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Abstract
Cardiac computed tomography (CT) has been improved over past years, but it still needs
improvement for higher temporal resolution in the cases of high or irregular cardiac rates. Given
successful applications of dual-source cardiac CT scanners, triple-source cone-beam CT seems a
promising mode for cardiac CT. In this paper, we propose two filtered-backprojection algorithms
for triple-source helical cone-beam CT. The first algorithm utilizes two families of filtering lines.
These lines are parallel to the tangent of the scanning trajectory and the so-called L lines. The
second algorithm utilizes two families of filtering lines tangent to the boundaries of the Zhao
window and L lines, respectively, but it eliminates the filtering paths along the tangent of the
scanning trajectory, thus reducing the required detector size greatly. The first algorithm is
theoretically exact for r < 0.265 R and quasi-exact for 0.265 R ≤ r < 0.495 R, and the second
algorithm is quasi-exact for r < 0.495 R, where r and R denote the object radius and the trajectory
radius, respectively. Both algorithms are computationally efficient. Numerical results are
presented to verify and showcase the proposed algorithms.
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I. Introduction
Thanks to the modern detection technique, projection data can now be collected on a 2-D
array of detectors [1], which is much faster than with the conventional single- or multi-row
detectors. The more detector rows we use, the larger the longitudinal coverage we have, and
the faster the data acquisition is for volumetric scanning. However, the detector array cannot
be too large in a cost and dose efficient way, and the mechanical rotation of an X-ray source
has already approached its limit. One alternative solution is to use multi-source computed
tomography (CT) architecture, which led to the emergence of Siemens' dual-source CT [2].
Given successful applications of dual-source cardiac CT scanners, triple-source cone-beam
CT (CBCT) seems a promising mode for cardiac CT [3].

For the dual-source scanner, the minimum rotation interval is 90° plus the fan angle α
compared to 180° + α in a third-generation geometry. Since the fan angle α is relatively
small, there is > 40% reduction in acquisition time. As a result, the dual-source scanner
reduces the data acquisition time to 0.35 s, yielding 83 ms temporal resolution with cardiac
gating.

There are major problems with current cardiac CT including dual-source CT [2]. Actually,
even in the favorable cases, retrospectively reconstructed cardiac images still suffer from
substantial motion blurring for patients who have high and irregular heartbeats because in
practice each projection sector covers a projection angular range of a substantial length.
Within such an angular range, the heart moves appreciably, especially when it is not in a
relative stationary phase. As a benchmark, we routinely achieve ∼0.3 mm spatial resolution
in spiral CT of the temporal bone where the motion magnitude is much less than that of the
heart [4], [5]. On the other hand, the spatial resolution with cardiac CT is at best in the
millimeter domain.

As a natural extension to dual-source CT, triple-source CT promises to bring temporal
resolution down to 0.2 s and hopefully to be as fast as electron-beam CT. Interestingly, for
helical cone-beam reconstruction [6], [7], the trinity (triple-source architecture) is better than
the duality (dual-source architecture) because the triple-source helical scan allows a perfect
mosaic of longitudinally truncated cone-beam data to satisfy the Orlov condition and yields
better noise performance than the dual-source counterpart [8].

Since the 1-D Hilbert transform can be obtained on a generalized PI-line/chord by
backprojecting the weighted differential projection data, which was first proposed by
Gel'fand and Graev [9] and generalized in the 2D SPECT case [10] and rediscovered in the
2D and 3D CT cases [11], we previously formulated a backprojection-filtration (BPF)
approach for triple-source helical CBCT [12] and a corresponding “slow” filtered-
backprojection (FBP) algorithm [13]. In this paper, we present two “fast” exact/quasi-exact
FBP algorithms in this important case. The algorithms are not specifically designed for
cardiac gating which is widely used in cardiac CT. However, the triple-source scanner
achieves a data acquisition speed three times faster than the conventional CT, thus the
temporal resolution is significantly increased and may be applied without gating in multiple
dynamic cases such as perfusion studies in which gating is generally not possible.

This paper is organized as follows. In Section II, we summarize the general reconstruction
formulae and the notations of the inter-PI lines and inter-PI arcs. In Section III, we analyze
the intersections of the plane through a reconstruction point and the inter-PI arcs associated
with the point. In Section IV, we derive the filtering directions and backprojection
coefficients for our first algorithm. In Section V, we present the second algorithm after
defining a different weight function. In Section VI, we analyze the percentage of the
incorrectly weighted Radon planes. In Section VII, we describe the numerical results to
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validate our algorithms. In Section VIII, we discuss the relevant issues and conclude the
paper.

II. Background Materials
A. Geometry of the Triple-Source Helical CBCT

Let f(x) be an object function to be reconstructed. Assume that this function is smooth and
vanishes outside the object cylinder

(1)

where r is the radius of the object cylinder and R the radius of the scanning cylinder on
which a scanning trajectory resides. In the Cartesian coordinate system (x1, x2, x3), the
triple-helix trajectories can be expressed as

(2)

where h > 0 is the pitch of each helix, and s ∈ ℝ is the rotation angle. Fig. 1 illustrates the
triple-source helical CBCT geometry.

Previously, we defined inter-helix PI-lines (for simplicity, we call them inter-PI lines
thereafter) and extended the traditional Tam–Danielsson window to the Zhao window in the
case of triple helices [14]. Specifically, for each source position yj(s), j ∈ {1, 2, 3}, the
corresponding Zhao window is the region on the surface of the scanning cylinder bounded
by the nearest helix turn of yj mod 3+1(s) and the nearest helix turn of y(j+i) mod 3+1(s), j ∈ {1,
2, 3}. In Fig. 2, we use Γ±1 and Γ±2 to denote the boundaries of the Zhao window and the
Tam–Danielsson window on the detector plane, respectively. In this paper, our algorithms
are implemented on flat-panel detectors. However, they can also be applied to curved
detectors. In these cases, the algorithms will use almost the same steps as described, for
example, in Noo's “Native geometry” paper [15]. In particular, they can be applied for both
flat and curved detectors without any rebinning.

B. Properties of the Inter-PI Lines and Inter-PI Arcs
Recall that an inter-PI line for yj(s) and yj mod 3+1(s), j ∈ {1, 2, 3}, is the line that (1)
intersects yj(s) at one point and yj mod 3+1 (s) at another point; and (2) the absolute difference
between the angular parameter values at the two intersection points is less than 2π [14]. We
already proved the existence and uniqueness of the inter-PI line in the following theorem
[14].

