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Abstract
The evaluation of the quality of segmentations of an image, and the assessment of intra- and inter-
expert variability in segmentation performance, has long been recognized as a difficult task. For a
segmentation validation task, it may be effective to compare the results of an automatic
segmentation algorithm to multiple expert segmentations. Recently an Expectation Maximization
(EM) algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) was
developed to this end to compute both an estimate of the reference standard segmentation and
performance parameters from a set of segmentations of an image. The performance is
characterized by the rate of detection of each segmentation label by each expert in comparison to
the estimated reference standard.

This previous work provides estimates of performance parameters, but does not provide any
information regarding the uncertainty of the estimated values. An estimate of this inferential
uncertainty, if available, would allow the estimation of confidence intervals for the values of the
parameters. This would facilitate the interpretation of the performance of segmentation generators,
and help determine if sufficient data size and number of segmentations have been obtained to
precisely characterize the performance parameters.

We present a new algorithm to estimate the inferential uncertainty of the performance parameters
for binary and multi-category segmentations. It is derived for the special case of the STAPLE
algorithm based on established theory for general purpose covariance matrix estimation for EM
algorithms. The bounds on the performance parameters are estimated by the computation of the
observed Information Matrix. We use this algorithm to study the bounds on performance
parameters estimates from simulated images with specified performance parameters, and from
interactive segmentations of neonatal brain MRIs. We demonstrate that confidence intervals for
expert segmentation performance parameters can be estimated with our algorithm. We investigate
the influence of the number of experts and of the segmented data size on these bounds, showing
that it is possible to determine the number of image segmentations and the size of images
necessary to achieve a chosen level of accuracy in segmentation performance assessment.
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I. INTRODUCTION
The evaluation of image segmentation has long been recognized as a difficult problem.
Many methods have been proposed in the literature to deal with it. These can be classified
into two groups. First, the evaluation can be based on distances between surfaces extracted
from the segmentations. For example, these can be the Hausdorff distance [1] or a mean
distance between the two surfaces [2]. The other class of measures contains voxel-based
measures, i.e. overlap measures based on voxelwise computations. Among those, the Dice
similarity coefficient [3] or the Jaccard similarity coefficient [4], [5] have been widely used
to measure the overlap between two segmentations. These two classes of measures have
their advantages and drawbacks. Both may be used to provide insight into the quality of a
segmentation [6] and to allow the comparison of segmentations. However, when validating a
segmentation algorithm, using only one expert segmentation as the reference standard may
be inappropriate as any individual manual segmentations have large or small errors.

In this article, we therefore focus on using several expert segmentations to estimate a
reference standard and utilize it for the comparison of segmentations (from experts or
algorithms). One algorithm for this, called STAPLE [7], uses an Expectation-Maximization
(EM) algorithm to estimate iteratively, from a set of J expert segmentations, the hidden
reference standard segmentation and performance parameters for each segmentation. These
parameters characterize the agreement of a given expert with the reference standard,
expressed as rates of detection of labels.

The STAPLE algorithm generates only point estimates of the performance parameters, and
provides no information about the amount of uncertainty in the values of the estimates of the
parameters. Precise knowledge of the inferential uncertainty would enhance our ability to
interpret the performance of segmentation generators, and could be used to determine if
sufficient data size and number of segmentations have been obtained to precisely
characterize the performance parameters. For example, consider planning to evaluate a new
segmentation algorithm for a new data set or patient population. A reference standard for
assessing the segmentation algorithm could be developed using repeated interactive
segmentation of some images of a data set. When designing such an experiment, an estimate
of the inferential uncertainty, if available, would describe confidence intervals for the values
of the parameters and provide a way to determine how many experts should interactively
delineate the data set and how many voxels or slices should be delineated so that the
STAPLE estimates of the parameters are precise enough (i.e. the confidence intervals are
tight). Such confidence intervals indeed describe the certainty with which we know the
value of the parameter. A different concept is the confidence interval for rater performance,
which describes the range of performance we expect to see across repeated segmentations by
the same rater. If the inferential uncertainty of the values of performance parameter
estimates are very small, then a confidence interval for rater performance can be estimated
simply as the sample variance over repeated segmentations.

