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Abstract

A novel multiscale topomorphologic approach for opening of two isointensity objects fused at 

different locations and scales is presented and applied to separating arterial and venous trees in 3-

D pulmonary multidetector X-ray computed tomography (CT) images. Initialized with seeds, the 

two isointensity objects (arteries and veins) grow iteratively while maintaining their spatial 

exclusiveness and eventually form two mutually disjoint objects at convergence. The method is 

intended to solve the following two fundamental challenges: how to find local size of 

morphological operators and how to trace continuity of locally separated regions. These 

challenges are met by combining fuzzy distance transform (FDT), a morphologic feature with a 

topologic fuzzy connectivity, and a new morphological reconstruction step to iteratively open finer 

and finer details starting at large scales and progressing toward smaller scales. The method 

employs efficient user intervention at locations where local morphological separability assumption 

does not hold due to imaging ambiguities or any other reason. The approach has been validated on 

mathematically generated tubular objects and applied to clinical pulmonary noncontrast CT data 

for separating arteries and veins. The tradeoff between accuracy and the required user intervention 
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for the method has been quantitatively examined by comparing with manual outlining. The 

experimental study, based on a blind seed selection strategy, has demonstrated that above 95% 

accuracy may be achieved using 25–40 seeds for each of arteries and veins. Our method is very 

promising for semiautomated separation of arteries and veins in pulmonary CT images even when 

there is no object-specific intensity variation at conjoining locations.

Index Terms

Artery; computed tomography (CT); fuzzy connectivity; fuzzy distance transform (FDT); 
morphology; pulmonary imaging; scale; vascular tree; vein

I. Introduction

Over the last few decades, multilayered extraction of knowledge embedded in 2-D and 

higher dimensional images has remained a frontline research topic [1]–[7]. We report a new 

multiscale topomorphologic opening method for separating two isointensity objects fused at 

different locations and scales due to limited resolution. One possible application may be the 

separation of vertebrae or other bone structures via low resolution computed tomography 

(CT) or magnetic resonance (MR) imaging of musculoskeletal systems [8], [9]. Other 

examples include tracking living cells in optical microscopic video imaging [10] or tracking 

moving objects/subjects in video imaging where multiple entities get mutually partially 

occluded from time to time. In this paper, we concentrate on the application of the proposed 

method to separating arteries and veins (A/V) in in vivo pulmonary CT images acquired with 

no blood-pool enhancing contrast. The method, while very general, will be presented in the 

context of this application.

The challenges in separating arteries and veins are multifolded including: 1) A/V are 

indistinguishable by their intensity values in noncontrast pulmonary CT images; 2) often, 

there is no trace of intensity variation at locations of fused arteries and veins; 3) there is 

complex and tight coupling and fusion between A/V trees with arbitrary and multiscale 

geometry, especially at branching locations; and 4) limited SNR and relatively low 

resolution are typical for in vivo CT imaging. Patient-specific structural abnormalities of 

vascular trees further complicate the task. Several works have been reported in literature 

addressing the task of separating arteries and veins using improvised image acquisition 

techniques; a thorough discussion on difficulties of such approaches, especially for smaller 

vessels, have been presented by van Bemmel et al. [11]. To the best of our knowledge, only 

a few postprocessing methods have been published for separating arteries and veins [11], 

[12]. The previous methods have only been applied to MR data and did not use 

morphological scale information. These methods primarily rely on intensity variations or the 

presence of edge information at the adherence locations between A/V trees and may not 

work for in vivo CT images where no such intensity variations are present at locations of 

adherence. Recently, two approaches for artery/vein classification from pulmonary CT 

images have appeared [13], [14]. The attempted task of A/V separation is of substantial 

importance since separated A/V trees may significantly contribute to our understanding of 

pulmonary structure and function, and immediate clinical applications exist, e.g., for 
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assessment of pulmonary emboli. Separated A/V trees may also significantly boost 

performance of airway segmentation methods for higher tree generations.

Here, we amalgamate fuzzy distance transform (FDT) [15]—a morphologic feature—with 

topologic fuzzy connectivity [16]–[20] and a new morphologic reconstruction algorithm to 

develop a multiscale topomorphologic opening algorithm for separating two isointensity 

objects fused at different locations and scales. Distance transform (DT) [21]–[26], a shortest 

distance measure from the background, has been popularly adopted in many digital 

geometric applications [27] of binary objects. Borgefors [24]–[26] extensively studied DTs 

for binary 3-D objects and presented the integer-valued approximation of the optimal local 

step lengths that are widely used by others. Local step optimization and accuracy of DT 

have further been studied by other research groups [28]–[30]. Saha et al. [15] introduced a 

generalized fuzzy DT (FDT) and its applications have been reported in [31]–[35]. Fuzzy 

topology and connectivity [16], [17] have become a popular segmentation approach [17], 

[36]–[39]. Udupa and Samarasekera presented an elegant computation solution [17] for 

fuzzy connectivity and made several other fundamental contributions [17], [18], [20], [37], 

[40], [41] to this research area.