Theorem 1: Through any fixed x ∈ Ω, there exists one and only one inter-PI line for any pair
of the three helices defined by (2).

In the triple-helix case, there are three inter-PI lines for a fixed x ∈ Ω and corresponding
inter-helix PI-arcs whose end points are along the corresponding helices and share the
intersection points of the inter-PI lines. The three inter-PI arcs represent the source trajectory
arcs along which the sources illuminate the point x (Fig. 3).
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III. General Approach
A. Katsevich Scheme

In 2003, Katsevich proposed a general scheme for constructing inversion algorithms for
CBCT [16]. It can be stated as follows:

(3)

(4)

(5)

(6)

(7)

where Df(y, β) is the cone-beam transform of f, θ the polar angle in the plane perpendicular
to β(s, x), α(s, x, θ) a unit vector perpendicular to β(s, x), θm a point where φ(s, x, θ) is
discontinuous, n(s, x, α) a weight function, C a finite union of C∞ curves in ℝ3, −∞ < al<
bl< ∞, and ẏ(s) ≔ dy/ds.

The aforementioned general inversion formula can be applied to any trajectory that satisfies
Tuy's condition, but only when the weight function n(s, x, α) is well designed can the
inversion formula have a shift-invariant filtering structure. To derive fast exact FBP
algorithms for triple-source helical CBCT, our general approach involves the following key
concepts of and analyses on the inflection line, A−, T−, L-, and Bs-curves.

B. Inflection Line
On the detector plane, the boundaries of the Zhao window are expressed as

(8)
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where D is the distance between the detector and the source, s is the angular parameter
relative to the corresponding source position, Δs = −2/3π and Δs = −4/3π are for the top
and bottom boundaries respectively. Then

(9)

(10)

(11)

(12)

(13)

The inflection point exists when d2v/du2 = 0. Thus, we obtain su = 2.6053 and sd = 3.6779
when Δs = −2/3π and −4/3π. The slope of the tangent line at s is computed as

(14)

Because cos su = cos sd = −0.8596, the slope is the same (−0.1368h/R) at both inflection
points. For practical medical applications, it is common that rFOV≤ 0.5R, and we can include

a boundary limitation , which is shown as the vertical lines Γl and Γr in
Fig. 4. Now, the inflection lines (the tangent lines at sˆd and sˆu, where sˆd and sˆu are the
projection of y(j+1) mod 3+1(sd) and yj mod 3+1(su), j ∈ {1, 2, 3} on the detector plane) and the
boundary lines split the Zhao window into the following three regions: G1, G2 and G3. Only
the points in G1, and G3 can have tangent lines with Γ±1.

C. A-Curve and T-Curve
To construct an appropriate weight function, at first we must know how Radon planes
intersect with the trajectories. Recall that the number of intersection points only changes
when a Radon plane is tangent to the trajectory or contains one PI line/inter-PI line. Hence,
if we find all such Radon planes, we can determine the distribution of the intersection points.
Since each plane is uniquely determined by its normal vector, in the following sections we
use unit vectors instead of the Radon planes. Let us define several key notions introduced in
[17]. An A-curve consists of all unit vectors orthogonal to an inter-PI line. A T-curve
consists of all unit vectors
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(15)

where s belongs to an inter-PI arc. Actually, the A-curve represents all Radon planes
containing one inter-PI line, and the T-curve represents all Radon planes tangent to the
trajectory. Since there are three inter-PI lines and three inter-PI arcs for a fixed x, there are
accordingly three A-curves and three T-curves. Similar to [17], let us use spherical
coordinates (θ1, θ2) to describe these curves on the unit sphere

(16)

With the identification (θ1, θ2) ≅ ((θ1+π) mod 2π, π − θ2), each α corresponds to a unique
plane through x with the normal vector α.

As an example, the A-curves and T-curves of point x = (0.1, 0, 0) are illustrated in Fig. 5,
where R = 1, h = 2π. T1, T2, and T3 stand for the T-curves corresponding to the inter-PI arcs

, , and , respectively. Similarly, A1, A2, and A3 are for the A-curves

corresponding to the inter-PI lines , , and , respectively.

The A-curves and T-curves divide the surface of the unit sphere into several connected
domains, in each of which all the planes through x have the same number of intersection
points (IPs) with the inter-PI arcs of x. Given an object point and one source trajectory, the
number of IPs changes only when a Radon plane is tangent to the trajectory or contains an
endpoint of the trajectory. The A-curve represents all planes containing the endpoints of the
trajectory, and the T-curve represents all planes tangent to the trajectory. If we pick any
Radon plane and rotate it around one direction, the normal vector of this plane forms a curve
on the unit sphere. Clearly, only when this curve intersects with the A-curve or T-curve does
the number of IPs change. Thus, the A -curve and T-curve define the boundaries of different
domains in which the number of IPs is constant. The distribution of IPs over the inter-PI arcs
is listed in Table I.

To determine the distribution of IPs, we first pick a vector α(θ1, θ2) in each domain, and
then generate the plane through x and perpendicular to α(θ1, θ2), and compute numerically
the number of IPs.

By construction, a T-curve always starts from an A-curve and ends on another A-curve. It
can be seen from Fig. 5 that a T-curve is possibly not smooth at some point ac, but the limits
of unit tangent vectors at  and  are equal. Such a point ac is called a “cusp.” The cusp
indicates that the two vectors determine the same plane, and ac is the normal vector to that
plane. It has been proved in [17] that the cusp is equivalent to the osculating plane Πc(x)
which goes through , i ∈ {1, 2, 3}, is parallel to , , and contains x
(see Fig. 6). On the detector plane, this corresponds to a point where the projected boundary
has a point of zero curvature, i.e., the point of inflection [18], [19].

The diagram we plot in spherical coordinates deforms smoothly as a function of x. The new
diagram is equivalent to the old one if the distribution of IPs remains the same. An essential
change could happen when three boundaries intersect each other at one point, which is
called “critical event.” A “critical event” may happen in the following seven cases.

1. Three A-curves intersect at one point.

2. Three T-curves intersect at one point.
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3. Two A-curves and one T-curve intersect at one point.

4. One A-curve and two T-curves intersect at one point.

5. A T-curve becomes tangent to an A-curve at a point of nonsmoothness (i.e., cusp).

6. When the order of tangency (i.e., the zero derivatives of this order) at the beginning
of the T-curve is increased, the T-curve reemerges on the other side of the A-curve.

