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Abstract
Magnetic Resonance Poroelastography (MRPE) is introduced as an alternative to single-phase
model-based elastographic reconstruction methods. A three-dimensional (3D) finite element
poroelastic inversion algorithm was developed to recover the mechanical properties of fluid-
saturated tissues. The performance of this algorithm was assessed through a variety of numerical
experiments, using synthetic data to probe its stability and sensitivity to the relevant model
parameters. Preliminary results suggest the algorithm is robust in the presence of noise and
capable of producing accurate assessments of the underlying mechanical properties in simulated
phantoms. Further, a 3D time-harmonic motion field was recorded for a poroelastic phantom
containing a single cylindrical inclusion and used to assess the feasibility of MRPE image
reconstruction from experimental data. The elastograms obtained from the proposed poroelastic
algorithm demonstrate significant improvement over linearly elastic MRE images generated using
the same data. In addition, MRPE offers the opportunity to estimate the time-harmonic pressure
field resulting from tissue excitation, highlighting the potential for its application in the diagnosis
and monitoring of disease processes associated with changes in interstitial pressure.
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I. Introduction
MAGNETIC resonance elastography (MRE) [1] estimates the mechanical properties of
living tissue by exploiting the rich nature of MR detected motion data. This technique
commonly employs a phase-contrast pulse sequence in concert with motion encoding
gradients (MEGs) to record volumetric time-harmonic displacement data [2]. A set of
constitutive equations is then used to relate the measured displacements to the relevant
mechanical parameters in the underlying mechanical model.

Initial investigations of in vivo tissue using MRE have primarily applied constitutive
relations that describe the mechanical behavior of single-phase, homogeneous, linearly
elastic, isotropic media, relying solely on the perceived stiffness characteristics of the tissue
for generating diagnostic value. However, brain and other tissues have long been recognized
to display time-dependent deformation not described by linear elasticity [3]. In a recent
study investigating the mechanical properties of brain using MRE, Kruse et al. (2008) [4]
summarized the considerable variability of in vivo and ex vivo measurements of brain tissue
properties reported in the literature. The lack of agreement suggests that more sophisticated
mechanical models may be required to describe the deformation behavior of brain and other
tissues.

Lately, interest in recovering viscoelastic properties of tissue with MRE has emerged.
Specifically, viscoelastic theory has been used to model breast [5], [6] and liver [7]-[9], as
well as brain deformation in human [10]-[12], rodent [13], [14] and porcine subjects [15]. In
addition, Sinkus et al. (2005) [16] have investigated the anisotropic and viscous properties of
human breast tissue through a combined model. While quasistatic poroelastic descriptions of
brain have been used to model hydrocephalus [17]-[20], edema [21]-[23], and brain shift
occurring during stereotactic neurosurgery [24]-[26], investigation of the poroelastic
properties of tissue using time-harmonic MRE has been limited to date. In a recent study,
Perriñez et al. (2009) [27] showed that simple elastic assumptions are inadequate for
assessing the mechanical properties of poroelastic media with current time-harmonic MRE
imaging protocols, and led to effective parameter distributions resulting from the complex
interactions between the solid and fluid phases that were difficult, if not impossible, to
predict or interpret.

As described by Biot (1941) [28], linear poroelastic materials are composed of a porous,
compressible, linearly elastic, isotropic solid matrix and a viscous penetrating fluid. Unlike
viscoelastic materials whose time-dependent behavior is linked inextricably to the damping
characteristics of the viscous solid, the mechanical response of poroelastic materials is
governed by time-dependent deformation which is caused by the resistance to fluid-flow
through a series of interconnected pores from an applied or induced pressure gradient. In this
model, the inability for significant fluid-flow to occur during mechanical deformation results
in the nearly incompressible behavior of the bulk material commonly associated with
biological tissues. While viscoelasticity and anisotropy are expected to contribute to the
observed deformation behavior, models based solely on these equations do not consider the
fluid-phase present in vivo. Poroelastic modeling is an alternative to traditional single-phase
models, which offers an ability to de-couple the mechanical characteristics related to tissue
structure from those related to fluid content or fluid pressure. The model presented here is a
necessary first step toward a mathematical description that is more consistent with tissue
structure, and upon which more advanced constitutive models may be derived by
considering viscoelasticity, anisotropy, and other nonlinear effects.