The proposed method for multiscale topomorphologic opening starts with a fuzzy 

segmentation of the assembly of two isointensity objects (the arterial and venous trees in our 

case), and two sets of seed points (one for each object). The method outputs spatially 

separated arterial and venous trees. It is designed under the assumption that fusions of 

arteries and veins are locally separable using a suitable morphological opening operator. The 

method uses a novel approach to solve the following two fundamental challenges: how to 

find local size of morphological operators and how to trace continuity of locally separated 

regions. These challenges are met by combining FDT, a morphologic feature with a 

topologic fuzzy connectivity, and a new morphological reconstruction to iteratively open 

finer and finer details starting at large scales and progressing toward smaller scales. In short, 

artery/vein separation is modeled as a new multiscale opening task and the method provides 

a unique solution that offers a new research avenue of multiscale topomorphologic 

operations. The method effectively employs efficient user intervention at locations where 

the assumption of local morphological separability does not hold due to imaging ambiguity 

or other reasons.

The artery/vein separation work reported here is dealing with the topological aspects of the 

vascular tree analysis—with the arterial and venous object “detection.” The reported work 

offers a solution to the problem that arises after the vascular tree is detected as a whole, e.g., 

using our earlier work [42] and before the venous/arterial wall surfaces can be detected with 

high positioning accuracy, e.g., using our recent work [43].

II. Theory and Methods

First, let us define the segmentation task addressed here and let us indicate the fundamental 

challenges that our method is designed to solve. Consider two isointensity cylindrical 

objects with significant mutual overlap, as illustrated in Fig. 1(a). Often, the intensity 

variations at fusions may not be a reliable feature to separate the two structures. On the other 
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hand, the two structures may frequently be locally separable using a suitable morphological 

opening operator. The questions are how to determine local size of suitable morphological 

operators and how to combine the locally separated regions. The process is initiated by 

picking two seeds, one for each object, as shown in Fig. 1(b), and continues by exploring 

connectivity on the FDT image. Using the knowledge that the two seeds represent two 

different objects, a threshold may be selected on the FDT image that barely disconnects the 

two objects in the FDT image. Essentially, the FDT threshold indicates the radius of the 

optimal erosion operator separating the two cylinders [see Fig. 1(b)]. The immediate next 

question is how to proceed with the separation to next lower scales. The difficulty here is 

that the scale of the annular remainder [see Fig. 1(b)] of the morphological erosion is at least 

equal to that of the regions not yet separated. This difficulty is overcome using a proposed 

morphological reconstruction operation that fills the annular remainder while maintaining 

the separate identities of the two objects [see Fig. 1(c)]. This step allows proceeding with 

separations at a lower scale and the method progresses iteratively separating fused structures 

at finer and finer scales starting with the larger one. In short, the method may be 

summarized by the following three steps:

Step 1) Find the optimum morphological opening structure scale separating the two 

objects specified by two sets of seeds [see Fig. 1(b) and Fig. 3(d)].

Step 2) Block the annular remainder around currently separated regions enabling 

morphological separations at lower scales [see Fig. 1(c) and Fig. 3(e)].

Step 3) Repeat steps 1 and 2 until convergence.

The overall workflow diagram of the proposed method is presented in Fig. 2. As input, it 

receives fuzzy segmentation of the assembly of two isointensity objects and two sets of 

seeds—one for each object—and it outputs the separated objects. Although the method 

immediately extends to multiple objects, here, we formulate a solution for two objects only 

and will refer to one object as the “rival” of the other. Let us consider an image consisting of 

two isointensity fuzzy objects with significant noise that overlap at different scales, as 

shown in Fig. 3(a); a few cross-sectional images are shown in Fig. 3(b). The two cylinders 

with gradually reducing radii are running in parallel. The diameter of one cylinder is 

significantly larger than that of the other; a sinusoidal swing is added to both cylinders in the 

xy-coordinate direction so that centerlines of both cylinders lie on one xy plane, say the 

central xy plane. Usefulness of the method may be better understood in three and higher 

dimensions. On the other hand, it is always easier to illustrate a method in two dimensions. 

Therefore, we show results of different steps of the method on the central xy plane first. One 

seed is identified at the approximate center of each cylinder at the topmost cross section. As 

shown in Fig. 2, the process is iterative and begins with marking the seeds followed by FDT 

computation [15] of the assembly of two cylinders prior to iterations; see Fig. 3(c) for the 

results of FDT computation. It is visually notable from the FDT image that we cannot find a 

single FDT threshold to separate the two cylinders from their head to tail. Therefore, no 

straightforward morphological opening operator can solve the problem. On the other hand, 

over a small region, the two cylinders are separable using their FDT values. In other words, 

the problem demands regional selection of optimal opening structures to separate the two 

cylinders.
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The aforementioned observation motivated us to use local scale to normalize FDT values. 

This approach reduces the effect of spatial scale variations. Local scale at a point p is 

defined as the FDT value of the locally deepest point (a point with locally maximum FDT 

value) that is nearest to p. With the normalized FDT map, the method adopts an iterative 

strategy that first separates the cylinders over large-scale regions using FDT-based relative 

connectivity [18], [20] where a point becomes associated with an object if its connectivity to 

the point is strictly greater than that of its rival. A separator is built between the two objects 

using a morphological reconstruction method that simultaneously and radially dilates each 

currently segmented region until blocked by its rival (maximum radius of the dilating 

structure is determined by FDT values). Fig. 3(d) and (e) shows the results of initial 

separation and morphologic reconstruction of two cylinders after the first iteration. In the 

next iteration, the FDT-connectivity paths of one object are not allowed to enter into the 

region already assigned to its rival. This strategy facilitates object separation at smaller scale 

regions [see Fig. 3(f)]. The iterative process is continued as long as any change is detected 

step to step. For this phantom image, the method stopped after 12 iterations (see Fig. 3(g)–

(i) for final separation). In the remainder of this section, we formally describe the theory and 

algorithms.