7. T-curve develops a smooth dent and becomes tangent to an A-curve.

From Lemmas 2–3, we know Case 1, 2, 4, 6, 7 do not occur for r < 0.495R and Case 5 does
not occur for r < 0.265R. Case 3 is possible. If Case 3 takes place, the tangency of T-curve
and A-curve will move across another A-curve, then one domain disappears. For example,
when x = (0.1, 0, 0) gradually changes to x = (0, −0.15, 0), in Fig. 5(d) the tangency of T3
and A2 will move across A3, and domain D10 disappears [see Fig. 7(a)]. Case 5 is possible
for r ≥ 0.265R. If it takes place, a T-curve will only intersect A-curves at the endpoints. That
is, the cusp of that T-curve and one domain disappear [see Fig. 7(b)].

D. L-Curve
The L-curve is used to split the domain D4 into subdomains, making the weight function n
continuous across all the A-curves. This is the key requirement, which will allow us to
develop efficient reconstruction algorithms (see Section IV below). Thus, the L-curve
should not go across an A-curve. Let us fix x and run s over the three inter-PI arcs, xˆ forms
a trajectory on the detector plane. Because at the endpoint of the inter-PI arc the line
connecting yi(s) and x happens to be an inter-PI line, xˆ always starts from one endpoint of
the inter-PI arc on the boundary of the Zhao window, and ends at the other one. Hence,
whatever the trajectory of xˆ is, part of the trajectory is in G2. In other words, xˆ will run
across one inflection line, then move in G2, and finally cross the other inflection line. Note
that xˆ on the inflection line indicates a plane containing the inflection line, i.e., a cusp in
one T-curve. From Lemma 3, the cusps always belong to the boundary of domain D4. Thus,
they can be used as the endpoints of the L-curve. A family of L-curves is formed as follows.
Run s over the three inter-PI arcs of x. If xˆ is in G2 and above sˆu where Γ+1 intersects Lit
(Fig. 4), find the plane through xˆ and sˆu. If xˆ is in G2 and below sˆd where Γ−1 intersects
Lib, find the plane through xˆ and sˆd. If xˆ is in G2 and between sˆd and sˆu, find the plane
through xˆ and parallel to the u-axis. Then, we can plot all the normal unit vectors of these
planes in the spherical coordinates (θ1, θ2). This gives us three L-curves. The corresponding
lines on the detector plane are called L -lines. Fig. 8 shows the L-curves on the diagram in
spherical coordinates (θ1, θ2), where L1, L2, and L3 denote the L-curves corresponding to

the inter-PI arcs , , and , respectively. As is seen from the above construction,
the L-curve always starts and ends on the cusps, and not defined for those parameter values
when xˆ is not in G2.

For r ≥ 0.265R, one or more cusps will disappear if “critical event Case 5” occurs, then the
L-curve may start from the intersection of T-curve and A-curve, and end at one A-curve.
Also, the L-curve may start from one cusp and end at one A-curve or start from the
intersection of T-curve and A-curve, and end at one A-curve. For example, see Fig. 9, L1
starts from the intersection of T3 and A2, and ends at the intersection of T2 and A2; L2 starts
from one point on A2, and ends at the cusp of T1; L3 starts from the cusp of T1, and ends at
one point on A2.

Whatever the endpoints of L-curves are, the L-curves intersects at one point, i.e., θ2 = π or 0
in the spherical coordinates (which corresponds to the plane containing x and parallel to the
x1 − x2 plane). Then D4 is split into several sub-domains. If the endpoints of L-curves are
cusps, by Lemma 5, each sub-domain contains only one A-curve. If not, small “line

Lu et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



segments” on A-curves may appear and the sub-domains may contain more than one A-
curve [see Fig. 9(b)].

E. Bs-Curve
A Bs-curve consists of all unit vectors perpendicular to x − yi(s), i ∈ {1, 2, 3}. Each
intersection of Bs- and A-curves corresponds to a plane containing an inter-PI line and yi(s).
Each intersection of Bs and T-curves corresponds to a plane tangent to an inter-PI arc and
containing yi(s). For example, pick x ∈ Ω with xˆ ∈ G2, xˆ is above L0, where L0 is the
projection of the helical tangent at the current source position. Denote L(θ) ≔ DP (s) ∩ Π(x,
α(s, x, θ)), where DP(s) is the detector plane corresponding to the source position s, and
L(θ) is the projection of the plane through x with the normal vector α(s, x, θ) (Fig. 10). As θ
increases, α(s, x, θ) ∈ β⊥(s, x) rotates clockwise on DP(s), and the following sequence of

events takes places. First, Π(x, α(s, x, θ)) intersects , and a pair of IPs is born. On the
unit sphere, this is seen as an intersection of Bs and A1, after which Bs enters D5 [Fig.

11(a)]. Second, Π(x, α(s, x, θ)) intersects  and another pair of IPs is born. On the unit
sphere, this is seen as an intersection of Bs and A3, after which Bs enters D11. Third, a swap
of two IPs takes place. On DP(s) this happens when θ = θ0, L(θ0) is parallel to the helical
tangent. On the unit sphere, this means that Bs is tangent to T1 at α0 = α(s, x, θ0). Fourth, Bs
exits D11 by intersecting T1. On DP(s) this takes place when L(θ0) is tangent to Γ+2. Finally,
Π(x, α(s, x, θ)) intersects the L-line. This will not change the number of IPs but it will be
useful for construction of the weight function. On the unit sphere, this is seen as an
intersection of Bs and L1.

The jumps across an A-curve can only be of two types: from a 1-IP domain to a 3-IP domain
and from a 3-IP domain to a 5-IP domain. Note that the Bs-curve is tangent from the inside
to T1, which means a swap of two intersection points at α = α0 where sgn(α0 · ẏ(s)) = 0
(see [17]). For a fixed s, if x is allowed to change slightly inside the Zhao window, the
tangency point will move from D11 to D5 across A3 (or from D11 to D6 across A1) [Fig.
11(a) and (b)]. If x projects into G1 or G3, the Bs-curve will pass not only through D5 (or
D6) and D11 but also through D7 and D12 [Fig. 11(c)]. The similar results can be obtained if
the source is on y2(s) or y3(s).

