (fQ G(t)( (Q(x)+t,y(+t) : dt) K (ul(xy‘)‘> dy dz,
traction method in the same fashion than the signal- (7)
to-noise S/N ratio introduced in [48] for astronomicalvherew is the function to estimate defined on the image
images and nowadays used in microscopy [47]. FinallgopmainQ ¢ R? andd the dimension of the space-time
this approach provides a fully automatic quantificatiodomain. The functionuy represents the initial dati

of the image quality. (i.,e. up = u + £ where¢ is the noise as defined in

1) Non-local functional of Kindermann, Osher and
nes: Kindermann etal. introduced in [49] a non-

PPSNRZ) = 201log;, (max {TcaZ;} — min {TGAZ¢}>
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Fig. 2. Analysis of the bias of the Anscombe transform for the mean estirn&400 Poisson distributed samples in the rarige5]. On

the left, the stabilized variance is displayed for the Anscombe TransfAlingnd the unbiased Anscombe transform (UAT) which are by
definition the same. The middle graph shows the bias of the two estimatogsutesinfrom400 trials. On the right, the variances of the
estimators are displayed.

Section IlI-A4). The functiony is aR — R differen- The minimizer of the functional (10) is trivial since
tiable function (typicallyp(x) = 1—e~*). The proposed the functionu does not appear in the first term. On the
extension lays in the introduction of the locally variablether hand, the calculation of the expectation /in|(11)
bandwidths defined by the two functiofisx 2 — R: makes the evaluation d8(x, y, z) difficult. However, if
Q and h. To be able to derive a fixed point iterationE[ug(z)] = u(x) and Vafug(x)] = o2, we can use the
one can show that the symmetry of these bandwidtfdlowing identity (see [1]):
ie.Q(z,y) = Q(y,x) andh(z,y) = h(y,x), is needed. )

The fIng p0|(nt e)quatlorg for)mlnlgnlzn:g](?) has thelX [IQ G(t) ““%Ti)ﬁ;ﬁ?m dt} -

following form: Jo G(t) (“(Hgaﬁf‘;fr)g;“"z dt (12)

() = uo () + QK Joo Az, y, 2)u(y) dz dy 8) Finally, sinceJ is positive, we have:
1+ %= o Alw,y, 2) dz dy u(z) = argmin J(u, ug)
where ~ (13)

. Jo B (:v y, 2)uo(y) dz dy
Gz . = arg min
Aw,y.2) = 0 K (rads)

u sz (JJ Y,z dZ dy
x & (fQ G(t) (Mgg;?_;%zjﬁ;)z)) dt) . (9) with

The convergence of the fixed point iteration is not guai(z,y, z) = Q%Z;)K (h(z‘lf;?;[z))

anteed. We can also point out the fact that the minimizer & (f a() (u(wt+t—2)—u(y+t—2))*+20° dt) (14)
of the functional((7) involves overlapping patches which @ Qlz+t—zy+t—2) '

is an original feature compared to other patch-based3) Numerical aspects and discretizatiokor the im-

variational approaches [50]-[53]. plementation of the estimator defined by equation (13),
2) Proposed functionalinstead of((7), we propose towe consider a discrete setting. We can also initialize the
minimize the following functional (see also [50]): fixed point iteration using the data obtained after variance

9 stabilization and set; = Y. We have thus the following
J(u, up) = / Jo B(z,y, z)uo(y) dzdy w(z) | de expression for the estimator:
Q Jo B(z,y, 2z)dz dy

(10) U= 32 3 wige; (15)
where o et
B(w,y,2) = QC(T‘:EcZ?)J)K (h(i'z;@y/” z)) wherew;j, = B(i, xj, 2x)/(S7—1 iy B2, 5, 21))

and u; denotes the fixed pomt solution at pixel. We
X qb’( [fQ G(t )(“0 (tt—z)—uo(y+t—2))* dtD. (11) can also compute the following approximation for the

Q(x+t—z,y+t—=2)
variance of this estimator:
This expression relies on the expectation of the distance

n n
between patches instead of the distance itself making it 0; = o2 Z Z ngk. (16)
less sensitive to noise. =1k=1