Recently, poroelastic models have been applied to tissue imaging to study the quasistatic
deformation behavior of fluid-saturated porous media. Poroelastography [29] has been
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developed as an ultrasound technique that serves to quantify the radial-to-axial strain ratio
distribution of poroelastic materials during stress relaxation. Assuming the observed motion
occurs only in-plane, images can be produced from pre- and post-compression estimates of
the axial and radial strain. While individual images generated using this approach are
referred to as instantaneous or effective Poission’s ratio (EPR) elastograms, time-sequenced
sets are known as poroelastograms. Righetti et al. (2004) [30] demonstrated the feasibility of
generating poroelastograms in both tofu and tissue samples. In 2005, the group [31] outlined
a methodology for imaging the time-constant associated with EPR elastograms as well as the
permeability of porous media. Fortin et al. (2003) [32] and Righetti et al. (2007) [33] have
shown the feasibility of using poroelastographic techniques to investigate the deformation of
articular cartilage and to differentiate between normal and lymphedematous tissues,
respectively. In addition, Berry et al. (2006) [34], [35] introduced a model-based parameter
reconstruction that employed KLM biphasic theory [36] to predict the time-dependent radial
strain for poroelastic tissues undergoing sustained unconfined compression. While
accounting for inherent tissue nonlinearity or viscoelasticity with more sophisticated
mechanical models may be possible in the future, reconstructions such as those proposed by
Berry et al. (2006) are limited by the use of 2D strain fields, the assumption of tissue
homogeneity, and poor signal to noise ratios. Though some studies have investigated the
potential for using 3D ultrasound to capture the volumetric strain fields necessary to fully
characterize the mechanical behavior of soft tissue in vivo [37], [38], unlike MRE, current
ultrasound methods are unable to sample displacements in three directions with equal
accuracy and precision. Further, non-uniqueness restricts the independent parameters to an
effective Poisson’s ratio and the product of modulus and permeability, which may limit the
diagnostic value of the recovered images.

Magnetic Resonance Poroelastography (MRPE) is potentially a very exciting alternative to
single-phase MRE methods. Based on the two-phase equations of dynamic poroelasticity
[39], [40], MRPE employs constitutive relations that describe the mechanical behavior of an
elastic matrix and penetrating pore fluid, allowing for a model that is more representative of
tissue structure and physiology. The poroelastic reconstruction algorithm presented in the
following sections recovers the elastic properties of the solid matrix while at the same time
producing an estimate of the time-harmonic pore-pressure distribution resulting from
mechanical excitation. The promise of this approach includes a more accurate description of
tissue deformation at amplitudes and frequencies relevant to MRE, leading to enhanced
sensitivity to changes is tissue structure, and the opportunity to exploit variations in the
estimated time-harmonic pressure distribution as an additional contrast mechanism of
potential diagnostic value.

While poroelasticity has been investigated in the setting of ultrasound elastography, to the
best of our knowledge, this paper reports the first attempt to form reconstructed 3D images
from volumetric displacement data obtained with MR in a porous medium. Specifically, we
describe the details of a new subzone algorithm which is based on the time-harmonic
poroelasticity equations and evaluate the accuracy of the estimation method in recovering
the properties of inclusions of varying sizes as a function of noise level and assumed
hydraulic conductivity using synthetic data. We also show images reconstructed from
experimental measurements obtained from a single inclusion phantom. The results
demonstrate the basic feasibility of MRPE and lay the foundation for future work to evaluate
and optimize the technique in more extensive phantom and in vivo studies.

II. Methods
A 3D finite element algorithm developed by Perriñez et al. (2007) [41] was used to solve the
dynamic poroelasticity equations for the fully complex time-harmonic displacement field
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and pore-pressure distribution given prior knowledge of the mechanical and fluid properties
describing a problem domain. Here, a reconstruction algorithm has been developed to
estimate the poroelastic parameter distributions through the finite element nonlinear
inversion scheme outlined in Section II-C. Simulated data was generated to assess the
reconstruction algorithm’s performance. A poroelastic phantom comprised of soft tofu and
gelatin was used to validate the process experimentally.