IV. First Fast FBP Algorithm
Now, we are ready to design our first fast FBP algorithm for triple-source helical CBCT. We
will start with specifying the weight function n(s, x, α). Then, we will determine the filtering
directions by finding the discontinuities of φ(s, x, θ) ≔ sgn(α · ẏ(s))n(s, x, α). Then, the
backprojection coefficients can be calculated according to (6). Once the filtering lines and
the backprojection coefficients are determined, we can use (3) to reconstruct the object.

A. Construction of the Weight Function n(s, x, α)
To have an efficient FBP structure, the weight function n(s, x, α) should be continuous
across all A-curves. Thus, the weight function can be defined as shown in Table II. The
values in Table II are the weights assigned to IPs. For example, in the D1 domain the Radon

plane has only one IP on the inter-PI segment . Accordingly, we assign weight 1 to this

IP and use “-” to indicate that there is no IP on the inter-PI segments , , and . In

the D11 domain the Radon plane has three IPs on , one IP on , and one IP on .

Thus, we assign weight 1 to one IP on  and weight 0 to all other IPs.

Lu et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. Discontinuity of sgn(α · ẏ(s))
To find the backprojection coefficients, let us pick a representative point in each area,
determine the discontinuities of φ(s, x, θ) ≔ sgn(α · ẏ(s))n(s, x, α), and extend the results
by continuity to the entire area. A discontinuity of sgn occurs only when a Bs-curve is
tangent to a T-curve from the inside. In other words, the Bs-curve does not go across the T-
curve, but stays on one side in a neighborhood of the point of tangency. On the detector
plane, L(θ) is parallel to the helical tangent for all xˆ ∈ G1 ∪ G2 ∪ G3. Hence, this gives a
family of filtering lines parallel to L0, where L0 is the projection of the helical tangent at
y(s). The swap of two IPs changes the weight from φ+ = 0 to φ− = 1. The backprojection
coefficient is computed as c0 = φ+ − φ− = (+1)(0) − (−1)(1) = 1 [Fig. 12(a)].

C. Discontinuity of n(s, x, α)
By construction, the weight function n is continuous across all inter-PI lines. A discontinuity
of n occurs only when a Bs-curve intersects a T-curve or an L-curve. Without loss of

generality, pick y1(s0) on . For xˆ ∈ G2, after the swap mentioned in the above
paragraph the weight at the current position is zero. Hence, when the Bs-curve passes
through a T-curve, i.e., from D11 to D4, n is continuous. Possible jumps of n may only occur
when a Bs-curve passes through an L-curve, i.e., from D43 to D41 or from D42 to D41 in Fig.
8. On the detector plane, this occurs when L(θ) overlaps the L-line of xˆ. Then, the
backprojection coefficients are computed as cl = φ+ − φ− = (+1)(1) − (+1)(0) = 1 [Fig.
12(b)]. For xˆ ∈ G1 ∪ G3, the Bs-curve will not enter D41. Instead, it passes through a
second T-curve twice, i.e., from D43 to D12 and from D7 to D1. From Table II, the jumps of
n may only occur in the latter intersection. On the detector plane, this happens when L(θ)
overlaps the line tangent to Γ±1. Then, the backprojection coefficients are computed as ct =
φ+ − φ− = (+1)(1) − (+1)(0) = 1.

D. Required Detector Area
Fig. 13(a) and (b) summarizes the filtering lines and the backprojection coefficients

discussed above. In these figures,  is the line parallel to L0 and Ll denotes the L-line. To
implement the proposed algorithm, the filtering lines cannot be truncated. Thus, the detector
size should be large enough to cover the area bounded by Γr, Γl, Lmax, and Lmin, where Lmax
and Lmin are the lines across the intersections of (1) Γl and Γ+1 and (2) Γr and Γ−1,
respectively, and parallel to L0 (Fig. 14). The required detector area is determined by two
factors: 1) the ratio of the pitch h and the scanning radius R and 2) the ratio of the object
support radius r and the scanning radius R. If R is fixed, the required detector area grows as
h or r increases.

V. Second Fast FBP Algorithm
Again, the design of our second fast FBP algorithm starts with specifying new weights
(Table III). By construction, n(s, x, α) is continuous across all inter-PI lines. More
importantly, a swap of two IPs takes place when a Bs-curve becomes tangent to a T-curve
[17], and n(s, x, α) changes from +1 to −1. Recall that the discontinuity of sgn(α · ẏ(s))
appears only when a Bs-curve is tangent to a T-curve from inside. Since both n(s, x, α) and
sgn(α · ẏ(s)) are discontinuous at that point, the function φ(s, x, θ) ≔ sgn(α · ẏ(s))n(s, x, α)
is continuous. Thus, the filtering operation along the tangent of the scanning trajectory is
eliminated.

A discontinuity of n can occur only when a Bs-curve intersects a T-curve or an L-curve.
Following the discussion in Section IV, jumps of n may occur when 1) a Bs-curve passes
through a T-curve, i.e., from D11 to D4 or from D4 to D12 in Fig. 11(a) and (c), and 2) a Bs-
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curve passes through an L-curve, i.e., from D42 to D41 or from D43 to D41 in Fig. 8. On the
detector plane, this gives two families of filtering lines: the lines tangent to Γ±2 or Γ±1 and
the L-lines. Note that the filtering lines tangent to Γ±1 are different from those for our first
fast FBP algorithm (Fig. 15), because the discontinuity of n(s, x, α) occurs on the different
side of the cusp. Then, the backprojection coefficients can be calculated as ct = φ+ − φ− =
(+1)(1) − (+1)(0) = 1 and cl = φ+ − φ− = (+1)(1) − (+1)(0) = 1.

The reconstruction formula for the second algorithm is very similar to that for the first
algorithm. The only difference lies in the selection of the filtering lines. For clarity, our
second fast FBP algorithm is illustrated in Fig. 16. Because the filtering paths along the
tangent of the scanning trajectory are eliminated, the required detector area is reduced by at
least 30% (Fig. 14).