These two expressions are almost equivalent to the eb&ndwidths is now required. However, in the case of
mator (and its variance) introduced in [37]. As a tradémage sequences, the relationship between the temporal
off between computational efficiency and simplicity, thand spatial dimensions is related to the object size
kernel G is defined as the indicator function on th@nd movement, which are both unknown. Accordingly,
interval [—p/2, p/2]%. In addition, we define the “tonal” the space and time bandwidths should be considered
bandwidth asQ(x;,z;) = (0; + U;)/(Aa0i0;). Given independently. For this reason, we decide to increase
the shape of, the parameten,, is related to ann- alternatively the size of the support df using two
quantile of they? distribution whose number of degreeslistinct radii. We note respectively, andh; the spatial
of freedom is given by, — 1 whereng is the number and temporal neighborhoods which can vary from one
of points lying in the support of the kernél. This point to another. It is worth noting that, unlike [57],
definition of G fulfills the condition of symmetry. Under the sequence of shape &f is not known in advance
some assumption, the fixed-point iterations convergece we consider two parametets and h;. In our
relatively fast and few iterations are used in practice. experiments, we use a dyadic scale in space and a linear

4) Space-time bandwidth selectionWe define scale in time to achieve a compromise between accuracy
now the bandwidth h(x,y) of the kernel K as and computational efficiency.
h(xz,y) = min(h(z), h(y)) and consider the estimation 5) Wiener filter: In [59], a Wiener filter is used
of h; 2 h(z;) for each pointz; of the image sequence.to combine estimates obtained at each iteration while
We would like to select the bandwidth minimizing thén [1], the same approach is used to recover details
mean square risk of the proposed estimator definatier filtering. We have also observed some improvement
as R(u;, u(z;)) = E[(a; — u(z;))?]. This risk can be using such approach and propose to filter at each iteration
decomposed as the sum of the squared bias and i@ successive estimates:
variance. The bias can not be directly estimated because 01 1

)Wiener_< i ] ) ( 1) (20)

¢
. . =N U U V; U,
it depends on the unknown functien However we can (ut — + = L
' of ot ) \of v+ ol
3 (3 3 K3

use an upper bound for the squared bhdsterm and
derive the following property for the optimal estimatoy,,

g [54] Wiener ot plt
b2 2 o =% 21

7

where d is the dimension of the space-time domairf\ctually, isolated and unaltered pixels in the restored
Expression[(17) does not depend on image regularitjy@ge can be slightly modified using this filtering, which
Following the Lepskii's principle [55], we exploit this €hhances image quality.

property to minimize the., risk R(7;, u(z;)). The idea  6) Patch pre-selectionFinally, we propose to extend

is to design a sequence of increasing bandwidiis= the patch pre-selection related to [31], [60] to reduce the
{nt,0 € {0,...,L — 1} : hf—l < hf}. Assuming that computational load and in the meanwhile improve the
the variance! is a decreasing function df the number results. Thus, the weights;;; in (15) and [(16) are set
of samples taken into account is progressively increas@d0 if

to reduce the estimator variance while controlling the (G#al — G ﬁf)(G +0lG + @f)

estimator bias. Formally, the so-called “bias-variance — — >m (22)
trade-off” corresponds to the following inequality: 2(G * U + G+ 0j)
hi = sup {|b§]> < ~y°vf}. (18) and
hi€H; max(G * 0}, G * %)
' . 22> (23)
This stepwise procedure provides a reasonnable estimate min(G * 0f, G * ) ’

of the bandwidth minimizing the local quadratic risk _ _
within the pre-defined set. Since the biag! is un- wherex denotes the convolution operat6#,remains the

known, we consider instead a weaker “oracle” to detex@™e kernel than in (7) angi and, are respectively
the optimal bandwidth for smoothing (see [56], [57]): two thresholds (with some approximations) related to a
qguantile of the Normal distribution and to a quantile of

hi= sup { <€ : |ai—al><puf}  (19) the F-distribution.
hi€H, In the following experiments, Wiener filtering and
where p is a positive constant (we chooge = 8, patch pre-selection were used to speed-up the compu-
see [58]). The design of a sequence of increasitation time and enhance the image quality.



IV. EXPERIMENTS

A. Synthetic image sequence

In order to test the proposed method, we have ge
erated synthetic image sequences representing movi
tagged vesicles. Using this procedure, we aim to analy:
the influence of the generalized Anscombe transform
the final result and to demonstrate that the propos
space-time adaptive method is competitive when co
pared to the state-of-the-art methods.