A. Forward Problem
The coupled set of equations describing the 3D time-harmonic deformation behavior of a
fully saturated poroelastic medium composed of a porous compressible linearly elastic solid
matrix and a viscous incompressible penetrating fluid may be expressed in partial
differential equation (PDE) form [40] as,

(1a)

(1b)

where u‾ is the complex time-harmonic displacement field with components u, v, and w,
p‾ is the complex time-harmonic pore-pressure field, μ and λ are Lame’s constants of the
drained matrix material, ρ and ρf represent the bulk density and the pore-fluid density,
respectively, and ω is the excitation frequency. The parameter β is defined as,

(2)

where, ϕ is the material porosity, κ is the hydraulic conductivity, and ρa is the apparent mass
density. Written in terms of displacement, (1) can be discretized in matrix form as a stiffness
matrix A, solution vector χ˄, and a forcing vector b, facilitating the finite element solution,

(3)

Here, χ˄ is defined as,

where N represents the total number of discrete locations (nodes) in the computational
domain. The reader is referred to Perriñez et al. [27] for a more complete description of the
numerical model. The notation used in this paper was chosen to be consistent with the
development of the inversion problem presented in Section II-C.

B. Nonlinear Image Reconstruction
The image reconstruction process requires a set of measured data, y, an estimate of the
desired parameter distribution, θ, and a relationship between the measured behavior and the
underlying parameter space, e.g. y = f(θ). PDE-based elastographic reconstruction
algorithms such as those described by Van Houten et al. [42], [43], are generally expressed
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as a minimization of the error occurring between the measured data and those computed
using the model equations where,

(4)

and F is defined as,

(5)

Minimization is achieved by setting the derivatives of the objective function with respect to
the model parameters equal to zero. The resulting system of nonlinear equations may be
solved using the Gauss-Newton method, leading to the recursion relation,

(6)

where δn is a factor influencing the step size of the gradient descent process,  is the

Jacobian or sensitivity matrix J, and  is the approximate Hessian matrix (H).
Formation of H generally yields an ill-conditioned matrix not suited for direct inversion.
However, inversion can be achieved through addition of a regularization term, typically to
the matrix diagonal (α), often scaled to a normalized value in a manner described by
Marquardt et al. (1963) [44]. Thus, equation (6) can be written more concisely as,

(7)

In addition, spatial filtering may be applied to suppress the effects of measurement noise on
the local variability of the parameter estimates in the manner described by Doyley et al.
(2000) [45]. This filtering process smoothes the computed elastic parameter distributions by
calculating a weighted average of the values directly connected to a given node.

C. Inverse Problem
Solving (6) for the parameter updates via the Gauss-Newton formulation requires knowledge

of the derivative terms . Operating directly on (1) results in,

(8a)

(8b)

where θ represents one of the independent variables in (3). Carrying through the partial
differentiation operator, (8) become,

(9a)
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(9b)

Substituting u’ for  and p’ for  we obtain,

(10a)

(10b)

yielding a set of equations in the same form as (1), but in the derivative quantities and
containing two additional terms on the right-hand side. As a result, (10) can be solved in the
same manner as (1) using the finite element method. However, generation of the Hessian
matrix, H = JTJ, and right-hand side vector, JT (y − f(θ)), requires knowledge of the
derivatives of the calculated quantities with respect to the elastic parameters. Here, the
solution vector χ˄ replaces the function f(θ) such that,

(11)

where, θk represents the value of the desired elastic parameter (μ or λ) at each node k. The
Jacobian matrix is ordered in the following format,

The terms of the Jacobian may be obtained directly by differentiating (3) with respect to θk,

(12)

Rearranging the terms we are able to solve for the desired derivatives,

Perriñez et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(13)

While [A]−1 and χ˄ are known from the forward problem solution in (3), the elements of 
must be derived from the components of A such that,

(14)

Following the development of A presented in Perriñez et al. (2009) [27] and expanding χ˄

on the basis set ϕ, the elements of  can be written as,

The solution to (7) using H = JTJ will result in a complex-valued set of parameter updates
necessitated by the presence of complex data. However, it is desirable to retain a real-valued
parameter set for subsequent solutions to the forward problem in accordance with the
dynamic poroelasticity model. To achieve this end, the Jacobian matrix is multiplied by its
complex conjugate transpose (J*T), yielding a Hermitian or self-adjoint Hessian (HH).
Taking the real part, (6) can be re-written as,

(15)
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ensuring a mathematically-consistent, real-valued parameter update. Lastly, since no
pressure data is expected to results from a clinical MRE exam, it will not be available for
error calculation via (5). Thus, the terms in the Jacobian matrix containing derivatives of
pressure with respect to the desired mechanical parameters are neglected. Further, while it
may be possible to treat hydraulic conductivity as an independent parameter, the algorithmic
development presented here assumes the distribution is known a priori.

