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Abstract
A new methodology for estimating the spatial distribution of elastic moduli using the steady-state
dynamic response of solids immersed in fluids is presented. The technique relies on the ensuing
acoustic pressure field from a remotely excited solid to inversely estimate the spatial distribution
of Young’s modulus. This work proposes the use of Gaussian radial basis functions (GRBF) to
represent the spatial variation of elastic moduli. GRBF are shown to possess the advantage of
representing smooth functions with quasi-compact support, and can efficiently represent elastic
moduli distributions such as those that occur in soft biological tissue in the presence of tumors.
The direct problem consists of a coupled acoustic-structure interaction boundary value problem
solved in the frequency domain using the finite element method. The inverse problem is cast as an
optimization problem in which the objective function is defined as a measure of discrepancy
between an experimentally measured response and a finite element representation of the system.
Non-gradient based optimization algorithms in combination with a divide and conquer strategy are
used to solve the resulting optimization problem. The feasibility of the proposed approach is
demonstrated through a series of numerical and a physical experiment. For comparison purposes,
the surface velocity response was also used for the inverse characterization as the measured
response in place of the acoustic pressure.
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1. Introduction
Noninvasive techniques to characterize material properties are of interest in many science
and engineering fields [1–5]. These techniques are of great significance in the medical field
since material properties provide valuable insight about the onset and progression of certain
diseases. For instance, the fact that the elastic modulus of human tissue can be used as a
metric to differentiate between malignant tissue and healthy tissue has led researchers in
recent years to develop techniques to quantitatively reconstruct the spatial distribution of
mechanical properties in soft tissue [6–17].

Different methodologies have been employed to image the distribution of elastic moduli in
soft tissue [14, 18, 19]. The basic premise in determining the mechanical properties of soft
tissues is that current medical imaging techniques such as ultrasound and magnetic
resonance imaging can provide information about complex deformation processes in human
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tissue that, along with information about boundary conditions, can be used to image the
distribution of elastic moduli.

Vibroacoustography (VA) is a medical imaging technique that has shown significant
promise for noninvasive and nondestructive characterization of tissue mechanical properties
[20, 21]. In VA, the radiation force of ultrasound (US) (a nonlinear, second-order
phenomenon in wave theory) is used to produce a localized oscillatory force to vibrate tissue
at low (kHz) frequencies at the focal point of the US beam. The resulting mechanical
vibrations produce an acoustic field emanating from the structure that is detected at a
surrounding accessible point by a sensitive microphone (or hydrophone). Changes in tissue
properties normally produce significant variations in the acoustic field. Thus, this method
can provide detailed information on tissue mechanics at high resolution that is not available
from conventional methods.

Brigham et al. [22] showed that the radiation force of ultrasound and the ensuing acoustic
emissions can be used to characterize the viscoelastic properties of solids. However, in [22],
it was assumed that the boundaries of different material regions were known a priori. The
present work extends the work in [22] by applying the vibroacoustic testing method to
estimate spatially-varying elastic properties.

The inverse estimation of spatially-varying mechanical properties is cast as an optimization
problem in which an error functional that measures the misfit between experimental and
approximated responses is minimized by searching over a space of admissible functions that
describe the distribution of the elastic modulus. Multiple techniques have been proposed in
the literature for solving inverse problems in which the unknown is a function. For instance,
the adjoint method was used by Oberai et al. [6] for solving elasticity imaging problems.
This method has the advantage that only two evaluations of the forward problem are
required in each iteration of the minimization process. The disadvantage of the adjoint
method is that it is a gradient-based method, and only local minima are guaranteed to be
found. An alternate approach is to approximate the unknown function using a finite
dimensional basis and search for the unknown coefficients using non-gradient based
optimization methods [22, 23]. The advantage of this approach is that global minima can
then be found irrespective of initial guesses, but with the disadvantage that, depending on
the basis that is selected, a large number of parameters may be needed, increasing the
computational cost significantly. Despite this, non-gradient based optimization methods are
favored in this work for their robustness and lack of sensitivity to initial guesses. To
improve the computational efficiency of the inverse solution strategy, a divide and conquer
methodology (DCM) was applied during the optimization procedure. The DCM consists of
performing the characterization in a series of optimization stages, where at the end of each
stage, the optimization search domain is incrementally reduced based on the current best
solution estimates.