First, we have created a synthetic image sequence (a) (b)
showing moving objects superimposed on a static bagg. 3. volume 0f256 x 256 x 10 voxels extracted from a simulated
ground. The true image sequence is composedof image sequence (sligé5 and timet = 25), (a) ground truth (b) noisy
frames of16 bits 3D volumes o£56 x 256 x 10 voxels. image sequence (logarithmic scale).

The background is generated using two or three Gaussian

profiles of radius20 pixels at random locations. The

background is an essential component of the photometri@. [4(b) shows that the variance of the noise has been
dynamic of images and thus will probably alter th#vell stabilized: the noise variance is now001. The
stabilization process. Typically, the background may peidth of the cloud of points is related to the estimation
associated to auto-fluorescence within the cell as welrors of the noise variance. However, the global trend
as the non specific accumulation of fluorescent tags &ncorrectly estimated and the noise variance is reliably
organelles. The flux of photo-electrons related to thiabilized.

component ranges fror0 to 2000 photo-electrons per  This simulation shows that our approach is quite
pixel. In addition,256 spots are drawn as 3D Gaussiagffective at stabilizing the noise variance in the case of
functions of radiu pixels and of intensity200 photo- a Poisson-Gaussian noise. It is fully automatic and fast.
electrons. The movements of objects are assumedTiee computation time of an unoptimized C++ implemen-
be described by a Gaussian random walk of standdadion is about250ms for a single256 x 256 x 10 3D
deviation of3 pixels. A Poisson noise is generated frorframe 256 x 256 x 10 on a 1.8Ghz PC. The parameters
this image of flux. Then a gaigy, = 0.4 is applied are estimated for each 3D frames of the sequence and
and finally the dark current is simulated with a Gaussi&moothed in time using a moving average in order to
noise of meanm = 100 and a standard deviationtake into account the possible variations of the sensor
o. = 4. All these values have been obtained by statisticelharacteristics.

analysis of photometric properties observed in real imageTo demonstrate the performance of both the variance
sequences. The synthetic image sequence is composestalilization procedure and the 3D+time denoising pro-
small spots with intensities df0 gray levels above the cedure, we consider three experiments. In experiments A
background level, and of large blobs with a maximal and B, we assume respectively a Poisson-Gaussian noise
intensity of about900. The slice#5 extracted from a model and a Gaussian noise model. In experiment C, we
volume at timet = 25 of the simulated (noise free)assume a Poisson-Gaussian noise model but each volume
ground truth and the corresponding noisy slice are showhthe sequence is denoised independently. In these three
respectively in Fig. 3(a) and (b). experiments, we useiix 5 x 5 patches and the algorithm

A scatter plot of the estimated mean and noiggrameters are unchanged.
variance is shown in Fig. 4(a). The regression line In order to compare the different methods and noise
for_the first image of the sequence is estimated @&odels, we measured the,, L; and L, norms (see
Var[Z;] = 0.407 E[Z;] —24.44, while the true equation is Table[l) between the original sequengeand the re-
Var[Z;] = 0.4 E[Z;] —24.0. We can analyze the accuracyonstructed image sequenfeThe results are reported
of the estimation by considering the next volumes of the Table[ll and Fig. 5. Finally, we consider the signal-
sequence. We found that the meanggfis 0.408 and to-noise ratio SNR= 101log,,(Var[f]/|| f(z) — f(z)]?).
the standard deviation &.79 - 10~3. For the parameter From a noisy image with SNR= 24.0dB we obtained
epc, the mean is—24.31 and the standard deviationthe following value of SNR:33.04dB, 31.06dB and
is 0.879. Accordingly, we can conclude that, for this32.55dB respectively for the denoised image sequences
simulation, the parameters of the generalized Anscombarresponding to experiments A, B and C. All the
transform have been satisfyingly estimated. In additioapnsidered metrics show the interest of tacking into
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Fig. 4. Noise variance stabilization for a synthetic image sequence. Restimation of the local meaR|Z;] and noise variance VEL;]

—

(a) before stabilization and (b) after stabilization. Each dot corresptmd coupleE[Z;], Var[Z;]) estimated non-overlapping blocks. The
dashed line represents the fit of the theoretical mode|Z/ar= goE[Z;] + epc. After stabilization, the dependence between the signal
intensity and the noise variance is canceled.