A. Basic Definitions and Notation

A 3-D cubic grid, or simply a cubic grid, is represented by the points in , where  is the 

set of all integers. A grid point, often referred to as a point or a voxel, is represented by a 

triplet of integer coordinates. Two points p, q ∊  are called adjacent if and only if α(p, q) = 

1, where α is a reflexive and symmetric relation. Standard 26-adjacency [44] is used here for 

α, i.e., two points (x1, x2, x3) and (y1, y2, y3) in  are adjacent if and only if max1≤i≤3, |xi − 

yi| ≤ 1, where |·| denotes the absolute value. Two adjacent points are often referred to as 

neighbors of each other; the set of 26-neighbors of a point p excluding itself is denoted by 

(p). An object  is a fuzzy subset {(p, (p))|p ∈ } of , where  :  → [0, 1] is its 

membership function. An object may be derived from an acquired image [45] using a 

suitable image segmentation algorithm [7] that has been extensively studied for decades. 

Following the main focus of the theory and methods addressed in this paper, we start with 

the definition of objects instead of images. The support Θ( ) of an object  is the set of all 

points with nonzero membership, i.e., Θ( ) = {p p ∈  and (p) ≠ 0}. Images are always 

acquired with a finite field of view. Thus, we will assume that an object always has a 

bounded support. Let S denote a set of points; a path π in S from p ∈ S to q ∈ S is a sequence 

〈p = p1, p2, …, pl = q〉 of points S in such that every two successive points on the path are 

adjacent. A link is a path 〈p, q〉 consisting of exactly two mutually adjacent points p, q ∈ .

B. FDT

DT is a local depth measure inside an object and we call it “FDT” when the object 

representation is fuzzy. FDT [15] accounts for both partial voxel occupancy and spatial 

heterogeneity of an object distribution. The length of a link 〈p, q〉 is calculated as 1/2( (p) 

+ (q)||p − q||, where ||·||, denotes any Euclidean L2 norm. The length of a path π = 〈p1, p2, 

…, pl〉 in a fuzzy object , denoted by , is defined as the sum of lengths of all links along 

the path, i.e.,
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(1)

Between any two points p, q ∈ , infinitely many paths may exist; let (p, q) denote the set 

of all paths from to p to q. A path πp,q ∈ (p, q) is one of the shortest paths from p to q in , 

if and only if, (πp,q) ≤ (π) for all π ∈ (p, q). It may be noted that the shortest path 

between two points p, q ∈  may not be unique. The fuzzy distance from p ∈  to q ∈  in 

an object , denoted by (p, q), is the length of one of the shortest paths from p to q, i.e.,

(2)

It has been shown in [15] that fuzzy distance satisfies the metric properties in both 

continuous as well as discrete spaces in any dimension. The FDT of an object  is 

represented as an image {(p, (p))|p ∈ }, where  :  → ℜ+ denotes the FDT value at a 

given point, ℜ+ is the set of positive real numbers including zero, and (p) is defined as the 

fuzzy distance between p and its nearest points in Θ̄( ) =  − Θ( ). In other words

(3)

C. Local Scale and FDT Normalization

Intuitively, “local scale” at a point p is defined as the FDT value (or, the ordinary DT [26] 

value for binary images) at the locally deepest point that is nearest to p. Toward this aim, we 

first define “nearest point” as follows. Let S ⊂ Θ( ) denote a set of points and let p ∈ Θ( ) 

be a point inside the support of a fuzzy object . The nearest point of p in S over an object 

, denoted by N (p, S), is the point q ∈ S such that ∀r ∈ S, (p, q) ≤ (p, r); in case 

there are multiple such q’s, the point with the largest FDT value is chosen. Let Smax ⊂ Θ( ) 

be the set of points with locally maximal FDT values in , i.e., Smax = {p p ∈ Θ( ) and ∀q 

∈ (p), (q) ≤ (p)}, where (p) is the (2l+1) × (2l+1) × (2l+1) neighborhood of p; in 

this paper, we have used (p) to avoid noisy local maxima. Finally, local scale at a point p 

in an object , denoted by (p), is defined as the FDT value of the local maximal point 

nearest to p, i.e., (p) = (N (p, Smax)).

In order to reduce the effects of spatial variation in object scales, we normalize the FDT 

value at each point p by dividing the original FDT value by the local scale, i.e., dividing 

(p) by (p). Note that the normalized FDT values always lie in the interval [0, 1]. This step 

of normalizing the FDT value is simple yet effective in reducing the artifacts of scale 

variation in an object. Although this step causes no change in the FDT map for phantom 

images where local radii change monotonically along the axis of each structure [see Fig. 

3(c)], it is useful when local radii vary nonmonotonically along an object [e.g., arteries and 

veins in Fig. 5(d) and Fig. 6(d)]. Essentially, FDT normalization is equivalent to equating 

the height of all local maxima of the original FDT map. It can be shown that by this process, 

all local minima and valley lines of the original FDT map are preserved and may thus be 
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exploited as separating features by the multi-scale topomorphologic opening algorithm. 