Since a finite dimensional representation will be used to approximate spatially varying
elastic moduli and the computation expense of the inverse problem increases with the
dimension of the basis, it is very important that an adequate basis be selected. The quality of
a basis for the problem at hand can be judged based on the dimensionality of the subspace
needed to “satisfactorily” approximate the desired elastic modulus distribution. Intuitively
speaking, a basis should intrinsically carry the nature of the possible solutions. One of the
main applications of the present work is the detection and characterization of tumors in
breast tissue. Tumors are expected to be stiff, localized regions embedded in a relatively
homogeneous matrix. It is proposed in this work that this type of property distribution can
be efficiently represented with Gaussian radial basis functions (GRBF). It is important to
point out that the notion of representing tissue stiffness distribution by using quasi-
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compactly supported functions has also been suggested by Skovoroda et al. [17]. However,
in their work GRBF were not used as a finite dimensional basis for inverse elasticity
imaging as proposed herein.

The methodology presented in this work employs vibroacoustic techniques in combination
with GRBF and non-gradient based optimization algorithms to inversely characterize the
elastic modulus field of solids immersed in fluids. In section 2, the finite element
formulation for the coupled fluid-structure problem is presented. In section 3, the inverse
problem formulation is described, as well as the optimization solution strategy. In section 4,
the results obtained for the series of numerically simulated experiments and a physical
experiment are shown. Conclusions and future directions are given at the end.

2. Forward Problem
The vibroacoustic system considered here can be described by a coupled system of partial
differential equations derived from the conservation of linear momentum. The surrounding
fluid was taken to be a semi-infinite medium, and the only excitation in the fluid was
assumed to be due to the motion of the solid. The boundary value problem describing the
forward problem is given in Box 1. The equations describing the boundary-value problems
used in this work are well known. The reader can consult Reference [22] for further details.
Each dot on top of a variable denotes a time derivative, vectors will be denoted with an
over-arrow on top or within curly brackets, tensors will be represented with bold letters, and
matrices will be enclosed within square brackets.

Box 1

Forward problem

Solid formulation

(1)

(2)

(3)

(4)

(5)

Fluid formulation

(6)
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(7)

(8)

(9)

In the above solid formulation, t denotes time, x⃗ is the position vector, ρ is the mass density
(assumed constant in this work), CIV(x⃗) is the 4th order elasticity tensor, σ(x⃗,t) is the stress
tensor, b⃗(x⃗,t) is a body force, ε(x⃗,t) is the Cauchy infinitesimal strain tensor, u⃗(x⃗,t) is the

displacement vector,  is the acceleration vector, T⃗(x⃗,t) is the traction vector, n⃗(x⃗) is
the unit outward normal vector to the solid surface, Ω is the solid domain, ΓT is the part of
the boundary where the tractions are specified (i.e. Neumann boundary conditions), Γfs is
the fluid-structure interface, and Γu is the part of the boundary surface where the
displacements are specified (i.e. Dirichlet boundary conditions).

For the acoustic fluid formulation, ρ f is the fluid mass density, Bf is the bulk modulus of the
fluid, f and β are geometry-specific parameters for improved non-reflecting radiation
condition, p(x⃑,t) is the scalar acoustic fluid pressure in excess of hydrostatic pressure, u⃑f (x⃑,t)
is the fluid particle displacement vector,  is the acceleration of the fluid boundary in
the direction of the normal, n⃑f (x⃑) is the unit normal vector to the fluid surface, Φ is the fluid
domain, and ΨR is the portion of the boundary where the radiation condition is specified
(i.e. Robin boundary conditions).