D. Subzone-Based Reconstruction
The algorithm discussed in the previous section calculates a global set of parameter updates
across the entire problem domain at each iteration. The global displacement and pressure
distributions are computed through (3) using the estimated parameter set as well as
measured displacement and estimated pressure boundary information. The computational
feasibility of employing this technique was assessed in Perriñez et al. (2009) [46], and the
method has been shown to produce both accurate and precise estimates of the solid matrix
shear modulus and the time-harmonic pore-pressure distribution with simulated data.
However, limited storage capacity restricts global solutions of this type to relatively small
problem domains. One way around the computational bottleneck decomposes the global
problem domain into a set of smaller overlapping sub-domains or subzones [42]. By
redefining the problem as a collection of subzones, the minimization of the objective
function in (5) can be rewritten as,

(16)

(17)

assuming that the sum of minimizations is equivalent to the minimization of the sum over all
subzones (Γz) comprising the problem domain (Γ). An algorithm based on this premise was
developed, allowing for sufficient spatial resolution while maintaining reasonable
computational load. A flowchart representation of the subzone-based algorithm is provided
in Figure 1.

The internal pressure distribution required at the subzone boundary to drive the inversion is
unknown (since no pressure field observations are generated during a clinical MRE exam).
However, an estimate of the pressure distribution can be obtained from the solution to the
global forward problem (3) based on assumptions regarding the behavior of the pressure
field at the global domain boundary. For example, when investigating the breast or brain, it
may be reasonable to assume that the skin/meninges will prevent fluid motion normal to the

organ surface, corresponding to a pressure boundary condition where . Once the global
forward solution has been computed based on the assumed global pressure boundary
conditions and the initial estimate of the internal mechanical parameter distributions μ and
λ, the resulting internal pressure distribution can then be enforced on each subzone
boundary as Dirichlet (Type I) or Neumann (Type II) conditions. While development of
Neumann type pressure information at each subzone boundary requires more computational
effort, the less restrictive boundary condition may prove beneficial for the iterative
reconstruction scheme. However, the work presented here includes only Type I conditions
on pressure and displacement on the subzone boundaries.
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After partitioning the global domain into a set of overlapping subzones, the 3D displacement
and pressure distributions can be computed on each subzone using the current elastic
parameter distribution within that domain, the measured displacement data and the estimated
internal pressure distribution as boundary information. The mechanical parameter updates
on each subzone are generated via (7). The local inversion continues until the ratio of the
error between the measured and computed displacement fields to that calculated using the
previous iteration’s mechanical parameter distribution is greater than the prescribed
tolerance level (thereby indicating that the displacement error on the subzone is no longer
being reduced by the minimum amount required per iteration). A tolerance level (Tol) of 0.5
is used in the reconstruction of both simulated and experimental data. The randomized
subzone deployment strategy used in the reconstruction is similar to that described by
Doyley et al. (2007) [47]. A simplified illustration of the subzone distribution is provided in
Figure 2.

E. Parallel Computation
Given the added complexity of the poroelastic equations, the potential for increased
computation time must be considered. A significant advantage of deconstructing the global
problem into a set of smaller subzones is the opportunity for parallel computation. In this
approach, multiple processors are invoked to perform the individual subzone inversions in
concert, significantly reducing the overall computation time. Unlike traditional
parallelization techniques where individual processors are responsible for only a small
portion of large matrix calculations, this procedure assigns each processor full responsibility
for computation of a small, complete iterative reconstruction task. An implementation of this
type has been shown to be effective in reducing runtime by a factor nearly equal to the
number of processors involved [48]. Taking advantage of this parallelization strategy, a
reconstruction algorithm was developed using the Message Passing Interface (MPI)
protocol, to facilitate inter-process communication. The reconstructed property distributions
presented in the following sections were computed on a 472 CPU Beowulf/Linux cluster.