L, norm Several methods are also applied to these data for com-
Loo | supsen [f(2) —v(a)] parison:3 x 3 and3 x 3 x 3 median filters combined with
Ln Joealf (@) —0()] dz the proposed GAT, the multi-scale variance stabilization
Ly | [, cqlf(@) —0(2)*de (MS-VST) approach using /9 orthogonal filter [61]
and the parameteis, m andoy estimated as described
TABLE | in Section I1I-A, the BM3D method [59] combined with
DEFINITIONS OF L, NORMS USED FOR EVALUATION the proposed GAT. Finally, we evaluate our method in
2D and 3D.

Results are shown in Fig. 8. The results corresponding

account Poisson/Gaussian noise modeling and spaéethe two median filters, performing badly, are not
time information. displayed in order to better focus on the other methods.
Moreover the visualization of the sequence restordd this experiment the BM3D method outperforms the
frame by frame, makes clearly appear a flickering artifa@ther methods except when the exposure time is very low
due to the lack of temporal coherence between cons€&Pout30 —50ms). For this range of exposure time, the
utive images. In Figl |7 we can notice the differencg¥oposed method exploiting additional 3D information
between experiments A and B. Flickering artifacts afé @ble to provide better results. The MS-VST method
visible in Fig.7(b) corresponding to experiment B whil@vould also potentially produce better results using a
in Fig. [7(a) the temporal coherence is reinforced. \WB0'® adapted wavelet basis. For each image, the square
can also remark that temporal abrupt changes are wépt of the mean squared error is displayed. A reference
preserved. As expected, these experiments visually cdRage is defined as the average of the images displayed
firm that considering the whole image sequence provid@d the last row corresponding to an exposure time of

better results than processing each frame of the sequep@ms. In order to compare the denoising results with
independently. different exposure times to this reference image, the

histograms have to be aligned. A linear relationship
_ o _ _ is assumed between the intensity of each image and
B. Spatl_al denoising of real samples using various €§ia reference image. Once the parameters have been
posure imes estimated using a linear regression, the intensity can be
In this section, we consider several spinning distorrected and the mean squared error computed. This
acquisitions of the same fixed HelLa cell expressimgocedure does not take into account possible motions
GFP tagged Rab6 proteins. For these experiments, beween frames. However excepted foe= 50ms, the
exposure time varies frori0 to 500ms. The acquired images were aligned. Moreover, motion compensation
3D stacks have the size @00 x 400 voxels. In this case would imply the interpolation of noisy data and could
temporal information is not used since the cell is fixedherefore introduce potential artifacts. The mean squared



TABLE I
INFLUENCE OF THE VARIANCE STABILIZATION TRANSFORM AND OF THEUSE OF TEMPORAL INFORMATION ON THE ERRORTHREE
NORMS ARE USED TO MEASURE THE PERFORMANCE OF THE DENOISING MHBOD. THE MEAN AND STANDARD DEVIATION WITH
RESPECT TO TIME ARE REPORTEDTHE COMPUTATION TIMESt. FOR EACH EXPERIMENT IS ALSO GIVEN FOR THE NOISY SEQUENGE
3D+TIME - GAUSSIAN AND POISSON NOISE(A) ; 3D+TIME - GAUSSIAN NOISE(B) ; 3D - POISSON AND GAUSSIAN NOISE(C).

Lo L1 Lo
Sequences te
mean std | mean std mean std
Noisy 62.67 421 | 439 6-107% | 350 12-1073
A 3835 287 | 1.56 16-1072 | 294 28-102 | 65 min
B 5310 583 | 1.96 17-107% | 378 25-1072 | 55 min
C 3798 244 | 1.65 14-1072 | 3.01 24-1072 | 28 min
70 T 2.05 T 3.9 I I
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Fig. 5. Influence of the variance stabilization transform and the adjdesngoral volumes on the signal-to-noise ratios. (See text)

(@) (b) ()

Fig. 6. XY slices#b5 at timet = 25 of the denoised synthetic image sequence corresponding to experitne®sand C, respectively in
(a), (b) and (c) (logarithmic scale).