The finite element formulation of the initial-boundary value problem is given in Box 2. In
Box 2U(Ω) is a subspace of the Sobolev space H1(Ω) and whose functions satisfy
homogeneous Dirichlet boundary conditions on Γu, V(Ω) is the Sobolev space of functions
that satisfy homogeneous essential boundary conditions where pressure is specified, [Ms] is
the solid mass matrix, [Cs] is the solid damping matrix, [Ks] is the solid stiffness matrix,

{ } is the solid external force vector, [Cs] is the solid damping matrix, α and μ are
damping factors (Rayleigh Damping), [D(x⃗)] is the stiffness matrix representation of the
elasticity tensor CIV(x⃗), [Mf] is the fluid mass matrix, [Cf] is the fluid damping matrix, [Kf]
is the fluid stiffness matrix, [S] is the interaction matrix, Γsf is the interaction boundary
between the structure and the fluid, [N(x⃗)] is the matrix of interpolation functions for the
solid elements, [H(x⃗)] is the matrix of interpolation functions for the acoustic elements,
[B(x⃗)] is the matrix of spatial derivatives of the solid interpolation functions, and [F(x⃗)] is
the matrix of derivatives of the interpolation functions. For more details on the derivations
of the Equations presented in Box 2 see Reference [22]. For the sake of simplicity in this
proof of concept, Rayleigh damping was used in the numerical and physical experiments.

Box 2

Finite element formulation of forward problem

Variational formulation for the solid
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(10)

Variational formulation for the fluid

(11)

Semidiscretized formulation for the coupled system Solid

(12)

(13)

(14)

(15)

(16)

Fluid

(17)

(18)

(19)

(20)

(21)
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The structure and the fluid are coupled through their corresponding external force vectors.
The load applied to the structure by the fluid pressure translates into an external traction
force acting on the structure surface in the direction of the fluid normal. The solid
acceleration normal to the interface translates into a pressure gradient on the fluid. The
structural displacements, fluid pressure, and external forces are assumed to vary
harmonically and the resulting coupled system of equations in the frequency domain is
shown in Box 3 [22].

In the above formulation ω represents frequency, ℜ denotes real components, and ℑ denotes
imaginary component.

Box 3

Finite element couple system of equations

(22)

(23)

(24)

(25)

3. Inverse Problem
3.1 Elasticity Representation

Tumors are presumed to be localized stiff regions embedded in a soft matrix. In addition, it
was assumed that any tumor present at a region of interest will cause relatively gradual
changes in elastic properties. For this reason, Gaussian radial basis functions (GRBF) were
used, since the GRBF possess parameters that can properly represent these properties [24].

The spatial distribution of elastic modulus is defined as a weighted sum of N radially
symmetric basis functions augmented by a constant term, given by

(26)

where Eo is the matrix Young’s modulus, λi are real-valued coefficients, x⃗i are the GRBF
centers, and ϕ is the GRBF, which is defined as
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(27)

where ||…||2 is the ℓ2-norm and c are the locality parameters that control the size of the
GRBF region of influence.

In order to compute the λi parameters, the interpolation scheme shown in References [25]
and [26] was used. The values of the Young’s modulus at the centers of the GRBFs are
denoted as Ê(x⃗i). These values were taken as the main unknown variables in the inverse
problem and were computed using the λi parameters by requiring that the following
interpolation condition was satisfied

(28)

This approach attaches a physical meaning to the solution of the inverse problem as opposed
to the non-physical parameters λi. In addition, setting constraints on Ê(x⃗i) (e.g. strictly
positive) is easier than setting constraints on λi (e.g. could be negative or positive).