We propose to estimate the covariance matrix of the performance parameters from STAPLE
by computing the observed Information Matrix. This computation has been described in the
general EM framework [8]. In this paper, we build upon [9] and derive, both for binary and
multi-category segmentations, analytic closed form expressions necessary to compute the
covariance of the performance parameters obtained from STAPLE. We then demonstrate
factors influencing the uncertainty in the estimated performance parameters with simulated
segmentations. Then, we apply our algorithm to characterize the segmentations of brains of
newborn infants, comparing the binary and multi-category expressions, showing that our
algorithm provides guidance for the design of future validation studies.
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II. METHOD
A. The STAPLE Algorithm

We first recall briefly the principle of the STAPLE algorithm [7]. It uses as an input a set of
segmentations from J experts (either manual delineations or automatic segmentations).
These segmentations can either be binary segmentations or multi-category segmentations,
i.e. several structures are delineated each one getting a specific label. This information is
available as decisions dij, indicating the label given by each expert j for each voxel i. The
goal of STAPLE is then to estimate both a reference standard segmentation T, and
parameters θ = {θ1, …, θj, …, θJ} describing the agreement between the experts and the
reference standard. Each of the parameters θj is an L × L matrix, where L is the number of
labels in the segmentation, and θjs’s is the probability that the expert j gave the label s’ to a
voxel i when the label of the reference standard is s, i.e. θjs’s = P(dij = s’ǀTi = s).

If the reference standard was known, then estimating the performance parameters for each
expert would be straightforward. However, as this reference standard is unknown, an
Expectation-Maximization approach [10], [8] is used to estimate T and the expert
performance parameters. The EM algorithm proceeds by iterating two steps:

• E-Step: Compute the expected value of the complete data log-likelihood Q(θǀθ(k))
knowing the expert parameters at the preceding iteration: θ(k). Evaluating this
expression requires the knowledge of the posterior probability of T: P (TǀD, θ(k)),
which is sufficient in this case to perform the Maximization step.

• M-Step: Estimate the performance parameters at iteration k + 1, θ(k+1) by
maximizing the complete data log-likelihood, using the current estimate of the
reference standard.

B. Covariance and Information Matrix
1) General Maximum-Likelihood Case—We are interested in the computation of
confidence intervals, illustrated on Fig. 1, on the performance parameters estimated from

STAPLE, i.e. a lower bound and upper bound on each estimated parameter . This relies
on the computation of the covariance matrix Σ(θ) of the expert parameters. This is done via
the computation of the Information Matrix I(θ) of the parameters obtained after convergence

of the Expectation Maximization algorithm, .

If all the data was known, the computation of the Information Matrix would be simply the
matrix of the second derivatives of the log-likelihood function, estimated at :

(1)

Then, the covariance matrix is obtained using the well-known result [11] Σ(θ) = I−1(θ),
under the assumption of a large number of samples:
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(2)

The confidence bounds of the estimated parameters are in turn computed from these values

by assuming that  follows a Normal distribution . A two-sided 100(1
– α)% confidence interval can then be constructed as

(3)

where z1–α/2 corresponds to the z-score related to the desired confidence interval (for a 95%
confidence interval, z1–α/2 = 1.96). Moreover, if the Normal assumption does not hold,
which may be the case when the performance parameter values are very close to 0 or 1, a
function g (such as the Box-Cox transform [12] or the logit function, i.e. logit(x) = log(x) –
log(1 – x)) may be used to transform the parameters to obtain a Normal distribution. Assume

that  follows a Normal distribution  Then, the confidence

interval can be estimated as . The covariance
matrix computed with Eq. (2) may then be used to compute the confidence intervals:

 [13] (page 626).

2) Estimating the Variance-Covariance Matrix in Missing Data Problems—In
the case of an EM algorithm such as STAPLE, the hidden variables are unknown and their
value may only be estimated. Therefore, only the observed Information Matrix I(θ) can be
computed. The expression of I(θ) has been derived for a general EM algorithm in [8] (page
100).