Therefore, all separations of the original FDT map will be preserved in the normalized FDT 

map. The major advantage of the FDT normalization is that it reduces the number of 

iterations in most real applications. In the rest of this paper, by “FDT,” we will refer to the 

“scale-normalized FDT” and (p) will denote the scale-normalized FDT value at p unless 

stated otherwise.

D. Fuzzy Morphoconnectivity

This step is essentially the same as used when determining the fuzzy connectivity [16], [17] 

except that the FDT values are used instead of the intensity values. We follow the 

formulation of fuzzy connectivity method introduced by Rosenfeld [16]. Fuzzy 

morphoconnectivity strength of a path π = 〈p1, p2, …, pl〉 in a fuzzy object , denoted by 

(π), is defined as the minimum FDT value along the path

(4)

A path πp, q ∈ (p, q) is one of the strongest morphological paths from to p to q, if and only 

if, (πp, q) ≥ (π) ∀π ∈ (p, q). The fuzzy morphoconnectivity between two points p ∈ 

and q ∈ , denoted by (p, q), is the strength of one of the strongest morphological paths 

between p and q

(5)

Intuitively, fuzzy morphoconnectivity between two points p, q ∈  indicates the size of the 

morphological erosion operator that barely disconnects the two points.

E. Object Region Detection

This step is accomplished by comparing the fuzzy morphoconnectivity values for the two 

target objects  and  similar to that presented in [18], [20], and [41]. Specifically, the 

region acquired by , denoted as , is defined as

(6)

where  and  are the sets of seeds for objects  and , respectively. It may be noted that 

we need to specify the FDT maps  and  for the two objects  and  in order to complete 

the definition of  and similarly the definition of . In this paper, at the beginning of the 

algorithm, the two FDT maps  and  are both assigned to the FDT map computed from 

the assembly of the two fuzzy objects. However, the theory and algorithms work equally 

well even if we initiate the algorithm with two different FDT maps computed from two 

different representations of the assembled objects, each representation emphasizing one over 

the other. It allows taking advantage of features that partially distinguish the two objects. 
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After every iteration, the values of  and  are updated following the strategy described in 

Section II-G.

F. Morphological Reconstruction

Two regions  and , defined in the previous section, provide a separation of the two 

objects based on fuzzy morphoconnectivity analysis; an output of this step is illustrated in 

Fig. 1(b) and Fig. 3(d). Here, the idea is to morphologically extend the two separated regions 

 and  to fill the annular space around them without compromising their separation; 

results of this step are illustrated in Fig. 1(c) and Fig. 3(e). In order to define the 

morphological reconstruction process, we first introduce the notion of “morphological 

neighborhood.” The morphological neighborhood of a set of points X in an object , 

denoted by (X), is a set of all points p ∈ Θ( ) such that for some q ∈ X, (p, q) < (q) 

and p is connected to q by a path π = 〈p = p1, p2, …, pl = q〉 of monotonically increasing 

FDT values. It may be noted that the original FDT map is used here without scale 

normalization as morphological neighborhood is defined on the basis of original geometry 

and size of a local structure. Finally,  (or ) is extended by the set of points p ∈ ( ) 

[respectively, points p ∈ ( )] that are strictly closer to  (respectively, ) than 

(respectively, ). Results of this step are illustrated in Fig. 1(c) and Fig. 3(e). It may be 

noted that gaps between the separated regions visible in Fig. 3(d) are filled in Fig. 3(e) after 

the morphological reconstruction. This step is important as it stops paths running through 

those gaps that would be creating problems during separation of smaller scale regions in 

subsequent iterations. Let ( ) and (RB) represent morphological reconstructions for 

 and , respectively.

G. Modification of FDT Maps and Seeds

This step is similar to the iterative strategy described in [18] and [41] for intensity-based 

fuzzy connectivity. For each of the objects, we set the FDT values to zeros over the region 

currently acquired by its rival object. This step stops paths from one object to run through 

the acquired territory of its rival object. Thus, a hypothetical wall is created between the two 

regions currently separated. Specifically, the FDT images of the object  are updated after 

each iteration as follows:

(7)

The FDT map of the other object is updated similarly. The seeds  and  for the two 

objects are replaced by  and , respectively. With this setup, the algorithm enters into the 

subsequent iteration, i.e., steps described in Sections II-D–II-G are repeated as illustrated in 

Fig. 2.

Algorithms

Algorithms for computing FDT and fuzzy connectivity have been presented in several 

papers including [15], [17], [18], and [37]. The algorithmic solutions for local-scale 

computation, FDT normalization, object region detection, and modification of FDT maps 
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and seeds are trivial following their descriptions in Section II-C, II-E, and II-F. However, 

the algorithmic realization of morphological neighborhood computation in the context of 

morphological reconstruction is not straightforward from the descriptions in Section II-F. 