3.2 Inverse Problem Formulation
An optimization approach was used to inversely characterize the spatial distribution of
elastic modulus through the acoustic emissions induced by the radiation force of ultrasound.
First, an error functional was defined to measure the difference between the experimental
and approximated responses and it is given by

(29)

The quantities r⃗Exp and r ⃗FEA represent the experimental and approximated responses,
respectively. After parameterization, the error functional can be expressed as

(30)

where {ζ} = {x⃗1, …, x⃗m} is the set of coordinates of the GRBF centers, {Ê} = {Ê1, …, Êm}
is the set of Young’s modulus at the center of the GRBF, and {c} = {c1, …, cm} is the set of
locality parameters.

The inverse problem is then cast as an optimization problem in which the error functional
defined in Eq. (30) is minimized by searching over a space of admissible vectors that
describe the spatial distribution of elastic modulus. Therefore, the minimization problem is
described as

(31)
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3.3 Optimization Algorithms
It is widely known that gradient-based algorithms guarantee convergence only to local
minima in non-convex problems. For problems where data sparsity is significant, non-
gradient based methods are preferred over gradient-based methods since data sparsity can
create non-convex error surfaces. Through numerical experiments it was determined that the
error surfaces encountered in the problems addressed herein are non-convex. Therefore,
global optimization methods were used for the inverse problems presented in this paper.
Since the main focus of the work is not on optimization, the global search algorithms used
herein are briefly described below.

Two global optimization methods were employed to solve the inverse problem studied in
this work: a real value genetic algorithm (GA) [27, 28] and the Surrogate-Model
Accelerated Random Search (SMARS) algorithm proposed in [29]. The GA was used for
the less computationally demanding numerical experiments, while SMARS was used for the
more computationally demanding physical experiment. Three common operators were used
for the GA: stochastic uniform sampling as the selection operator; single point crossover as
the reproduction operator, and a uniform distribution for mutation.

The SMARS algorithm is a combination between a random search algorithm [30] and a
surrogate-model optimization approach [31]. The random search part of SMARS is used to
efficiently search vast and complex error surfaces. It has been shown that the random search
algorithm is guaranteed to converge to a global solution in a probabilistic sense [32].
However, the number of iterations needed for finding a global solution is high. Therefore,
SMARS uses a surrogate-model approach where an artificial neural network is used to map
local regions of the search space, producing a computationally inexpensive estimate of the
solution. By using the surrogate-model, SMARS reduces the number of objective function
evaluations needed to find an optimal solution.

3.4 Divide and Conquer Methodology
Computational time can represent a problem when non-gradient-based optimization methods
are used. In order to address this problem, a divide and conquer methodology (DCM) was
used to iteratively reduce the search space of the GRBF centers during the optimization
process.

Figure 1 shows a schematic representation of the DCM. First, an optimization run is
performed, where the complete solid domain is used as the search space for the GRBF
centers, as shown in Figure 1a. Only a few iterations of the search algorithm are allowed in
this first run. Next, a subspace of the spatial domain of the GRBF centers is chosen using the
solution from the first optimization run to identify a smaller domain which is likely to
contain the solution. The search for the GRBF centers is then confined to this subspace in
the next optimization run, as shown in Figure 1b. The process is continued until the error
functional is decreased below a certain tolerance or a maximum number of iterations is
reached, as shown in Figure 1c.

4. Results and Discussion
Two numerical experiments were performed to test the potential of the proposed technique
to inversely characterize the spatial distribution of elastic moduli in general solid domains.
To validate the methodology in a realistic setting, a physical experiment was also performed.
For both, numerical and physical experiments, the solid body was excited at one or more
locations and the acoustic and velocity responses were measured at several points. Then,
these measured responses were used to inversely reconstruct the spatial variation of Young’s
modulus in the solid.