VI. Analysis on the Quasi-Exactness
By Lemma 3, there are two types of “line segments” according to different critical events.
First, let us consider the “line segment” related to a critical event in Case 3. Recall that
before entering D4 the Bs-curve will be tangent to a T-curve. For the first algorithm, at the
tangency the weight n changes from 1 to 0, then it does not change whether the Bs-curve
enters D4 across an A-curve or a T-curve. For the second algorithm, if the weight n changes
from 1 to −1 at the tangency, then it will jump from −1 to 0 when the Bs-curve enters D4. If
the Bs-curve enters D4 across an A-curve [i.e., the “line segment”; see Fig. 7(a)], the FBP
structure is ruined. Thus, the critical event in Case 3 will only affect the second algorithm,
without damaging the FBP structure of the first algorithm. Then, let us consider the “line
segment” related to a critical event in Case 5, which only occurs when r ≥ 0.265R. From the
discussion in Section III.D such “a line segment” is the boundary of the one-IP and three-IP
domains. Hence, for both algorithms the weight n will jump from 1 to 0 if the Bs-curve
enters D4 across the “line segment,” and the FBP structure is ruined (if the exactness is to be
maintained. By sacrificing the exactness we retain the FBP structure). Consequently, the
first algorithm is theoretically exact for r < 0.265R and not exact for 0.495R ≥ r ≥ 0.265R,
and the second algorithm is not exact for r < 0.495R.

Since the algorithms are not always exact, we are interested in estimating what percentage of
the Radon planes is incorrectly calculated. If the Radon planes with approximate weighting
only have a small percentage, the algorithms can be considered quasi-exact, and we can still
reconstruct with high image quality.

First, let us consider the incorrectly weighted planes caused by the critical event in Case 3. It
appears in the area r < 0.495R. Let us fix x for r < 0.495R, denote the intersection of the
Radon plane and the detector plane as L(θ), θ ∈ [0, 2π], run s over the three inter-PI arcs,
and see what happens with xˆ and L(θ). Based on the discussion in Section III-E, for xˆ in
G2, if the critical event occurs, the Bs-curve will first intersect a T-curve, and then go cross
an A-curve. For example, in Fig. 11(a) the Bs-curve will first intersect T1, then enter D4
across A3. On the detector plane, this corresponds to that L(θ) intersects the tangent of Γ+2

before the inter-PI line  while L(θ) is rotated clockwise. Therefore, the Radon planes

between the tangent of Γ+2 and  are not exactly weighted. Because the slope of  is
positive and the slope of the tangent of Γ+2 is less than h/2πR, the percentage of the
incorrectly weighted Radon planes is less than ρ = β/π, where

, α = arctan(h)/(2πR) (see Appendix). It is common that h/
R < 0.2 in practical applications, hence ρ < 1.17%. For xˆ in G1 (G3), if the critical event
occurs, the Bs-curve will first go across an A-curve, and then over a T-curve. On the
detector plane, this corresponds to the case when L(θ) intersects the tangent to Γ+1(Γ−1)
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before the inter-PI line  while L(θ) is rotated clockwise. Hence, the Radon planes

between the tangent of Γ+1 (Γ−1) and  are not exactly weighted. Because the slope of

 is negative and the slope of the tangent of Γ+1(Γ−1) is more than −0.35h/R, the
percentage of the incorrectly weighted Radon planes is less than ρ = 2.57% for h/R = 0.2.

Then, let us consider the incorrectly weighted planes caused by the critical event in Case 5.
Recall that the L-curves are used to split the domain D4 into sub-domains, making the
weight function n continuous across all the A-curves, and the cusps are the starting and
ending points of the L-curves. If the endpoints of the L-curves are not the cusps, there will
be small fractions (or “line segments”) on the A-curves, making the weight function n
discontinuous across them and ruining the FBP structure of our algorithms. It possibly
occurs for r ≥ 0.265R. As discussed above, the Bs -curve will first enter a 1-IP domain from
a 3-IP domain across the “line segment,” and then pass through an L-curve. On the detector

plane, this corresponds to that L(θ) intersects the inter-PI line  before the L-line while

L(θ) is rotated clockwise. Recall that if the cusp is not in D4,  is possibly to the left of sˆ u

or  is to the right of sˆ d. Thus, the slope of  is always more than −0.35h/R. Because
the slope of the L-curve is never positive, the percentage of the incorrectly weighted Radon
planes is less than ρ = 2.57% for h/R = 0.2. On the other hand, based on the discussion on
Lemma 3, one or more cusps may possibly remain even when r ≥ 0.265R, which means that
less “line segments” related to critical events will appear in Case 5, and in fact more Radon
planes may be correctly weighted.

VII. Numerical Results
To verify and showcase our proposed fast FBP algorithms, numerical tests were performed
using the Clock phantom. This phantom consists of ellipses, as parameterized in Tables IV.
In the simulations, the origin of the reconstruction coordinate system was set to the center of
each phantom. The spherical phantom support was of 375 mm for the experiment. Three
sources were arranged uniformly along a circle with their corresponding detectors on the
opposite side. The source-detector distance was 1000 mm. Projections were generated from
1000 view angles while the sources and the detectors were constantly moved along three
helixes in one turn. The helix was of 750 mm in radius and 100 mm in pitch. The detector
plane consisted of 1300 × 200 detection elements of 1.0 × 1.0 mm2.

The implementation of our algorithms consists of the following steps.

Step 1) Differentiate each projection with respect to variable s.

Step 2) For each yi(s),i ∈ {1,2,3} perform the Hilbert transform of derivative data along
the given filtering directions on the corresponding detector plane.

Step 3) Backproject the filtered data on the inter-PI segments to reconstruct the object
point.

A more detailed description of the proposed algorithm is similar to [20] except for the
following differences: 1) in triple-helices geometry the filtered data are backprojected on
inter-PI segments; 2) there are two families of filtering lines for each algorithm so that each
point on the detector plane will be filtered twice. Since our algorithms allow shift-invariant
filtration, all results are in Cartesian coordinates directly, and there is no coordinate
transform like what we have used in the slow-FBP algorithm [13] or BPF algorithm [12].

The algorithms were coded in MATLAB and executed on a regular PC (Intel Core2 Duo
CPU 3.06 GHz, 4 GB RAM). Reconstructed images are shown in Fig. 17. Our numerical
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results show that in the case of r = 0.495R both two algorithms produced high quality
images.

VIII. Discussions and Conclusion
Although our previously published BPF algorithm for triple-source helical CBCT can indeed
produce excellent image quality, FBP algorithms (either “slow” or “fast”) are
computationally desirable for several reasons, such as being amendable for parallel
processing as discussed in [13]. In particular, while the computational structures of our BPF
algorithm and FBP algorithms are quite similar, the FBP algorithms avoid densely sampled
intermediate reconstruction in the PI-line-based coordinate system, and more importantly
they can reconstruct a region of interest (ROI) or volume of interest (VOI) much more
efficiently than the BPF counterpart. Note that ROI/VOI reconstruction is very common in
medical imaging. A related technology called “interior tomography” is being actively
developed to target this type of problems [21], [22]. Then, an interesting possibility would
be to develop tripe-source interior CBCT.