Rl ik =

(a) 3D+t denoising

Fig. 7. YT slice#5 atx = 250 of the denoised synthetic image sequence corresponding to experitants C, respectively in (a) and
(b) after histogram equalization. More flickering effects are visible wihenvolumes are independently processed.
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60 intensity | original [63] proposed method

' " Original ——
\ Median filte} 5D 1.00 1485 3.96 311
50 ISVST 20 -+ 0.75 1821  4.60 3.66
£
Proposed method 2D 0.50 32.82 143 13.8

Median filter 3D ]
Proposed method 3D -e-- - TABLE Il

SQUARE ROOT OF THE MEAN SQUARE ERROR FOR SEVERAL
INTENSITY LEVELS USING A SIMULATED 2D IMAGE SEQUENCE
HAVING THE SAME PHOTOMETRIC PROPERTIES THAN THE
REFERENCE IMAGE INFIG.[8. THE RESULTS OF THE
, MULTI-FRAME FASTHAAR WAVELET DENOISING [63] AND OF

g OUR METHOD ARE REPORTED

vVMSE

0 100 200 300 400 500
Exposure time (ms)

Fig. 9. Square root of the mean squared error is plotted against th .
exposure time showing the improvement of the filtering in the can50 vqume_s 0f696 X_520_ X 6 VOX?IS- _The 5||Ce#3_
of a fixed sample (see Fig. 8). extracted at time = 20 is displayed in Fig. 11(a). This

sequence has been acquired using a “fast” 4D wide-field
) _ microscope. The biological sample is a chimeric protein
error value; of all _the experiments are sumn_1ar|ze_d Bnstruct between GEP and RabBA (GFP-RAB6A) a
Fig. /9. This experiment allows to make a direct linknomper of the Rab-GTPase proteins reversibly bounded
between the image quality and the exposure time. Hoyy gpecific membranes within the living cell. At the
ever due to the normalization procedure and the possibig .y state, this protein is associated to the Golgi appa-
motions, the results have to be interpreted carefullyy s 55 well as to rapidly moving transport intermediates
and depend as well on the image content. Finally, NafG s present in the cytosol. Cellular dynamics of
that exploiting temporal information would increase eveRape is influenced by at least three distinct phenomena:
more the quality of the images. i) lateral diffusion dictated by lipid movement within
] o o a continuum of membranes ; ii) continuous exchange
C. 2D Space-time denoising of a synthetic image S§syyeen cytosolic and membrane bound pools : iii)
quence directional motion on membrane transport intermediates.
In order to compare the proposed method to anotherthe sequence, the Rab6A proteins appear as dark spots
2D+time denoising procedure, we have simulated a 2bhen associated to small moving vesicles inside the
image sequence having the same photometric characlging cell. The large dark stable structure corresponds
istics than the original image used in the previous expe¢ the Golgi apparatus while the background of the cell
iment with an exposure time af0Oms. Approximately reveals its presence in the cytosol.
300 spots were detected and re-drawn on an estimatedrhe estimation of the parameters of the generalized
background profile. A Gaussian random walk was thexhscombe transform is illustrated in Fig.|10. The regres-
applied to the spot positions. Noise has been generaigsh line has been estimated and we fom] =
using the same parameters than those estimated onhg- I@ — 33.15. As shown in Fig. 10(b), once
original image and the global intensity of the imaggapijized, the noise variance is01. The results ob-
has been varied by a factdr 3/4 and 1/2. The ob- (aineq with our denoising method & 5 x 5 patches)
tained image sequences have been then denoised UgiRGrenorted in Fig. 11(b). Again, we can notice that the
the multi-frame fast Haar wavelet denoising approagfyise has been strongly reduced and that fine details like
proposed in [63] (using frames andl cycle spinning) 1 grescent particles are well preserved. The computation
and using the proposed method (usiBig< 3 patches ime for the whole volume sequence is abadmin
and5 iterations)._ In both case, the noi_se parameters q/&ng 4 standard C++ implementation. Experiments on
the same than in the noise generation step. Table Mmerous volume sequences confirm the ability of the

contains the associated mean square errors. On this dgiarosed method to preserve space-time discontinuities.
set, the proposed method performs slightly better than