F. Simulated Data
To assess the performance of the poroelastic algorithm, an analysis was carried out on a
simulated phantom containing three spherical stiffness inclusions (4×μbackground) of varying
sizes (1–3 cm diameter) on a central axis along the x-direction. Synthetic data was generated
for a 10 cm × 7.5 cm × 4.5 cm poroelastic slab (Fig. 3). A convergence study was performed
to determine the appropriate spatial resolution for the finite element mesh. A unidirectional
time-harmonic shear excitation with an amplitude of 100 μm was applied to the base of the
slab (z = 0) along the x-direction (v = w = 0) at a frequency of 100 Hz. A zero-stress

condition was applied to all other surfaces ( ). Fluid was allowed to flow freely though
the top and side surfaces of the slab (p = 0 Pa), but was not allowed to pass through the

bottom ( ). The physical properties used to generate the data are summarized in
Table I and are comparable to those presented in [27]. The Poisson ratio of the drained solid
(ν) is given instead of λ to emphasize the inherent compressibility of the matrix material.
The parameter λ can easily be calculated through the relation, λ = 2μν/(1 − 2ν). The
dynamic poroelasticity equations (1) were solved in the manner outlined in Section II-A and
the resulting displacement field was corrupted by varying levels of white Gaussian noise (0
– 5%). The noise levels were chosen to reflect the average error in the sinusoidal fit
converting the raw MR phase information into displacement maps we have observed in
phantom data. Shear modulus and pore-pressure amplitude distributions were obtained from
poroelastic reconstructions performed on the same finite element mesh. In addition, the
effect of the assumed value for material hydraulic conductivity on the parameter
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reconstruction was studied by varying the a priori estimate between 1 × 10−11 and 1 × 10−7

m3s/kg.

G. Poroelastic Phantom
Data was collected for a poroelastic phantom to validate the performance of the poroelastic
reconstruction with experimental data. Recently, poroelastic models have been used to
approximate the transient mechanical behavior of tofu under sustained loading [30]. In this
study, MRE data was acquired for a slab of commercially available soft silken tofu (Mori-
Nu Silken Extra-Firm, Morinaga Nutritional Foods, Inc.). The tofu was modeled as a linear,
homogeneous, isotropic, poroelastic medium. A 28.5 mm diameter elastic stiffness inclusion
was synthesized by pouring liquid gelatin (10% porcine skin gelatin, 300 bloom) into a
cylindrical void passing vertically through the center of the slab. The phantom was excited
in the z-direction using a pneumatic actuator at a frequency of 100 Hz. A drawing of the tofu
phantom is provided in Figure 4. A spin-echo phase contrast pulse sequence with added
MEGs was employed to encode the time-harmonic motion (TR = 600 ms, TE = 40 ms).
Displacement data was acquired in three orthogonal directions for 16 coronal image slices
(x-y plane, 128 × 128 FOV) with 2 mm isotropic voxels (2 mm × 2 mm × 1.8 mm slice
thickness w/ a 0.2 mm slice gap). O(101) cycles were allowed prior to motion encoding to
ensure the phantom had reached the time-harmonic steady-state [49]. The total imaging time
was approximately 10 min for each spatial direction. Because of the 3D nature of the model
equations, the reconstruction process does not require that MRE data be acquired in the
same plane as the major mode of vibration.

Shear modulus reconstructions were performed using both the linearly elastic algorithm
described in Van Houten et al. (2001) [43] and the poroelastic algorithm described in
Section II-D. The pressure boundary conditions assumed for the poroelastic reconstruction

included a no-flow condition ( ) at the actuation surface (z = 0), and free-flow
conditions (p = 0 Pa) on all other surfaces. The model parameters used in the reconstructions
were those presented in Table I except for the hydraulic conductivity which was assumed to
be 1 × 10−7 m3s/kg.

III. Results
The reconstructions performed on simulated data employed 16 processors for 60 global
iterations resulting in an average runtime of approximately 5 hours. Each global iteration
was composed of approximately 250 individual iterative subzone calculations containing an
average of 550-600 nodes/subzone, and a subsequent solution to the global forward
problem.