We proceed by first computing the expected value of the complete data Information Matrix
Ic(θ) using the expected complete data log-likelihood Q(θǀθ(k)) estimated in the EM
algorithm. Then, to account for the uncertainty from the missing data, the expected missing
data Information Matrix Im(θ) is subtracted from Ic(θ) to obtain the observed Information
Matrix, i.e. I(θ) = Ic(θ) – Im(θ). These two matrices (Im and Ic) are computed from Q(θǀθ(k))
once the estimates of the parameters have converged, i.e. when θ(k+1) ≈ θ(k). We now
present the derivation of these two terms for STAPLE in the binary case, i.e. when only one
structure and the background were delineated by each expert. Then, we present an extension
of the observed Information Matrix computation to the multi-category case.

C. Computation of the Observed Information Matrix in the Binary Case
In the binary case, each expert has delineated one structure by attributing the value 1 to a
voxel belonging to the structure and 0 otherwise (background). In this particular case, the θ
parameters can be represented entirely by two parameters for each expert j: pj = P(dij = 1ǀTi
= 1) and qj = P(dij = 0ǀTi = 0). pj is also known as the sensitivity of the expert j while qj is
also known as the specificity. To simplify as much as possible the notation for the following
equations, we use the general notation θjs’s for the performance parameters, keeping in mind
that only pj = θj11 and qj = θj00 are the meaningful parameters (θj01 and θj10 being
completely determined as θj01 = 1 – pj and θj10 = 1 – qj). Then, the EM algorithm is used to
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compute iteratively the expected value of the complete data log-likelihood function
Q(θǀθ(k)):

(4)

where θj,dij,s corresponds to either θj0s or θj1s depending on the decision dij of the expert j at

the voxel i.  is the probability that, at iteration k, the voxel i of the reference standard T
is labeled as 1. Using this function, we now derive the observed Information Matrix of the
parameters θ.

1) Derivation of the Expected Complete Data Information Matrix—This matrix,
denoted Ic(θ), is expressed as the second derivatives of the expected value of the complete
data log-likelihood function [8], i.e.

(5)

Eq. (4) and Eq. (5) demonstrate that the non-diagonal terms of Ic are zero as the parameters
are independent of each other. Therefore, Ic is a diagonal matrix composed of the following
terms:

(6)

(7)

2) Derivation of the Expected Missing Data Information Matrix—Once Ic has been
computed, the observed Information Matrix is obtained by subtracting from Ic the expected
missing data Information Matrix Im. Computing this matrix is generally more difficult than
computing the expected complete data Information Matrix. When no analytical expression
can be derived, it can be estimated using the EM algorithm itself to compute the Jacobian
matrix via numerical differentiation (see [11], [8]). In the general case of any EM algorithm,
an analytic expression of Im may also be obtained by the following equation [14s] if the
required derivatives exist:

(8)

In the case of the STAPLE algorithm, the expected value of the complete data log-likelihood
function Q(θǀθ(k)) can be differentiated. We have therefore derived the analytic expression
of Im elements as follows:

(9)

Commowick and Warfield Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where t and s are either 1 or 0, to derive the expressions for pj and qj. This expression gives

Im as a function of the derivatives of the probabilities of the reference standard . These

 have been derived by Warfield et al. [7] as:

(10)

For simplicity of notation, we will consider that the prior probability f(Ti = 1), respectively
f(Ti = 0), is constant over the entire image and will abbreviate it by π1, respectively π0.
However, all the derived expressions are still valid for spatially varying prior probabilities
by replacing πm in the following equations by πm(i). Knowing the expression of Wi, its

derivative with respect to the expert parameters  and  can be derived:

(11)

where s is either 0 or 1. Therefore, the expected missing data Information Matrix, defined in
Eq. (8), can be computed by substituting Eq. (11) into Eq. (9). In practice, these values are
computed easily by evaluating the different expressions at each voxel.

D. An Extension to Multi-Category Labels
We now present an extension of the computation of the observed Information Matrix to the
multi-category STAPLE. We therefore now consider that each expert delineates L structures
labeled from 0 to L – 1. Each expert is also associated with an L×L matrix of parameters: θj,
as explained in Section II-A. In this case, the expected value of the complete data log-
likelihood function Q is expressed as follows (see [7]):

(12)

As in the binary case, the performance parameters are related by the constraint that Σs’θjs’s =
1. This constraint on the sum of the parameters on each row of the performance parameter
matrix ensures that for L labels, there are only L–1 free variables. In the binary case, it was
straightforward to select the sensitivity and specificity parameters as the variables to
compute the bounds for. In the multi-category case, it is again possible to compute bounds
on the L × (L – 1) free parameters in each row, but this implies selecting one of the variables
in each row as a fixed parameter entirely determined by the row constraint. Rather than
arbitrarily select any one parameter in each row in this way, we have preferred to estimate
the bounds for all L × L variables and to not utilize the row sum constraint to reduce the
number of parameters.