The proposed two fast exact/quasi-exact FBP algorithms for triple-source helical CBCT
have their advantages and disadvantages. From the perspective of exact reconstruction, the
first algorithm is more desirable than the second algorithm because it is not affected by
critical events in Case 3. However, in terms of efficient data acquisition, it requires a larger
detector area than the second algorithm. In the medical CT field, the rectangular detector
shape is most popular, and the helical pitch may be varied case by case. Therefore, it is
practically possible to have projection data for reconstruction using either or both of our two
fast FBP algorithms. A detailed comparison of these two algorithms should be done in terms
of image quality and radiation dosage. Other designs for fast FBP in the triple-source helical
CBCT are also possible.

One concern with triple-source CT is the increment in scattering artifacts, which was
addressed in our earlier paper for the BPF formulation [13]. Although the height of the Zhao
window for triple-source helical CT is one third of the Tam-Danielsson window, our
proposed fast FBP formulation requires additional data beyond the Zhao window. In this
case, the total dose delivered to the patient can be controlled to be comparable to that in the
single-source case, and the total amount of scattering would be similar as well. Another way
is to utilize source multiplexing so that not all the sources are on simultaneously. Other
scattering correction means, such as interior tomography [21], [22], may be applied as well.

In conclusion, based on our previous triple-source helical CBCT work and guided by the
Katsevich general reconstruction scheme, we have proposed two fast FBP algorithms for
triple-source helical CBCT. The proposed algorithms utilize the inter-PI line and inter-PI
arcs, and have a shift-invariant filtering structure. Unlike our slow-FBP algorithm
performing filtration spatial-variantly line by line, the proposed fast-FBP algorithms filter
projection data spatial-invariantly view by view, representing a significant computational
benefit. Since triple-source helical CBCT may triple temporal resolution, it seems a
promising mode for cardiac CT and other applications, and our proposed algorithms may
find applications in this context.
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Appendix

A. Auxiliary Lemmas
Let us fix a point x ∈ Ω and find its three associated inter-PI lines as shown in Fig. 3. Then,

we can select a source position , j ∈ {1, 2, 3} and determine how the inter-PI lines
project onto the corresponding detector plane. For simplicity, here and below the projection
of yj(s), j ∈ {1, 2,3} on a detector plane is denoted by Sˆ j.

Lemma 1: On a detector plane, the slopes of the projected inter-PI lines  and

 are always positive, and that of the inter-PI line , j ∈ {1, 2,
3} is always negative.

Proof: Without loss of generality, suppose the source position we select is y1(s0),

. By construction, , , and . Hence, the projections

of , and  and  are always to the left of those of , , and  respectively (Fig. 18). When

 changes, the point xˆ, i.e., the projection of x onto the detector plane, moves
inside the region G ≔ G1 ∪ G2 ∪ G3. Clearly, xˆ reaches its highest (resp., lowest) position
in the vertical direction when xˆ is at the intersection of Γl and Γ+1 (resp., of Γr and Γ−1).
Also, the vertical coordinates at these points are υmax = 1.3794(Dh)/(2πR) and υmin =
−1.3794(Dh)/(2πR), respectively. Moreover, the lowest point on Γ+2 and the highest point
on Γ−2 are  and , respectively. Evidently,

 and . Since  and  are to the left of  and , the slopes of the

inter-PI lines  and  are positive for all xˆ in G.

As follows from the definition in [14], the inter-PI line  satisfies:

(17)

where G2 and , . Let

(18)

where r0 ∈ [0, 0.495R] and μ0 ∈ [0, 2π]. We have

(19)

Then, (19) can be rewritten as

(20)
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When  is fixed and r0 is reduced,  decreases. Therefore, the right
side of (20) reaches its maximum or minimum when r0 is maximized, i.e., at r0 = 0.495R.
Those maximum and minimum values can be numerically calculated [Fig. 19(a)], and we
have

or

(21)

Next we prove that  implies

(22)

where υ1(s) = (Dh)/(2πR)(s – 4π/3)/(1 – cos s) and υ2(s) = (Dh)/(2πR)(s–2π/3)/(l–cos s).
Fig. 19(b) shows the function Φ(s) = 1 – cos s – (s – 4/3π)sin s in the range s ∈ (0,2π),
demonstrating that υ̇1(s) is always positive. Hence  is monotonically increasing.

Let us fix  and plot the function  [Fig. 19(c)].

Clearly, this function is always positive in the range . Note that s =

4.1773 + s0 is the intersection of Γl and Γ+1 and  cannot be to the left of this point
(otherwise, xˆ is outside G).

Equation (22) indicates that  is always lower than  in the vertical direction. Since  is to

the right of , the slope of the inter-PI line  is always negative. Due to symmetry, the

other two cases  and  can be handled similarly. This finishes the proof.

Lemma 2: A T-curve cannot be tangent to an A-curve at an interior point of T.

Proof: The interior point of T-curve is any point of the T-curve except an endpoint. It has
been proved in [17] that a T-curve is smooth everywhere, except possibly at a cusp. Let , i
∈ {1, 2,3} be the point where the cusp occurs. Suppose a T-curve is tangent to an A-curve at
α(s). If , where ,  are the endpoints of the T-curve, then the osculating plane
Πc(x) intersects the helix yi(s) at only one point and it contains one inter-PI line. By
construction, ΠC(x) intersects the detector plane at the asymptote of the Tam-Danielson
window boundary and xˆ belongs to the asymptote. Connecting xˆ and , xˆ and  we get
two inter-PI lines. Clearly, ΠC(x) will not contain any of them. By Lemma 1, the third inter-
PI line has a negative slope, thus it will not overlap the asymptote. Hence, ΠC(x) will not
contain it. Consequently,  and T-curve is smooth in a neighborhood of α(s). Let θ be

the polar angle for the great circle . Then, the A-curve
consists of all the unit vectors α1(θ) ∈ (x – yi(sa))⊥. Clearly, α̇1(θ) is perpendicular to α1(θ)
and (x – yi(sa)). By construction, the T-curve is tangent to the A-curve at α(s). Hence, α̇(s)
is parallel to α̇(θ). That is, α̇(s) is perpendicular to α1(θ) and (x – yi(sa)). Because α̇(s) is

also perpendicular to  is parallel to (x – yi(sa)) and st = sa,
which contradicts the assumption that st is an inner point of the T-curve. This finishes the
proof.
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Lemma 3: Case 1, 2, 4, 6, 7 do not occur for r < 0.495R and Case 5 does not occur for r <
0.265R.