Figure 5 contains images of the reconstructed shear modulus and pore-pressure amplitude
distributions at various noise levels for a single horizontal slice passing through the center of
the simulated poroelastic phantom described in Section II-F. The images labeled “Truth”
refer to the shear modulus distribution used as input to the forward problem, and the pore-
pressure distribution obtained from the solution to the forward problem under the prescribed
boundary conditions on displacement and pressure. Figure 6 compares the mean and
standard deviation of the recovered shear modulus in the background and in each of the
inclusions with the known values provided in Table I. The average reconstructed shear
modulus for the background was found to differ from the true value by 2 – 17% across all
noise levels. In general, the average reconstructed shear modulus for an inclusion was found
to be lower than the true value (0.7 – 27%), with the most significant error observed in the 1
cm inclusion. This was expected as it had the smallest number of nodes comprising the
inclusion volume, and therefore, was affected to a greater extent by the spatial filtering
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process. Lastly, the variability in the reconstructed modulus values was observed to increase
with noise level and inclusion volume.

Figure 7 contains interpolated shear modulus and pore-pressure results obtained for the same
simulated phantom reconstructed over a range of assumed hydraulic conductivity values.
Shear modulus distributions were clearly overestimated for reconstructions performed using
hydraulic conductivities less than 1 × 10−9 m3s/kg. Some variability in the recovered
modulus was observed for hydraulic conductivities greater than the true value, though the
inclusions were still visibly apparent in the images. While reasonable estimates of the pore-
pressure amplitude distribution were obtained for assumed hydraulic conductivities greater
than the true value, the average pore-pressure amplitude was observed to be significantly
higher than that of the true distribution when the assumed hydraulic conductivity was less
than the true value.

Figure 8 contains an image of the real-part of the MRE recorded motion data for a
representative coronal slice passing through a tofu phantom with a cylindrical stiffness
inclusion in each of the orthogonal encoding directions. Figure 9 contains representative
shear modulus and Poisson’s ratio distributions for the tofu phantom obtained from the
linear elastic and poroelastic reconstruction algorithms. Also included is the estimated pore-
pressure amplitude obtained from the poroelastic reconstruction for the same image slice.
The elastic reconstruction shows significant variation in the recovered shear modulus and
Poisson ratio across the tofu background and gelatin inclusion. The poroelastic
reconstruction was found to provide smoothly varying modulus and Poisson ratio
distributions for the tofu matrix representative of the material homogeneity. In addition, the
gelatin stiffness inclusion was clearly defined in both images. Mechanical testing of soft tofu
and gelatin samples via the procedure described in [27] have shown shear modulus values to
vary between 500–600 Pa for tofu and 3–6 kPa for 10% gelatin, respectively. The estimated
pore-pressure amplitude appears to be a reasonable assessment of the pressure variation
given the nature of the applied boundary conditions on pressure and the major mode of
vibration (in and out of the image plane as described in Section II-G). Further, the total
reconstruction time was found to be approximately 2 hours for the linearly elastic algorithm
and approximately 2.8 hours for the poroelastic inversion.

IV. Discussion
Images obtained from the poroelastic reconstruction show good recovery of the shear
modulus and pore-pressure amplitude across the simulated phantom. While the mean shear
modulus value for the background was found to be accurate regardless of noise level, the
mean value in each inclusion was slightly lower than the true value. In addition, variability
in the reconstructed parameters was observed to increase with increasing noise level. While
spatial filtering remains a factor that inhibits the development of sharp boundaries between
regions of different moduli, increased accuracy and precision are likely to occur with
enhanced data resolution.

A limitation of the poroelasticity reconstruction scheme implemented here is the need for an
a priori estimate of the hydraulic conductivity distribution within the material being
investigated. Characteristics of the response of the reconstruction algorithm over a range of
assumed hydraulic conductivity values depend on the frequency at which the motion was
generated and the extent of fluid-flow over a single excitation cycle. By assuming that the
hydraulic conductivity is greater than the true value, the resistance to fluid-flow decreases
and the calculated deformation behavior becomes dominated by the elastic matrix.
Conversely, if the hydraulic conductivity is assumed to be smaller that the true value, the
resistance to fluid-flow increases and the calculated deformation behavior is expected to
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emulate an incompressible elastic solid, which can lead to mechanical resonance or other
numerical instabilities. Future studies are likely to explore the possibility of recovering
hydraulic conductivity as an independent parameter. This will be done primarily by
assessing the stability and sensitivity of an update equation of the form (15) in which the set
of unknowns Δθ includes the parameter β. While the success of such an approach remains
uncertain, an algorithm of this type may offer additional clinical utility as interstitial
hydraulic conductivity is known to vary between normal tissue and solid tumors, and is
likely to be influenced by changes in fluid content.