1) Derivation of the Expected Complete Data Information Matrix—The analytical
expression of Ic(θ) can be obtained from Eq. (5) and is expressed from the second
derivatives of the expected value of the complete data log-likelihood Q with respect to θ.

Commowick and Warfield Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Again, only the diagonal terms are not zero due to the independence of the performance
parameters and Ic is therefore composed of the terms:

(13)

2) Derivation of the Expected Missing Data Information Matrix—Once the
expected complete data Information Matrix is derived, we need to subtract the expected
missing data Information Matrix from it to obtain the observed Information Matrix of the
parameters. We derived the analytical expression of Im from the general equation proposed
in [14] for a general EM algorithm (rewritten in Eq. (8)). In the multi-category case, these
second derivatives are expressed as follows:

(14)

As for the binary case, this requires to derive the expression  for all parameters. First,

we know from [7] the expression of  si as a function of θ(k) parameters:

(15)

where πs correspond to the prior probability of having the structure s. From Eqs. (14) and
(15), a first observation can be made on the derivatives to be computed: if din ≠ t’, then

. Otherwise, two cases arise: t = s (both the numerator and denominator depend on

) and t ≠ s (only the denominator depends on ). These two cases lead to the following
expressions. If t = s, the derivative is expressed as follows:

(16)

If t ≠ s, then the equation changes slightly:

(17)
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By substituting Eqs. (16) and (17) into Eq. (14), we are then able to compute the missing
data Information Matrix and therefore the observed Information Matrix of the parameters.

3) Relationship between Multi-Category and Binary Segmentation Formulation
—As mentioned above, the assumption of independence between the parameters is not true
because of the constraint on some parameters to sum up to 1: Σs’ θjs’s = 1. There does not
exist to our knowledge a way to take into account this interdependency in the computation
of the observed Information Matrix. The two derivations presented in this paper are
therefore different from each other. However, these two expressions are still related. If we
consider in the binary case the full 2×2 matrix of parameters as independent, then the
expression of the observed Information Matrix will be the multi-category expression.
Conversely, considering the multi-category expression in the case of L = 2, if we consider
the off-diagonal terms as exact (which can be done as they are entirely determined by the
diagonal terms), then the formulation of the observed Information Matrix is exactly the
binary case expression. In the multi-category case, there is no clear choice for reducing the
number of free variables, and we prefer to compute the bounds for all of the variables.

III. RESULTS
To illustrate our formulation for deriving confidence intervals of the estimated segmentation
parameters, we will present two applications. First, we demonstrate the estimation of
inferential uncertainty of the values of the parameters estimated from a dataset of simulated
images. Then, we present the application of our framework to obtain confidence intervals for
the performance parameters on a manually segmented neonate database.

A. Experiments on Simulated Data
1) Impact of Data Size and STAPLE Precision—To evaluate our algorithm with
respect to a known ground truth, we created a database of ten segmentations (2D images,
size 256×256), illustrated in Fig. 2, divided into two groups. From the ground truth in Fig.
2(a), we simulated a first group of 5 images with a sensitivity parameter of 0.7 and a
specificity parameter of 0.8 (illustrated in image (b)). Then, a second group, illustrated in
image (c), was generated with different parameters: sensitivity and specificity of 0.9. In
order to evaluate the influence of the image size on the confidence intervals of the
parameters estimates, we have also generated a second database using the same parameters
but with an image size of 128 × 128.

We have then run STAPLE to convergence (so that θ(k+1) ≈ θ(k)) on the images of both
databases to estimate a reference standard and utilized our algorithm to estimate the
confidence intervals of the values of the parameters. The results are presented in Table I for
the two databases.