Therefore, a pseudocode for the algorithm of computing morphological neighborhood is 

presented in the algorithm.

begin compute-morphological-neighborhood

input

1) a set of points X

2) a fuzzy object

     = {(p, )| p ∈  and  :  → [0, 1]}

3) original FDT map  :  → ℜ+ without scale normalization.

output

1) morphological neighborhood (X)

auxiliary data structure

1) monotonic distance transform map  (p) :  → ℜ|ℜ is the set of all real 

numbers

2) a sequential queue Q

for each point p ∈ 

     assign  (p) = 0

for each point p ∈ X

     assign (p) = – (p)

     push p in Q

while Q is not empty

     pop a point p from Q

     for each point q ∈ (p) and (q) < (p)

           assign

           if (q) > (p) + link(p, q)

              assign (q) = (p) + link(p, q)

              push q in Q

(X) = {p|p ∈  and (p) < 0}

end compute-morphological-neighborhood

III. Experimental Methods and Results

A. Phantoms

Performance of the method has first been examined both qualitatively and quantitatively on 

mathematically generated phantoms (see Figs. 3 and 4). Six mathematical phantoms were 

computer-generated, each being an assembly of a pair of tubular objects running parallel 

across the slice direction with different levels of fuzziness, overlap, scale, and noise. 

Initially, the phantom images were generated at high resolution, and then, downsampled 

using 3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 windows to simulate partial volume effects. Each 

downsampled image was further degraded with additive random noise at SNR of 12. Using a 

graphical user interface, exactly two seed points were manually selected for each phantom. 

Saha et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One seed was placed for each tubular object near its center on the slice at the largest scale 

level. Although there is no theoretical restriction on positioning the seed points, the seeds 

were positioned visually close to the centerline of each cylinder. Example phantoms and 

their object separation results are depicted in Fig. 4 at 4 × 4 × 4 and 5 × 5 × 5 downsampling 

only, as the method has always successfully separated the two cylinders at 3 × 3 × 3 

downsampling. The phantom image of Fig. 3 was generated at 4 × 4 × 4 downsampling. At 

extremely low resolution and high noise, the morphological information may be entirely lost 

at a few locations leading to a failure of separations, as shown in Fig. 4(n), (t), and (v). 

Specifying another pair of seeds at each of these locations would have helped achieving 

correct separations. Cross-sectional images of the first phantom are given at both resolutions 

to demonstrate the 3-D phantom image quality used and the complexity of separating the 

two objects. The smallest radius of the phantom shown in Fig. 4(a) is 1.87 pixels after 

downsampling by 4 × 4 × 4 pixels; the largest radius in the same example at the same 

downsampling resolution is 18.75 pixels. Except for the examples in Fig. 4(a) and (f), the 

radii of the two cylinders differed significantly. It may be noted that at the upper part of the 

object colored in red in Fig. 4(c), the object visually appears disconnected. We confirm that 

each of the red and blue objects in Fig. 4 has been explicitly checked by a computerized 

algorithm and found to be a single connected component as expected according to the 

presented theory of the method. Results of separation of two objects in each of these 

phantoms were exactly the same for seed selection by two independent users, each selecting 

seeds visually close to the center of corresponding object at the highest scale level, 

demonstrating the theoretical robustness of the method with respect to seed selection.

A qualitative analysis was performed on the six phantoms images in Figs. 3 and 4. For this 

purpose, the ground truth of separations of two objects in these phantoms was generated 

from the knowledge of their generation at the original resolution prior to downsampling. For 

each tubular object in a phantom, its center-line along with local radii was recorded at the 

time of its computerized generation. Let {(ci, j, ri, j)|i = 1, 2; j = 1, 2, …, Li} be the set of 

points and local radii along the centerline of the ith object in a phantom prior to 

downsampling. Let p = (x, y, z) be a point with nonzero intensity value in the corresponding 

phantom image obtained by downsampling at l × l × l, where l = 4 or 5. Thus, pl = (x × l, y × 

l, z × l) denotes the point corresponding to p prior to downsampling. Local-radius-

normalized distance of p from the centerline of the ith object, denoted by Di(p, l), is defined 

as follows:

(8)

Here, local-radius-normalized distance is used to avoid a bias in separation due to local 

radius difference between two objects. Finally, in the true separation of two objects, the 

point p is assigned in the first object (or the second object) if D1(p, l) < D2(p, l) 

[respectively, D2(p, l) < D1(p, l)]. Note that in a rare situation of D1(p, l) = D2(p, l) (since, 

ci, js are points in Euclidean three space), the point is not assigned to any of the two objects.
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Let T1 and T2 denote the true segmentations of the two objects in a phantom image 

computed as aforementioned, and let S1 and S2 denote the segmentations of corresponding 

objects in the same phantom image computed by the current method. True positive and false 

negative of the computerized separation of two objects are defined as follows:

(9)

and

(10)

Results of quantitative analysis of true positive and false negative of separation of two 

tubular objects in each phantom image at different downsampling rates using our algorithm 

are presented in Table I. These results demonstrate that our method produces high accuracy 

in spatially delineation of the two structures, while its performance in terms of maintaining 

the identity of individual structures along their axes is qualitatively illustrated in Figs. 3 and 

4.