The results from the tofu phantom show that the purely elastic reconstruction was unable to
recover the linearly elastic properties of the tofu matrix or the stiffness inclusion, instead
yielding an effective modulus distribution resulting from the complex interactions between
the solid and fluid phases. This result was expected based on the evaluation in [27] which
showed linearly elastic assumptions to be inadequate in describing the deformation behavior
of poroelastic media under the time-harmonic conditions applied during MRE. While the
inclusion itself is elastic, the measured displacements were likely influenced by the
poroelastic background. In contrast, the poroelastic reconstruction was successful in
recovering the expected spatial variation in shear modulus between the background and
inclusion materials, though disagreement was observed between the recovered values and
those determined via mechanical testing. The recovered Poisson ratio distribution from the
linearly elastic algorithm suggests the bulk material is nearly incompressible; an
interpretation which is expected for a linearly elastic assessment of a fluid-saturated porous
medium. Variations observed which indicate more compressibility likely result from the
data-model mismatch. The recovered Poisson ratio distribution from the poroelastic
algorithm indicates an inherent compressibility of the matrix material. However, the
algorithm also incorrectly identifies the gelatin inclusion as being more compressible than
the matrix material. This finding can most likely be attributed to the invalid assumption of a
uniform hydraulic conductivity across the tofu phantom, and an attempt by the algorithm to
fit the model to the measured data. In addition, while the exact variation in pore-pressure
resulting from the external mechanical vibration cannot be measured, the algorithm
produced a reasonable estimate for the internal time-harmonic pore-pressure distribution
based on knowledge of the applied boundary conditions and excitation mode. Further, only a
relatively small increase in computation time was observed over the linearly elastic
reconstruction despite the need to solve the forward problem on the entire domain at each
global iteration.

Possible reasons for the observed differences between the estimated and measured
mechanical parameters include effects from temperature (the small samples used in
mechanical tests take less time to reach equilibrium), the assumption of a uniform hydraulic
conductivity distribution, as well as the assumptions made regarding the boundary
conditions on pressure. Further, the values for the tofu background were determined from
quasistatic stress-strain curves, yielding a linearly elastic modulus. These values were used
for comparison since the linear poroelastic model assumes the matrix material to be purely
elastic. However, real materials are expected to have some level of viscoelastic behavior. As
a result, the linear poroelastic model is unable to account for all of the damping effects
observed in the acquired MRE data, and thus, the reconstructed properties reflect an
apparent stiffness as interpreted by the underlying linear poroelastic model. Interestingly, the
effect appears to be uniform across the background suggesting homogeneous damping
characteristics in the tofu. In spite of the required assumptions, the improvement in image
quality over the linearly elastic property distribution is undeniable. The MRPE algorithm
shows great promise for matrix stiffness as a more consistent measure of the mechanical
properties in fluid saturated tissues. The findings presented here suggest that tissues
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exhibiting strong poroelastic characteristics are likely to be more appropriately described by
model equations that account for both their solid and fluid compartments.

The results from this study demonstrate that the poroelastic inversion algorithm is robust in
the presence of noise and able to provide reasonable, accurate estimates of the mechanical
properties and pore-pressure amplitude distributions in poroelastic media for an assumed
hydraulic conductivity varying over several orders of magnitude. While preliminary results
indicate hydraulic conductivity to the dominant parameter influencing the mechanical
behavior under the prescribed conditions, future contributions are likely to include a detailed
analysis of the algorithms sensitivity to a priori estimates of other experimentally derived
parameters including porosity and the apparent mass density. Further, given that MRPE
provides a noninvasive method for estimating pore-pressure variation during mechanical
excitation, future studies should investigate the effects of local changes in stiffness,
hydraulic conductivity, fluid content, hydrostatic pressure and pressure gradient on the
recovered pore-pressure distribution and its potential clinical utility as a new diagnostic
signature. One potential clinical application for this algorithm is in the differentiation of
cerebral atrophy from hydrocephalus. Both disease processes can exhibit an enlarged
ventricles, though cerebral atrophy is linked to degeneration of the periventricular white
matter, while hydrocephalus is be attributed to an increase in CSF pressure. MRPE may
offer the ability to distinguish between presentations by decoupling elastographic signals
due to changes in tissue structure from those associated with increased CSF pressure and/or
edema.