Our first observation was that the non diagonal terms of the covariance matrix were always
much smaller than the diagonal terms. This comes from the fact that only the expected
missing data Information Matrix Im is non-diagonal. If the reference standard was known,
then the covariance matrix would be computed only as the expected complete data
Information Matrix Ic, which is diagonal (see Eqs. (4) and (5)). In the STAPLE algorithm,
the reference standard is not known and this leads to non zero off-diagonal terms. The
figures in Table I show that all the true values of the parameters (sensitivity and specificity)
fall within the 95% confidence interval around the estimated values of the parameters.
Deriving the confidence bounds on these parameters therefore allows us to show that the
estimation performed by STAPLE is very precise. The second observation that can be made
on these figures is on the influence of the image size on the confidence bounds of the

Commowick and Warfield Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameters. Our experiments indeed show a clear correlation between the image size and the
width of the confidence interval, which is increasing when the image size is smaller.

2) Impact of the Performance Parameters Initialization—To evaluate the influence
of initialization on the estimated parameters and the confidence intervals, we have used a
database of ten segmentations (2D images, size 256 × 256) based on the same ground truth
as above. In this experiment, we have generated 9 images with relatively low quality
segmentations (sensitivity and specificity at 0.3) and one with good quality (sensitivity of
0.8 and specificity of 0.9). Then, we ran STAPLE on this database with two different
initializations: one close to the true parameters (all estimates are initialized at 0.3) and one
where we suppose all experts are good (all parameters initialized at 0.9999). We present the
results of these experiments and the confidence intervals estimated in Table II.

This table clearly shows an influence of the initialization on the estimated performance
parameters. When the parameters are initialized far away from their true values (0.9999), the
estimated parameters converge to erroneous values for all experts. On the contrary, when the
parameters are better initialized (all at 0.3), the algorithm converges to values close to the
true sensitivities and specificities (which are included in the confidence intervals around the
estimated performance parameters). Another very important result is that, despite this great
change in the estimated values, the confidence interval widths are very similar. This
demonstrates that our formulation for the computation of the confidence intervals estimates
how precise the estimation of the parameters is, not the actual accuracy of these estimates.

B. Evaluation of Inferential Uncertainty of Parameters on a Neonate Database
1) Image Database—We have applied our algorithm to five datasets of neonate MRI
segmentations (one of them illustrated in Fig. 3) selected from MRI scans from previous
studies. Each of these datasets consisted of a T1 and a T2 weighted image. After registration
of the T2 image on the T1 image, five tissue classes were delineated interactively on one
slice: cortical gray matter, sub-cortical gray matter, unmyelinated white matter, myelinated
white matter and cerebrospinal fluid (CSF). This process was repeated five times by three
experts so that for each newborn MRI, 15 segmentations into five structures were available.

2) Evaluation of the Confidence Bounds of the Parameters—To evaluate intra-
expert segmentation variability, we have used STAPLE for each patient on the five
segmentations of one expert to determine the reference standard for this expert, together
with parameters of sensitivity and specificity for each manual segmentation. We have then
used our analytical formulation to efficiently compute the observed Information Matrix for
these parameters, and evaluated the covariance matrix of the parameters by simply inverting
the Information Matrix.

We computed the confidence intervals of the parameters using the binary case formulation
separately on all patients and all structures. We only present in Fig. 4 a representative
example of the results on the unmyelinated white matter and the gray matter for five patients
using the five segmentations of one expert (each cluster in the figure illustrates independent
experiments on each patient), showing for each performance parameter its confidence
interval as an error bar. This figure shows that even with only five segmentations to estimate
the reference standard, the estimation of the expert performance parameters is still very
precise. The maximum relative standard deviation is indeed of 1.3 %.

3) Influence of the Number of Voxels on the Confidence Intervals—We also
wanted to confirm with data from a subject previous results on simulated data on the
influence of image size on the confidence intervals of the performance parameters. To this
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end, we subsampled the segmentations of one patient. Because the subsampling is done
using nearest neighbor interpolation, the subsampling amounts to taking one row and
column every two in the image. We then ran STAPLE until convergence on the subsampled
segmentations of one expert for one patient and computed the confidence intervals on the
parameters. We present in Fig. 5 the results of sensitivity, specificity and confidence
intervals (as error bars) on a patient in its original resolution (in blue), subsampled once (in
red) and twice (in green).

First, we can see on some experts that the confidence intervals of their parameters become 0
when the image size is divided by 4 in each direction. This is due to the fact that the image
becomes so small that the whole region of interest for a given expert is only composed of the
delineated structure, thereby removing the variability for the corresponding expert
parameter. Apart from this effect, these results confirm a clear influence of the image size on
the parameters bounds. The standard deviations nearly double when the image is
subsampled.