Proof: Cases 1 and 2 are impossible because they mean that there will be a plane containing
three inter-PI lines or tangent to three inter-PI arcs.

In Case 4, there will be one plane Π containing one inter-PI line and tangent to two inter-PI

arcs. Assume this inter-PI line is , let us pick a point  on yi(s) and denote L = Π ∪
DP (s0). By construction, on the detector plane xˆ is on Γ+1 and it overlaps . Then, L may
be tangent to Γ+1 and Γ+2 or Γ+1 and Γ−1, see Fig. 20. Because the points of tangency are on

the inter-PI arcs, the endpoint  is to the left of the tangency for case A and is to the right

of the tangency for case B. Connecting  and xˆ (or  and xˆ) we find that the slope of the

inter-PI line  is negative. By Lemma 1, these two cases are impossible.

In Case 5, there will be one plane containing one inter-PI line and tangent to one inter-PI arc
at the inflection point. Thus, the inter-PI line on the detector overlaps the inflection line, i.e.,

 overlaps Lit when,  and , where su is difference between  and . Let us

look at (20). When  is fixed, the absolute value of  is monotonically

decreasing when ro is reduced. Then, the range of  is narrowed. In other words, the

difference between  and  becomes closer to π. Case 5 occurs when . If we want

to exclude Case 5, the range of  cannot cover the value su = 2.6053. Hence, the

minimum range of  is . That is,

 and  reaches its extreme when r0 = 0.265R.

From (20) and (21) we have  only for r ≥ 0.265R, which contradicts our condition.
Hence, Case 5 is impossible for r < 0.265R.

In Case 6, a T-curve will intersect one A-curve twice before meeting a cusp. Suppose this

takes place at inter-PI arc . Let us pick a point  on y1(s) and see what happens on
the detector plane when s moves. By construction, the plane II containing ẏ1(s) and x
intersects the detector plane at the line L which is parallel to the helix tangent across xˆ. At

, xˆ is on Γ+1 and Π contains inter-PI line . As s moves along y1(s), xˆ moves
downwards. Notice that L is parallel to the asymptote of the Tam–Dannielson window, so it
will not intersect Γ−2 provided that xˆ moves across the asymptote, at where the cusp occurs.

Hence, n will not contain the inter-PI line  and Case 6 is impossible.

By Lemma 2, Case 7 is impossible. This finishes the proof. Let G21 be the area bounded by

Lit,  and the line υ = Dh(su – (2)/(3)π)/[2π R(l – cos su)] (i.e., the line across  and

parallel to the u -axis) and G22 the area bounded by Lib,  and the line υ = Dh(sd – (4)/

(3)π)/[2πR(l – cos sd)] (i.e., the line across sˆ d and parallel to the u-axis, see Fig. 21).  and

 are the vertical lines across Sˆ d and sˆ u. They correspond to the boundary condition r0 =
0.265R.

Lemma 4: The inflection point sˆ u (sˆ d) is inside the inter-PI arc when xˆ is in G21(G22).

Proof: By Lemma 3, any point in the area r < 0.265R has three cusps in the diagram. Note
that there is one IP in each inter-PI arc within D4. Since all three cusps are in D4, an
osculating plane of one inter-PI arc intersects two other inter-PI arcs exactly once at one
point. Assume that this osculating plane Πc contains x. Consider Πc of the second inter-PI
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arc (i.e., of y2 (s)). Let  be the point where it intersects the first inter-PI arc (i.e., on y1 (s)).
Let us move s along the first inter-PI arc and observe what happens with xˆ on the detector.

When , xˆ enters the Zhao window through Γ±1. When , xˆ belongs to Lit. As

follows from the diagram, the point su must be inside the second inter-PI arc, i.e., between 

and . As the point s moves further, the difference  becomes smaller, and the point 

moves to the right of sˆ u along Γ+1. The inter-PI line  has a positive slope. Thus, as long
as xˆ is inside G21, the point  is always to the left of sˆ u. The case where xˆ is in G22 can
be similarly treated. This proves Lemma 4.

Lemma 5: An L -curve never intersects an A -curve for r < 0.265R.

Proof: If an L- and A -curves intersect, an L -line through xˆ overlaps the inter-PI line. Let

us pick one point on the inter-PI arc  and consider the slope of the inter-PI line on the
corresponding detector plane. By construction, an L-curve always starts from a cusp of a T-
curve and ends on a cusp of another T-curve. For the osculating plane ΠC, its intersection
with the detector plane is the line tangent to Γ+1(Γ−1) at sˆ u(sˆ d). By Lemma 4, the
endpoints of the inter-PI arc on Γ+1(Γ−1) are on different sides of sˆ u(sˆ d), and one of them
on the right (left) side is also an endpoint of the inter-PI line for helices y2(s) and y3(s), and

denoted as  in Fig. 22.

If xˆ is in G2 and above sˆ u, we can have the L-line by connecting xˆ,sˆ u, and the inter-PI

line by connecting xˆ, . If xˆ is in G2 and below Sˆ d, we can have the L-line by connecting
xˆ,sˆ d, and the inter-PI line by connecting xˆ, . Clearly, in any case the slope of L-line is
between zero and the slope of the inter-PI line. That is, the L-line will not overlap the inter-
PI line. For other xˆ, the L-line is parallel to the u axis. By Lemma 1, it is always between
two inter-PI lines and will not overlap with any of them.

For the point on other inter-PI arcs, the situation is the same. This finishes the proof.

B. Derivation of Formulae in Section VI
The angles in the detector plane are not equivalent to that in the spherical coordinate system
because the detector plane is parallel to the x3-axis while the plane in spherical coordinates
is perpendicular to yi(s) – x, i ∈ {1,2,3}. To estimate the percentage of the incorrectly
weighting planes, a transformation is necessary.