Aguilo et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.1 Numerical Experiments
A plain strain condition was used in the simulated experiments in order to reduce
computational demand. Figure 2 shows a schematic of the numerical experiments. The solid
domain had dimensions of 14 mm × 14 mm. Displacements in the vertical direction were
constrained at the bottom edge of the solid and the displacements at the lower left corner
were fixed. For this work, the density and the Poisson’s ratio of the solid were assumed to be
1050 kg/m3 and 0.48, respectively. The mass proportional damping parameter, α, was set to
5000 and the stiffness proportional damping parameter, μ, was set to 0. The solid was
immersed in a circular fluid domain with radius, rf, of 30 mm. To avoid reflection effects,
the Sommerfeld radiation boundary condition was specified in the outer fluid boundary. The
Sommerfeld radiation boundary condition parameters f and β were set to 1 and 1/2rf,
respectively. The properties of the fluid were assumed to be known for the inverse problem,
with density of 1000 kg/m3 and bulk modulus of 2.2 GPa.

The first numerical experiment consisted of a single stiff inclusion embedded in a soft
matrix. The inclusion was represented with a combination of five GRBFs. The Young’s
modulus at the GRBF centers was 4 GPa. The second numerical experiment consisted of
two inclusions, and each inclusion was represented with a combination of five GRBFs. The
Young’s modulus at the GRBF centers for the two inclusions was 4 GPa and 2 GPa. The
matrix Young’s modulus was taken as 1 GPa for both experiments. Figure 3a and 3b shows
the target spatial distribution of the elastic modulus for each case. The values of Young’s
modulus were selected so that the wave number in the governing equations remained low
and, therefore, the computational cost for performing one finite element analysis was kept
low.

The range of frequencies considered for these experiments was 40 kHz to 50 kHz, which
resembles frequencies used in Vibro-acoustography [33]. Nine body forces were applied
simultaneously in the x2-direction at equally spaced points as shown in Figure 2. Two
response quantities (i.e. acoustic pressure and surface velocity), measured at eight different
points, were used separately to solve the inverse problem. For the acoustic pressure response
eight frequencies were selected, and for the surface velocity response fourteen frequencies
were selected. Figure 4a and 4b gives a schematic of the measurement points selected for
each response.

In all cases, four radial basis functions were used for the estimation. Therefore, the
parameters to be identified were four pairs of coordinates for the GRBF centers, the matrix
elastic modulus, four locality parameters, and the four values of the Young’s modulus at the
centers of the GRBFs for a total of 17 unknowns for the inverse problem. Table 1 shows the
minimum and maximum parameter values (i.e. search range) considered for the two
simulated inverse problems.

Random Gaussian noise was added to both responses to explore the tolerance of the
proposed methodology to imperfect data. The random Gaussian noise was added as

(32)

where  is the response (i.e. velocity or pressure) at the ith point with noise,  is the
corresponding quantity without noise, and η is a normally distributed variable with unit
mean and zero variance.

To verify the Divide and Conquer Method (DCM), the numerical experiments were
performed also without the DCM for a fixed number of function evaluations. Due to the
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stochastic nature of the algorithms used in this work, five optimization runs were performed
for each example, while keeping the algorithm parameters constant. The mean and standard
deviation of the results were calculated and are discussed in the next section.

4.2 Numerical experiment with one inclusion
4.2.1 Results for the acoustic pressure response—For the case where acoustic
response was used for the identification, the region in which the inclusion was located was
identified in all optimization runs performed with the DCM without identifying spurious
inclusions. Contrary to the results obtained with the DCM, the region in which the inclusion
was located was identified in four of the five optimization runs performed without the DCM;
therefore, more function evaluations were needed to decrease the error. In the unsuccessful
run, two spurious inclusions were found in addition to the target inclusion. Figures 5b and 5c
show examples of the spatial distribution of the elastic modulus found as solutions to the
inverse problem for both cases. The parameters obtained as the solution to the inverse
problem were used in forward finite element runs and the resulting frequency spectra of the
acoustic pressure were compared to those of the simulated experiment.

Figures 6a and 6b show the mean and standard deviation of the acoustic pressure response
obtained for both case with the DCM and the case without the DCM, respectively. These
spectra correspond to one of the eight measurement points in the fluid. It can be noticed
from these figures that the DCM method produced more accurate results and with less
scatter. The mean and standard deviation of the Young’s modulus of the matrix are tabulated
in Table 2. These results show an accurate estimation of the matrix Young’s modulus
regardless of whether or not the DCM was used; however, the results obtained using the
DCM show less scatter.