V. Conclusions
A 3D finite element-based poroelastic inversion algorithm has been developed to estimate
the mechanical properties of fluid-saturated media experiencing time-harmonic excitation.
MRPE has been introduced as a technique through which the mechanical properties of the
solid matrix and the time-harmonic pore-pressure distribution of a porous medium can be
estimated by modeling the complex mechanical interactions occurring between the solid and
fluid phases. The performance of the algorithm was tested through numerical experiments
using simulated data to probe its stability and sensitivity to the relevant model parameters.
The results indicate that the algorithm is robust in the presence of noise and is capable of
capturing accurate distributions of the underlying mechanical properties and time-harmonic
pressure field resulting from material vibration. Phantom experiments were performed using
soft silken tofu. The results show that linearly elastic assumptions are inadequate for
assessing the mechanical properties of tofu, whereas the poroelastic algorithm is able to
successfully characterize the shear modulus of both the background and inclusion.

The poroelastic reconstruction algorithm presented here is expected to facilitate the
computation of mechanical property distributions representative of the underlying solid
matrix in fluid-saturated tissue. Further, the approach offers a unique opportunity to probe
the relationship between tissue deformation and tissue pressure. While other mechanical
characteristics of tissue such as viscoelasticity are also likely to influence tissue
deformation, disease processes associated with cancer, hydrocephalus, and edema involve
changes in fluid content and/or fluid pressure which are likely to augment changes in tissue
composition.
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Fig. 1.
A flowchart representation of the subzone-based poroelastic inversion algorithm.
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Fig. 2.
Schematic drawing of the subzone distribution where the global domain (Γ) is decomposed
into a series of overlapping subdomains (Γz), involving both displacement and pressure
boundary conditions on every subdomain surface.
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Fig. 3.
(a) 3D tetrahedral finite element mesh used for analysis of a simulated poroelastic slab (10
cm × 7.5 cm × 4.5 cm) containing three stiffness inclusions (33 127 nodes, 186 624
elements). (b) A horizontal cross-section of the finite element mesh geometry showing the
relative size and location of three stiffness inclusions as well as the direction of actuation.
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Fig. 4.
An illustrative drawing of the cross-section of a tofu phantom (10 cm × 7.5 cm × 4.5 cm)
containing a 28.5 mm diameter cylindrical inclusion that passes vertically through center of
the slab.
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Fig. 5.
Interpolated shear modulus and pore-pressure amplitude results for a simulated phantom
with three stiffness inclusions. Reconstructions were performed on data with 0–5% Gaussian
white noise. Images are shown on the same scale and are given in units of [Pa].
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Fig. 6.
Mean recovered shear modulus values for the background and inclusion volumes for
reconstructions performed for the same displacement field corrupted by varying levels of
added noise (0–5%).
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Fig. 7.
Interpolated shear modulus and pore-pressure amplitude results obtained from the
poroelastic reconstruction of simulated data with assumed uniform hydraulic conductivity

values ranging between . Images are shown on the same scale and
are given in units of [Pa].
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Fig. 8.
MRE recorded motion (real-part) in each encoding direction for a single coronal slice
passing through a tofu phantom containing a cylindrical gelatin inclusion. Note that M, P,
and S refer to the frequency, phase, and slice encoding directions, respectively.
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Fig. 9.
MRE magnitude image and corresponding elastic (shear modulus and Poisson’s ratio) and
poroelastic (shear modulus, Poisson’s ratio, and pore-pressure) reconstructions of a tofu
phantom containing a cylindrical gelatin inclusion. Images are shown on equivalent scales.
Modulus and pore-pressure images and are given in units of [Pa]
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