4) Influence of the Number of Experts on the Confidence Intervals—Another
potential cause of uncertainty of the estimated values of the parameters is the number of
segmentations used to compute the reference standard. We have studied this property using
binary segmentation performance estimates on 15 manual segmentations of one subject. We
present the evaluation of the results using from 3 segmentations up to 10 segmentations. For
each number K of manual segmentations, we have performed the study over all the
combinations of K images among the 15 available.

We present in Fig. 6 the average relative values (in percent of the average performance
parameter) of the 95% confidence intervals for each number of experts for sensitivity and
specificity parameters. These results show that the relative confidence interval decreases
rapidly with the number of experts, and is stable for more than five experts. Moreover, we
also present in this figure three curves, using only part of the images to estimate the
performance parameters (green: a quarter of the image, red: half of the image, and blue: the
whole image). This suggests that, using 4 or more experts, the size of the structure to be
delineated as well as the size of the region of interest for the STAPLE computation is more
influential upon the confidence bounds of the estimated parameters than the number of
experts. Overall, both these aspects should be taken into account when designing a
validation study to ensure enough experts and a sufficient region have been delineated to get
precise estimates of the performance parameters for each expert.

5) Evaluation of the Multi-Category Case Algorithm—Finally, we present an
application of our algorithm for the multi-category case of STAPLE. The results have been
computed on all structures and all patients but for clarity, we present the results on only 5
repeated segmentations of three structures from one expert: the cortical gray matter, the sub-
cortical gray matter and the unmyelinated white matter. We have then run STAPLE on these
segmentations using the multi-category case implementation (using 4 classes: 3 structures
plus the background). We present in Table III the results of our algorithm, showing only the
estimated values and 95% confidence intervals of the diagonal parameters, i.e. the θjss, as
showing the results for all parameters would produce a very large table.

The multi-category bounds estimate enables us to determine the precision of a rater
performance estimate. In this precise example, the relative standard deviations of the expert
performance parameters are very tight, varying between 1.7 % and 4.5 % of the respective
estimated parameters values, showing that the values estimated by STAPLE are also precise
in the multi-category case. The estimation of the confidence intervals of the multi-category
performance parameters will allow the determination of the minimal image size and the
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number of experts necessary to achieve a chosen level of precision in segmentation
performance assessment.

IV. CONCLUSION
We have presented in this article the expression of confidence intervals of the expert
performance parameters obtained using the STAPLE validation method, both in the binary
and the multiple category case. These formulations are based on the derivation of analytic
expressions for the observed Information Matrix of the underlying Expectation-
Maximization algorithm. Such confidence bounds will be very important for future studies
as they will aid in the interpretation of the performance of segmentation generators, and in
determining the minimal size and number of segmentations to precisely characterize the
performance parameters.

We have presented examples of the application of these expressions for the evaluation of the
inferential uncertainty of the expert parameters in experiments on simulated images,
showing that the true values of the expert performance parameters fall within the confidence
intervals of the estimated values of the parameters. We have also utilized these expressions
in the context of neonate brain segmentation, showing a dependence of the confidence
intervals with respect to the number of voxels in the region of interest for the segmentation.
Moreover, we have also shown that the number of experts used in the study may influence
the uncertainty of the estimated parameters. In our particular case, we have shown that,
independently of the size of the segmentation, the uncertainty of the parameters is stable
when 5 or more experts are used in the study. These experiments provide an important
insight on the design of future experiments for segmentation validation. It will indeed be
very important to have as many experts as possible when comparing small segmentations, in
order to minimize the potentially large uncertainty on the values of the estimated
parameters. Otherwise, if the structure of interest is large enough, using a small number of
experts will not affect the inferential uncertainty in the values of the performance
parameters.

Finally, we have presented experiments illustrating the multi-category formulation of the
confidence bounds computation. These confidence bounds are useful for the design of future
segmentation comparison experiments.