the method proposed in [63]. However, adjusting the
parameters could potentially improve the first methodE. Combining denoising and deconvolution
_ _ Wide-field deconvolution microscopy has been widely
D. Real 3D+time image sequence used this last twenty years in cell biology [64], [65]
In this section, we evaluate the proposed denoisiag a regular tool for monitoring the living cell activity
method on a real 3D+time image sequence composidhigh spatial and temporal resolution. Compared to
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Fig. 8. Experiments on a fixed HelLa cell tagged with GFP-Rab6 acquirgpiiming disk microscopy. The first column contains a 2D slice
of the original 3D images taken with exposure times ranging fedms to500ms. The corresponding PPSNR is increasing logarithmically
with the exposure time from25.83dB to 38.41dB. The second and third columns represent the correspondingsaenoesults obtained
respectively with the multi-scale variance stabilization method [62] usingh&sotaopic wavelet basis, the proposed method in 2D and 3D,
and the BM3D method [59] using the proposed variance stabilization. Tihbers indicated correspond to thMSE computed using the
mean of the images obtained fod0ms of exposure time (last row) as a reference image.
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Fig. 10. Noise variance stabilization for the real image sequence shofig.iila. Estimation of the local me&jZ;] and local variance
Var[Z;] (a) before stabilization and (b) after stabilization.

(@) (b)

Fig. 11. Denoising of a wide-field microscopy image sequencglofolumes of size&596 x 520 x 6 voxels. The slice#3 of the original
volume at timet = 20 is displayed in (a) and the corresponding denoised volume is shown iflo@@grithmic scale). As a result of
photo-bleaching, the PPSNR decreases along time #620dB to 36.75dB.

confocal like microscopy, it has the advantage to lmn the sample to keep the cell alive and to increase the
faster, because of the wide-field illumination, and momcquisition frame rate. The main limitation resides in the
efficient thanks to the absence of pinhole to rejetinited number of emitted photons reaching the detector
photons and the highest quantum efficiency of detectots.form an image. In addition, deconvolution algorithm
Out-of-focus information is used and computationallgfficiency is sensitive to the image signal-to-noise ratio
reassigned to its original location, therefore increasif§NR). The smaller the SNR is the less the algorithms
contrast and signal-to-noise ratio. It is known that the tware capable to restore the relevant signal from the noise,
main limitations of photonic microscopy are i) spatialip to not being able to make the difference between
resolution due to diffraction limit of optics and ii) thenoise and signal, resulting in artifacts.

number of photons reaching the detector to statistically . ) )
form the diffraction limited image. In modern living " thiS section, we propose to combine the proposed

cell microscopy, the number of photons is decreased $10ising approach with an iterative constrained Gold-

much as possible in order to reduce the radiation dd¥&iné! deconvolution method [66] using a fixed biologi-
cal sample. Although this deconvolution method does not
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350 Original deconvolve temporal dimensions are adequately handled. The overall
\ Denoised deconvolvee--x--- method involves a limited number of parameters so that
300 we do not have to tune them in practice.
« 250 We have demonstrated that the proposed method out-
E performs other very competitive methods in 2D and
3 00 . 2D+time. Moreover, experiments on real image se-
“x. guences show that the space-time discontinuities are
\~\ \ . . . . .
150 . well preserved without motion estimation. Finally, we
i S have used the capability of the proposed algorithm to
ioob—M 1) s ici i i i i
0 0 20 0 20 100 efficiently den_0|se 3D images in order t_o use it as
Exposure time (ms) a pre-processing step prior to deconvolution. We have

Fig. 14. The square root of the mean squared errors is plotted agal”%\Strfated the eff|C|ency O_f such a Cor_nb'nat'on_to reSthe
the exposure times in the case of a fixed sample shown i Fig. law signal-to-noise ratio images. This opens interesting

The Gold-Meinel deconvolution algorithm is applied respectively therspectives for monitoring biological samples at high
the original and denoised images. temporal and spatial resolution, without increasing the
radiation dose. To conclude, we point out that the

represent the state of the art, it shows a good robustnElrsJ%posed method is not restricted to video-microscopy,

. . . i +ti +ti
to the inaccuracy of the point spread function. Moreover could deal with other 2D+time as well as 3D+time

it is widely used and therefore the combination with thréblsy image modalities, provided that an appropriate

proposed denoising method is of interest noise modeling is adopted. In this respect, this “breaking

In the same fashion than in Section IV-B, we propo sensitivity barrier” approach advantageously completes

) ) . s“l:f‘)reaking resolution barrier” new optics [67].
to compare stacks acquired with several exposure times

ranging from 10ms to 100ms to a reference image

acquired with an exposure time @b0Oms. Figure 12 VI. ACKNOWLEDGMENT

shows the maximum intensity projection of the results. . : -
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