B. In Vivo CT Image Data

The effectiveness of the method has also been examined both qualitatively and 

quantitatively on clinical pulmonary multidetector CT images. A result of application of the 

method separating pulmonary arteries/veins in a thoracic CT image of a healthy subject is 

qualitatively illustrated in Fig. 5. The thoracic region of a 22-year-old female was imaged 

using a Siemens Sensation 64 multidetector CT scanner at 120 kVp and 100 mA. The 

subject was scanned in feet-first supine position. The image was acquired at 0.75 mm slice 

thickness and was reconstructed with 0.5 mm slice thickness and (0.55 mm)2 in-plane 

resolution. A coronal slice image of the CT data is presented in Fig. 5(a) in which the 

display intensity was manually chosen to emphasize pulmonary vasculature. The entire 

vascular tree inside the lung region was segmented in a CT image using a previously 

published method by Shikata et al. [42] that uses tree connectivity on CT intensity data after 

processing the image with a tubular enhancement filter [see Fig. 5(e)] and produces a binary 

image (vessels and background). A fuzzy representation of the vascular tree [Fig. 5(b)] was 

generated using the following three steps—1) determine the mean and standard deviation of 

intensity values over segmented vascular region; 2) dilate the binary vascular region by one 

voxel to include partial-volume voxels; and 3) assign fuzzy membership at each voxel over 

the dilated vascular region following a step up Gaussian function with mean and standard 

deviation parameters as computed in Step 1. Seed points for each of the arteries and veins 

were manually selected by an expert using a 2-D-slice-display graphical interface followed 

by the application of the multi-scale topomorphological separator algorithm. The subsequent 

automated process required 2–3 min to complete the A/V separation for each of left and 

right lungs. Finally, separated A/V trees were displayed with color coding [red for veins and 

blue for arteries; see Fig. 5(f)] through a 3-D surface rendition software tool developed in-
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house using VTK-based 3-D visualization filter classes. Results of A/V separation from CT 

image data of another healthy subject’s lung are illustrated in Fig. 6.

Results of the experimental study designed to quantitatively examine the performance of the 

proposed method are now reported. It may be noted that for any given manual artery/vein 

separation (considered as the reference), it is always possible to achieve 100% accuracy with 

the proposed method using a sufficiently large number of seed points. It is, therefore, 

justified to study the performance of the method in terms of its relation between needed user 

intervention and accomplished accuracy or error. Specifically, we compute the accuracy/

error of artery/vein separation as a function of the number of seeds used. Two CT datasets 

presented in Figs. 5 and 6 are used for our quantitative experiment. For each lung data, 

approximately 8000–10000 voxels were manually labeled as arteries and veins by an expert; 

henceforth, this expert input will be referred to as inputA. The purpose of inputA was to 

separately trace arteries and veins in pulmonary vasculature and was accomplished by 

clicking several points on each slice inside corresponding structures. InputA consists of 

approximately 2000–2500 points for arteries and another 2000–2500 points for veins in each 

of the left and right lungs. The first four-five levels of branching are thus described for each 

of the A/V trees. It should be noted that inputA is different from the expert input used to 

produce the A/V separations in Figs. 5 and 6; henceforth, the later expert input will be 

referred to as inputB. InputB was generated by an independent user consisting of 25–35 seeds 

for each of the A/V trees for each of the left and right lungs. Now, we describe a seed 

selection scheme based on expert’s segmentation (inputA) of arteries and veins that is 

considered as the reference in our experimental design. Note that our seed selection scheme 

is based on expert’s segmentation and designed primarily to evaluate the method. Thus, the 

seed selection scheme is not intended to solve problems relating to “automatic seed 

selection” that is a research topic on its own.

Let  = {(p, (p))|p ∈ } denote the fuzzy representation of a pulmonary vascular tree and 

let  denote the FDT map derived from . In this section, the original FDT map without 

any local-scale normalization is used so that the seed selection starts separating arteries and 

veins at larger scales, and then, progresses into finer details. Let Martery and Mvein denote the 

sets of voxels manually labeled by the expert as belonging to arteries and veins, 

respectively; note that Martery and Mvein are the subsets of inputA. The first arterial seed is 

automatically selected as the voxel in Martery with the highest FDT value, i.e., at the largest 

scale value. Let A1 denote the set of the singleton seed voxel; the subscript index indicates 

the iteration number. The set V1 of singleton seed voxel for veins is defined in the exact 

same way using Mvein. Let  and  denote the arterial and venous regions 

computationally segmented from  using the proposed method with A1 and V1 being the sets 

of seeds for arteries and veins, respectively. Accuracy and errors of the proposed method for 

single seed may be computed by comparing  and  with the reference 

segmentation Martery and Mvein.

Exact definitions of accuracy and error measures are described in the following paragraph; 

first, let us describe the iterative progression scheme for seed selection refining artery/vein 

separation. Let Ai and Vi denote the sets of seeds for arteries and veins in the ith iteration, 
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and let  and  denote the regions assigned to arteries and veins, respectively; note 

that each of Ai and Vi contains exactly i number of seeds. Let  denote the same fuzzy 

object as  except that membership values over , i.e., 

the set of correctly segmented artery/vein voxels, are set to zero. Let  denote the FDT map 

of . During the(i + 1)th iteration, the set of arterial seeds is Ai+1 augmented by exactly one 

voxel p to Ai ∪ {p} such that  and it has the highest value in ; in case 

of multiple voxels with the highest FDT value, one is selected arbitrarily. The set of venous 

seeds Vi+1 is augmented in exactly the same manner. It may be noted that the seed selection 

scheme adopted for the current experiment is deterministic in nature, and therefore, 

generates only one sequence of seeds for a given segmentation of vasculature and A/V 

separation.

Accuracy of the method is defined by comparing its results with manual labeling of arteries 

or veins in inputA. Here, we need to mention the following three facts.

1. Each of manually labeled arteries and veins Martery and Mvein is truly a set of voxels 

selected by an expert using mouse cursor clicks and not a painted region. On the 

other hand, our computerized method generates volumetric regions  and 

 for arteries and veins.