4.2.2 Results for the surface velocity response—When surface velocity was used as
the measured response in the inverse problem, the region in which the inclusion was located
was identified in all the optimization runs performed with the DCM without identifying
spurious inclusions. For the numerical experiment where the DCM was not implemented,
the region in which the inclusion was located was identified in all the optimization runs, but
in two of these five runs a spurious inclusion appeared in the results. Figures 7b and 7c show
the distribution of the elastic modulus for the cases with and without the DCM, respectively.

Figures 8a and 8b show the velocity frequency spectra corresponding to one of the eight
measurement points for forward finite element runs using the inverse problem solutions. The
figures show that in this case the DCM also produced more accurate results and with less
scatter for a fixed number of function evaluations. The mean and standard deviation of the
matrix Young’s modulus are presented in Table 3. The results show trends similar to those
found for the case when the acoustic response was used. The elastic modulus of the matrix
was estimated accurately for all cases, but the DCM produced less scatter.

4.3 Numerical experiment with two inclusion
4.3.1 Results for the acoustic pressure response—The regions in which both
inclusions were located were identified in four of the five optimization runs performed with
the DCM without identifying spurious inclusions. In the unsuccessful optimization run, the
region in which the stiffer inclusion was located was identified, but the region in which the
softer inclusion was located was not identified. When the DCM was not used, the regions in
which both inclusions were located were identified in four of the five optimization runs
performed. However, the results consistently showed one spurious inclusion when the DCM
was not used. Figures 9b and 9c show examples of the distribution of the elastic modulus
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found as solutions to the inverse problem for the cases with and without the DCM,
respectively.

Similarly to the numerical experiments with one inclusion, forward finite element analyses
were performed using the solution found in the inverse problem. Figures 10a and 10b shows
the mean and standard deviation of the acoustic pressure response corresponding to one of
the eight measurement points in the fluid. Again, the results corresponding to the case with
DCM show higher accuracy and less scatter.

The mean and standard deviation of the matrix Young’s modulus is shown in Table 4. As in
the case for one inclusion, these results show an accurate estimation of the matrix Young’s
modulus regardless of the implementation of the DCM. However, in this case, there was not
a significant difference in the mean values and the scatter when using the DCM versus not
using DCM. A possible explanation for this behavior may be that a higher value of the error
function was attained in this case as compared to the case of one inclusion (i.e. the
optimization problem becomes more difficult in the present case).

4.3.2 Results for the surface velocity response—The regions in which both
inclusions were located were identified in all of the optimization runs performed with the
DCM. When the DCM was not used, the regions in which both inclusions were located were
identified in three of the five optimization runs. In contrast to the results obtained for the
acoustic pressure response, the results obtained with the surface velocity response do not
show the presence of spurious inclusions. In the two unsuccessful optimization runs, the
region in which the stiffer inclusion was located was identified but the region in which the
softer inclusion was located was not identified. Figures 11b and 11c show examples of the
spatial distribution of elastic modulus found as solution to the inverse problem with and
without the DCM, respectively.

Forward finite element analyses showed that the results found with the DCM produced more
accurate responses and with less scatter. Figures 12a and 12b show the mean and standard
deviation of the surface velocity obtained for both cases corresponding to one of the eight
measurement points in the solid. In addition, the mean and standard deviation for the matrix
Young’s modulus is shown in Table 5. Similarly to the numerical experiment with one
inclusion, these results show that the matrix Young’s modulus was found accurately
regardless of the implementation of the DCM.