Let S = (0, 0, R) denote the source position, x one point in the sphere centered at o with
radius r, A = (d, 0,0) the projection of x, B and C two points on the detector plane, and θ the
angle between lines AB and AC. The plane perpendicular to the line SA intersects the lines
SB and SC at P1 and P2, respectively. The angle φ between lines AP1 and AP2 is what we
need (see Fig. 23).

By construction

(23)
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(24)

where B = (d + d cos α, d sin α,0), C = (d + d cos(α + θ), d sin(α + θ), 0), c1 and c2 are two
nonzero constants. Solving (23) and (24), we have

(25)

(26)

(27)

where k = d/R.

Computing the derivative of (27) we find that φ reaches its maximum at α = −θ/2 or α = −θ/
2 + π. In this case, (27) becomes

(28)

For a fixed θ, cos φ is monotonically decreasing while k is increased. Since r < 0.495 R, k
reaches its maximum  when the line OX is perpendicular to the line SA and its
minimum 0 when the line OX is parallel to the line OS. Hence,

or
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Fig. 1.
Geometry of triple-source helical CBCT. Three X-ray sources are rotated around the x3-axis
along the helices y1(s), y2(s), and y3(s), respectively. The helices y1(s), y2(s), and y3(s) are
on a cylinder of radius R. An object to be reconstructed is confined within a cylinder of
radius r, where r < R. Parameter h denotes the pitch of each helix. The inter-helix distance
along the x3-axis is h/3.
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Fig. 2.
Illustration of the Zhao window bounded by solid lines Γ±1 and the Tam–Danielsson
window bounded by dashed lines Γ±2. The detector plane is represented by the Cartesian
coordinate system (u, v).
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Fig. 3.

Inter-PI arcs (thick solid curve-arcs) , , and  for x.
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Fig. 4.
Decomposition of the Zhao window into the regions G1,G2, and G3. Lit, and Lib are the
inflection lines at sˆu and sˆd, respectively.
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Fig. 5.
Visualization of the domains delimited by the A-curves and T-curves on the surface of the
unit sphere. (a) A-curves and T-curves in spherical coordinates for x = (0.1, 0, 0); (b), (c),
and (d) the zoom-in versions of the areas bounded by the bottom left, bottom right, and top
circles in (a), respectively.
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Fig. 6.
Illustration of the osculating plane Πc.
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Fig. 7.
(a) Close-up view of the diagram for x = (0, −0.15, 0). (b) Close-up view of the diagram for
x = (0, −0.3, 0).
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Fig. 8.
Illustration of L-curves in the spherical coordinates (θ1, θ2).
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Fig. 9.
L-curves for x = (0.2, −0.3, 0). (a) is the full diagram shows different regions spit by A–, T-
and L-curves; (b), (c), (d) are the zoom-in versions of the regions bounded by the up, bottom
right, and bottom left circles in (a).

Lu et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Domains on the detector plane.
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Fig. 11.
(a) Bs-curve is tangent to a T-curve in D11 for the source on y1(s). (b) Bs-curve is tangent to
a T -curve in D5 for the source on y1(s). (c) Bs-curve passes across the second T-curve when
the source on y1(s).
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Fig. 12.
(a) Determination of c0. (b) Determination of cl.
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Fig. 13.
(a) Filtering lines in the case of xˆ ∈ G1 ∪ G3 for the first fast FBP algorithm. (b) Filtering
lines in the case of xˆ ∈ G2 for the first fast FBP algorithm.
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Fig. 14.
Required detector area is bounded by Γr, Γl, Lmax, and Lmin for the first algorithm, and by

Γr, Γl, , and  for the second algorithm.
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Fig. 15.
Filtering lines for our two fast FBP algorithms when xˆ is above Lit · Lt2 and Lt1 are for the
first and second algorithms, respectively.
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Fig. 16.
Illustration of the second fast FBP algorithm.
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Fig. 17.
Reconstructed images of the Clock phantom with r = 375 mm using (a) the first fast FBP
algorithm and (b) the second fast FBP algorithm. Images were reconstructed at x3 = 0 mm
and displayed in [0.95, 1.05]. Additionally, (c) and (d) show the differences between the
reconstructed images and the ground truth respectively in the display window [−0.05,0.05].
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Fig. 18.

Projected inter-PI lines ,  and  on the detector plane. Thick curve segments
denote the inter-PI arcs.
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Fig. 19.
(a) Plot of (20) with r0 = 0.4951R. (b) Plot of Φ(s) over the range s ∈ (0, 2π); (c) Plot of Ψ

 over the range .
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Fig. 20.
Possible locations of the “critical event” for Case 4.
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Fig. 21.
Illustration of the regions G21 and G22.
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Fig. 22.
Relationship among the inter-PI line La, L-line Ll and inflection line Lit(Lib). (a) xˆ in G2
and above sˆ u, and (b) xˆ in G2 and below sˆd.
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Fig. 23.
Angular transformation from a spherical coordinate system to a detector.
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TABLE I

Distribution of IPs on Each of the Domains Delimited by the A-Curves and T-Curves on the Surface of the
Unit Sphere. Symbol “-” Indicates no IP on the Corresponding Inter-PI Arc

D1 1 - -

D2 - 1 -

D3 - - 1

D4 1 1 1

D5 2 1 -

D6 2 - 1

D7 1 2 -

D8 - 2 1

D9 1 - 2

D10 - 1 2

D11 3 1 1

D12 1 3 1

D13 1 1 3
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TABLE II

Weight Function for the First Fast FBP Algorithm

D1 +1 - -

D2 - +1 -

D3 - - +1

D5 +1,0 0 -

D6 +1,0 - 0

D7 0 +1,0 -

D8 - +1,0 0

D9 0 - +1,0

D10 - 0 +1,0

D11 +1,0,0 0 0

D12 0 +1,0,0 0

D13 0 0 +1,0,0

D41 +1 0 0

D42 0 +1 0

D43 0 0 +1
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TABLE III

Weight Function for the Second Fast FBP Algorithm

D1 +1 - -

D2 - +1 -

D3 - - +1

D5 +1,-1 +1 -

D6 +1,-1 - +1

D7 +1 +1,-1 -

D8 - +1,-1 +1

D9 +1 - + 1,-1

D10 - +1 +1,-1

D11 -1,+1,-1 +1 +1

D12 +1 -1,+1,-1 +1

D13 +1 +1 -1,+1,-1

D41 +1 0 0

D42 0 +1 0

D43 0 0 +1
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