2. Segmented arterial and venous trees produced by the computerized method capture 

fine details. On the other hand, the expert could separately trace arterial or venous 

trees only for larger branches.

3. A large number of voxels, approximately 8000–10000, were labeled for arteries/

veins for each thoracic CT image.

Based on these three observations, we have defined segmentation performance measures in 

terms of sensitivity, false detection, and missed locations as follows (arterial definitions 

given):

(11)

(12)

(13)

Sensitivity and false detection measures of the method for the two CT datasets in Figs. 5 and 

6 are presented in Fig. 7(a) and (b), respectively. Assuming that both Martery and Mvein are 

entirely included via initial segmentation of composite pulmonary vasculature, the measure 

of miss was expected to be close to zero and the experimental results confirmed our 
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expectation. Therefore, we omit the graphical plots for miss locations in Fig. 7(a) and (b) 

keeping the graphs simpler. As illustrated in Fig. 7(a), 95% overall sensitivity was achieved 

for the CT dataset in Fig. 5 using 27 seeds at the cost of 4.2% false detections and 0.8% 

miss. It required 52 seeds to accomplish 99% sensitivity at false rate of 0.6% and 0.4% miss. 

For the CT dataset in Fig. 6, 95% overall sensitivity was achieved using 40 seeds at the false 

detection rate of 3.7% and 1.3% miss, and 99% sensitivity was obtained using 66 seeds at 

the false detection rate of 0.5% and 0.5% miss. To convey the quality of artery/vein 

separation at different levels of sensitivity, we present the results for the dataset in Fig. 6 at 

80%, 90%, 95%, and 99% overall sensitivity. It may be interesting to compare the results of 

Fig. 7(f) produced from the expert input inputA with that of Fig. 6(c) (reproduced as Fig. 

7(g) to facilitate the comparison) that was produced from inputB by an independent expert. It 

is encouraging to see the high level of agreement between such two independent expert-

driven separations of arteries and veins using the current algorithm.

An intriguing observation in Fig. 7(a) and (b) is that the sensitivity of separating arteries/

veins may reduce despite adding more seeds. For example, in Fig. 7(b), it starts with almost 

100% sensitivity for arteries, and then, falls significantly after adding more seeds before 

rising again. What happens here is that initially, most of the vasculature is occupied as 

arterial territory leaving only a small region for veins. It leads to the initial high sensitivity 

for arteries, while low sensitivity is observed for veins. As more seeds are added, the 

segmentation loses falsely acquired venous territories along with some arterial territories 

that were connected through those previous false acquisitions of venous territories. This 

leads to the reduction in both arterial sensitivity and false measures, as presented in Fig. 7(a) 

and (b). A high sensitivity together with a low false detection generally indicates a good 

segmentation of the specific structure.

IV. Discussion and Conclusion

In this paper, a fundamentally novel topomorphologic multi-scale opening operator was 

presented for separating two isointensity objects mutually fused at various scales and 

locations. Experimental results demonstrated its performance. The method seeks 

morphological identities of each object at a specific scale and separates them without using 

any gradient- or edge-like features. Introduction of the ideas of morphological 

reconstruction and separator allows the method to seal the joining border at the current scale, 

and then, seek morphological features identifying different objects at finer scales. Let us first 

clarify the differences between the current method and the previous state-of-the-art 

algorithms related to fuzzy connectivity [12], [17], [39] and FDT [15]. The prior arts of FDT 

and fuzzy connectivity are used here only to solve the first step of the three basic steps used 

by our new method, as stated in Section II. Further, the novelty of demonstrating that FDT 

and fuzzy connectivity together with the seeds of two objects allow automatic determination 

of the optimum opening structure scale separating two mutually fused objects is part of the 

current work. Additionally, the morphological reconstruction introduced here to block the 

annular remainder of separation at the current scale is a simple yet effective step allowing 

morphological separations at lower scales. The A/V separation paper published by Lei et al. 

[12] was designed for contrast-enhanced MR images and uses intensity variations at vessel 

walls (which are expected to exhibit lower MR signal values as compared to contrast 
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enhanced lumen) to separate arteries and veins. However, such assumption does not hold for 

CT images where intensity variation at regions of fusion between arteries and veins is 

almost absent. To demonstrate the improvements achieved by the current method, the 

algorithm by Lei et al. and an algorithm with a straightforward application of FDT into 

iterative relative fuzzy connectivity (IRFC) framework [18] were implemented and applied 

to several mathematical phantoms in Fig. 4. By comparing the results of these three different 

methods presented in Fig. 8, it is obvious that the current method is fundamentally different 

from prior state-of-the-art methods. In summary, the technical contributions of the current 

work are as follows.

1. The current work models the A/V separation task via non-contrast CT imaging as 

an entirely new multiscale topomorphologic opening task.

2. Our method provides a unique solution to the problem where existing methods fail.

3. The reported method provides a practical solution to a clinically important 

problem.

4. The presented theory opens a new avenue of multiscale topomorphologic 

operations.

An application of the proposed method for separating pulmonary arteries and veins in in 

vivo thoracic CT images has been studied. For pulmonary CT images, the geometry of 

coupling between arteries and veins is very challenging and quite unknown. However, the 

method has shown acceptable performance with a reasonable number of seeds. 