4.4 Physical Experiment
4.4.1 Description—This experiment was designed to measure the vibration of a cylinder
with a spherical inclusion in response to a harmonic radiation force applied to the sphere. A
cylinder having a diameter of 45 mm and 45 mm length was created using a 4 %
concentration agar (Bacto Agar, Becton-Dickinson, Sparks, MD) solution. The cylinder
contained a 16-mm-diameter solid neoprene rubber sphere suspended in the center. The test
object and the experimental setup are shown in Figure 13.

The cylinder rested on a platform in the water tank. To prevent the cylinder from moving
due to its almost neutral buoyancy, a thin 1.4 cm diameter metal disk weighing 16.4 g was
placed sitting on its top surface. A vertical narrow stripe was painted on one side of the
cylinder using a thin layer of white latex paint to provide optimal reflectivity for the motion
measurement by a laser vibrometer. The driving force for the sphere was provided by the
radiation force of a 3 MHz ultrasound transducer having a 44 mm diameter and 7 cm focal
length. This transducer was focused on the surface of the sphere along a radial line.

Aguilo et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The excitation that was used to drive the transducer consisted of a suppressed-carrier
amplitude modulated (AM) tone burst with the carrier frequency of 3 MHz and the

modulation frequency of . The resulting ultrasound beam generated a harmonic radiation
force at frequency fm on the sphere. The duration of the tone burst was equal to four cycles

of the radiation force, i.e., . The frequency values used were fm = 100, 200, 300, 400, and
500 Hz.

The laser vibrometer (Polytec GmbH, Waldbronn, Germany) used in this experiment is
capable of measuring surface velocity. The laser beam was aimed at several points on the
painted portion along the length of the cylinder. Vibration of the cylinder surface resulting
from the neoprene sphere vibration was detected along the vertical line indicated in Figure
13 at 2 mm intervals over a total length of 22.5 mm. The laser vibrometer velocity output
was digitized and stored to computer disk for later analysis.

4.4.2 Finite Element Model—A 3D finite element model was used to simulate the
physical experiment. Agar gel and rubber are well known to be nearly incompressible (i.e. υ
≈ 0.5). Therefore, Poisson’s ratio was assumed to be known. The density of the agar gel and
the inclusion were also assumed known and were taken as 1000 kg/m3 and 1111 kg/m3,
respectively. To represent the displacement boundary conditions of the experiment,
displacements in the vertical direction were constrained at the bottom face and the
displacements at the lower left corner of the solid were fixed. The solid was immersed in a
spherical fluid domain with radius, rf, of 50 mm. The properties of the surrounding water
were assumed to be known, with density and bulk modulus of 1000 kg/m3 and 2.2 GPa,
respectively. To avoid reflection effects, the Sommerfeld radiation boundary condition was
specified in the outer fluid boundary. The Sommerfeld radiation boundary condition
parameters f and β were set to 1 and 1/2rf, respectively.

The radiation force was modeled as a pressure force confined on a circular region with a 0.7
mm diameter on the inclusion surface [34]. Due to the linearity of the fluid-structure
equations, the surface velocity response was normalized at each measurement point by their
respective maximum amplitude occurring over the frequency range. By normalizing the
surface velocity response, any uncertainty in the knowledge of the magnitude of the
ultrasound radiation force used in the experiment is eliminated.

It is important to point out that only velocity response was used for the case of the physical
experiment because of the low frequencies involved. These low frequencies have
corresponding larger wave lengths in the fluid, which would result in reflections from the
tank walls and interfere with the acoustic emission emanating directly from the solid. This
problem can be avoided by using higher excitation frequencies (i.e. lower wave lengths), but
this leads to a very computationally demanding problem to model in 3D due to the very
small wavelengths in the soft matrix. For this proof of concept, we opted for using velocity
response to keep the computational demand low.