These expressions may then have many other applications in terms of validation of
segmentation or evaluation of intra-expert segmentation variability in a clinical context. In
addition to providing guidance in the interpretation of the parameters determined by the
STAPLE validation algorithm, this work could be used in the future for the development of
a spatially localized STAPLE algorithm by computing performance parameters estimates in
a blockwise manner. The bounds estimated with the algorithm described here would allow
us to determine the minimal size of the region of interest required to obtain precise
parameter estimates for a given structure. Future work will then examine using this approach
to evaluate spatially varying performance parameters and their bounds.
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Fig. 1. Illustration of the confidence interval on one parameter

We aim at computing the lower (LB) and upper bound (UB) for each parameter 
estimated by STAPLE. In the case of a known ground truth (experiments on simulated data),
this range can be compared to the true value θjl’l to check for the accuracy of parameter
estimation in STAPLE.
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Fig. 2. Database of Simulated Images
Simulated images used for the validation of our confidence intervals estimation method : (a):
original segmentation, (b): simulated segmentation of group 1 (sensitivity: 0.7, specificity:
0.8), (c): simulated segmentation of group 2 (sensitivity: 0.9, specificity: 0.9).
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Fig. 3. Illustration of one image from the database
Coronal slice of (a) newborn T1 MRI and (b-f) its repeated manual segmentation in 5 classes
done by one expert (cortical gray matter - grey, sub-cortical gray matter - white,
unmyelinated white matter - red, myelinated white matter - orange - and CSF - blue). Other
images in the database were similar to this specific example.
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Fig. 4. Confidence bounds of the sensitivity and specificity parameters
Expert parameters and their confidence intervals ((a, c): Sensitivity, (b, d): Specificity) for
the white matter segmentation (a, b) and the gray matter segmentation (c, d). Each child
segmentations were treated separately, each column for each child represents an expert’s
segmentation. The results on five datasets (each column of each graph) show that the
confidence intervals of the estimated sensitivities and specificities are very tight.
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Fig. 5. Influence of the image dimension on confidence bounds of the parameters
95 % confidence intervals on the estimated values of the sensitivity (a) and specificity (b)
parameters for the image at original size (blue), subsampled once (red), and subsampled
twice (green). These show a decrease in the confidence in the estimated parameters as the
image is subsampled, reflecting that the confidence in the estimates decreases when the
amount of available data is reduced.
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Fig. 6. Influence of the number of experts on the confidence intervals of the performance
parameters
Average relative confidence intervals values (in percent of the average performance
parameter) as a function of the number of experts used in STAPLE. For each number of
experts, all combinations of K experts among the 15 available were used to compute the
average. The three curves show the results using: the whole images (blue), half of the
images (red), and the upper left quarter of the images (green) to compute the STAPLE
performance estimates.
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TABLE III
Evaluation of the multi-category confidence intervals algorithm

Estimated performance parameters values and their confidence intervals (CI) obtained using our multi-
category algorithm on five segmentations from one rater. Studied structures are: BG: background, CGM:
cortical gray matter, UWM: unmyelinated white matter, SCGM: sub-cortical gray matter.

BG (θj,bg,bg) CGM (θj,cgm,cgm) UWM (θj,uwm,uwm) SCGM (θj,scgm,scgm)

Seg. 1 Estimate 0.9409 0.9340 0.8152 0.9243

Seg. 1 95% CI [0.9027 ; 0.9791] [0.8952 ; 0.9728] [0.7852 ; 0.8452] [0.8422 ; 1.0]

Seg. 2 Estimate 0.8666 0.8794 0.9771 0.9615

Seg. 2 95% CI [0.8299 ; 0.9033] [0.8420 ; 0.9168] [0.9440 ; 1.0] [0.8776 ; 1.0]

Seg. 3 Estimate 0.8923 0.8831 0.9341 0.9589

Seg. 3 95% CI [0.8551 ; 0.9295] [0.8453 ; 0.9209] [0.9020 ; 0.9662] [0.8752 ; 1.0]

Seg. 4 Estimate 0.9298 0.9194 0.9463 0.9280

Seg. 4 95% CI [0.8920 ; 0.9676] [0.8810 ; 0.9578] [0.9138 ; 0.9788] [0.8459 ; 1.0]

Seg. 5 Estimate 0.9212 0.9595 0.8702 0.9520

Seg. 5 95% CI [0.8834 ; 0.9590] [0.9199 ; 0.9991] [0.8392 ; 0.9012] [0.8687 ; 1.0]
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