Approximately 25–35 seeds were manually selected by an expert on each of the A/V 

subtrees for each of the left and right lungs. It may be pointed out that the seeds were 

selected using a 2-D graphical tool. Often, multiple seeds were placed within the same 

locality of an object, and therefore, not all of the seeds contributed to true A/V separation. A 

quantitative experiment has demonstrated that the method can yield 99% accuracy for the 

entire pulmonary vasculature using approximately 60 seeds selected using a computerized 

blind seed selection scheme.

Both qualitative and quantitative results on phantoms as well as clinical pulmonary CT data 

have been presented. Results have established viability of the new method in resolving 

multiscale fusions of two isointensity structures with complex and unknown geometry of 

coupling, which are often present in biological objects. The experimental results, beyond 

any doubt, have established usefulness of the current method in separating arteries and vein 

in pulmonary CT images without any blood pool contrast. We have found that the seed 

selection is an important task in the entire process and the current seed selection tool is far 

from optimal. An effective seed selection process is demanding an appropriate 3-D graphical 

user interface coupled with the multiscale opening operator providing a transparent 

interactive environment to the user. Currently, we are developing such a graphical system 

for efficient seed selection system with appropriate GUI and evaluating the method in terms 

of accuracy, reproducibility, and efficiency on a larger dataset using multiple users. We 

believe that a large-scale evaluation of accuracy, reproducibility, and efficiency will further 

demonstrate the good performance of the method. We also expect that designing an effective 
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seed selection system with a smart GUI will become a valuable research effort in its own 

right.
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Fig. 1. 
Schematic description of the segmentation problem addressed by the proposed multiscale 

topomorphologic opening method and the challenges met at different steps.
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Fig. 2. 
Modular representation of the multiscale topomorphologic opening algorithm separating two 

isointensity objects fused at different scales and locations.
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Fig. 3. 
Illustration of intermediate results at different steps of the multiscale topomorphologic 

opening. (a) 3-D rendition of a computer-generated phantom representing two isointensity 

objects fused at various scales and locations. (b) Few cross-sectional images of the phantom. 

(c) FDT image on the central xy plane. Intuitively, it is a union of two FDT maps, one for 

each cylinder. Although the cylinders are locally separable in the FDT image, no global 

thresholding serves the purpose. (d) Results of separation of two cylinders after first 

iteration using FDT-based connectivity. (e) Morphologic reconstruction on the result shown 

in (d). Regions marked in cyan (or yellow) represent the expansion of the red (respectively, 

blue) object after morphological reconstruction. (f) and (g) Same as (d) after second (f) and 

terminal (g) iterations. (h) and (i) 3-D rendition and cross-sectional images of the final 

result.
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Fig. 4. 
(a)–(k) Results of applying our method to several computer-generated 3-D phantoms after 4 

× 4 × 4 downsampling. (a) and (b) 3-D rendition and cross-sectional images of one phantom. 

(c) Separated cylinders. (d)–(k) Results for other four phantoms. (l)–(v) Results of 

application of the method after downsampling. Note that this level of downsampling makes 

separation impossible for the smallest scale features.
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Fig. 5. 
Results of application of the method to a human in vivo pulmonary multidetector CT image. 

(a) Coronal image slice from a thoracic CT image of a 22-year-old female. (b) Fuzzy 

segmentation of vasculature. (c) and (d) Original and local-scale normalized FDT maps of 

the vasculature. (e) 3-D surface rendition of left and right pulmonary vascular trees. (f) 

Color-coded 3-D rendition of separated arterial and venous trees computed by the proposed 

method.
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Fig. 6. 
Same as Fig. 5 but for another human subject.
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Fig. 7. 
(a) and (b) Graphical presentations of results of quantitative analysis comparing required 

user intervention with accomplished sensitivity and false detection for the pulmonary CT 

data presented in Figs. 5(a) and 6(b). For the example of Fig. 5, the numbers of seeds, false, 

and miss at 95% and 99% overall sensitivity are: 27, 4.2%, 0.8% and 52, 0.6%, 0.4%, 

respectively; these numbers for the example of Fig. 6 are 40, 3.7%, 1.3% and 66, 0.5%, 

0.5%, respectively. (c)–(f) Qualitative illustrations of artery/vein separation at sensitivity 

levels of 80%, 90%, 95%, and 99%, respectively. To facilitate visual comparison, the image 

of Fig. 6(f) is repeated in (g).
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Fig. 8. 
(a) Few examples of mathematical phantoms each containing two tubular objects fused at 

different locations and scales with significant overlap. (b) Results of separations of two 

objects using the algorithm by Lei et al. [12], (c) simple FDT-based IRFC [18], [20], and (d) 

the multi-scale topomorphologic opening algorithm reported here.
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TABLE I

Results of Quantitative Analysis of True Positive and False Negative Separations of Two Objects Using the 

Proposed Multiscale Topomorphologic Opening Algorithm for Different Phantom Images at Different 

Downsampling Rates

Down-sampling rate=4 Down-sampling rate=5

Phantoms True positive False negative True positive False negative

Fig.3(a) 98.00% 0.70% 93.72% 5.06%

Fig.4(a) 99.11% 0.45% 98.64% 0.74%

Fig.4(d) 98.78% 0.45% 98.36% 0.65%

Fig.4(f) 98.43% 0.50% 97.98% 0.50%

Fig.4(h) 97.54% 1.79% 97.45% 1.78%

Fig.4(j) 99.23% 0.28% 96.49% 2.82%
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