Two GRBF were used to inversely characterize the spatial distribution of elastic modulus.
Consequently, the locality parameters of the GRBF, the coordinates of the GRBF centers,
the Young’s modulus at the GRBF centers, and the matrix Young’s modulus were identified
in the inverse problem. The stiffness proportional damping parameter, β, was set to 0 and
the mass proportional damping parameter, α, was identified through the inverse problem.
Table 6 shows the minimum and maximum values considered for the optimization problem
[35, 36].
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4.4.3 Results—The Young’s modulus of the inclusion was measured through mechanical
testing as 350 KPa. After completing the optimization problem, the Young’s modulus at the
stiffest point in the domain and the matrix were 329 KPa and 25.2 KPa, respectively.
Figures 14 and 15 show the spatial distribution of the elastic modulus found as a solution to
the inverse problem compared to the expected distribution. It can be observed from these
figures that the estimated distribution of Young’s modulus agrees with the target solution.

Figure 16 shows the magnitude of the surface velocity for the 12 measurements points for
five excitation frequencies. In general, there was reasonable agreement between the
estimated response and the observed/experimental measurements. The discrepancies
observed in these plots can likely be attributed to the lack of rate dependent viscoelastic
behavior in the numerical model. Future work will incorporate rate dependent viscoelastic
behavior into the formulations presented herein.

5. Conclusions
A new methodology to inversely characterize the spatial distribution of elastic moduli using
vibroacoustics based techniques in combination with Gaussian radial basis function
representations, non-gradient based optimization methods, and the finite element method
was presented. Through numerical experiments and a physical experiment it was shown that
the proposed methodology can accurately estimate the spatial distribution of the elastic
modulus of solids immersed in fluids using the acoustic pressure response. It was observed
that, for the case when multiple inclusions are present, the accuracy is significantly
improved when the surface velocity response is used. The results reveal that Gaussian radial
basis functions can efficiently represent elastic moduli distribution such as those that occur
in soft biological tissue in the presence of tumors. The number of measurement points
needed to inversely characterize the spatial distributions of elastic moduli is relatively small,
making the use of the propose methodology feasible for realistic applications.

In addition, results revealed that for a fixed number of function evaluations the Divide and
Conquer Method yielded better results in comparison to the results obtained when the
Divide and Conquer Method was not used. Therefore, a reduction in computing time can be
achieved by using the Divide and Conquer Method.

Although the results presented in this paper are promising, it is well known that biological
tissues have rate dependent viscoelastic behavior; therefore, future work will consider
estimating the spatial distributions of viscoelastic properties (viscoelasticity imaging).
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FIGURE 1.
Schematic of the DCM for a) the first, b) second, and c) third optimization run.
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Figure 2.
Schematic of the finite element model used for the numerical experiments.
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FIGURE 3.
Schematic of the spatial distribution of elastic modulus for the numerical experiments with
a) one Inclusion and b) two Inclusions.
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FIGURE 4.
Measurement points selected to solve the inverse problem for a) the acoustic pressure
response and b) the surface velocity response.
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FIGURE 5.
Spatial distribution of elastic modulus for the numerical experiment with one inclusion for a)
the target solution, b) the solution to the inverse problem using the acoustic pressure
response with the DCM, and c) without the DCM.
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FIGURE 6.
Mean and standard deviation of the acoustic pressure response obtained from 5 optimization
trials for the numerical experiment with one inclusion a) using the DCM and b) without
using the DCM.

Aguilo et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 7.
Spatial distribution of elastic modulus for the numerical experiment with one inclusion for a)
the target solution, b) the solution to the inverse problem using the surface velocity response
with the DCM, and c) without the DCM.
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FIGURE 8.
Mean and standard deviation of the surface velocity response obtained from 5 optimization
trials for the numerical experiment with one inclusion a) using the DCM and b) without
using the DCM.
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FIGURE 9.
Spatial distribution of elastic modulus for the numerical experiment with two inclusions for
a) the target solution, b) the solution to the inverse problem using the acoustic pressure
response with the DCM, and c) without the DCM.
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FIGURE 10.
Mean and standard deviation of the acoustic pressure response obtained from 5 optimization
trials for the numerical experiment with two inclusions a) using the DCM and b) without
using the DCM.
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FIGURE 11.
Spatial distribution of elastic modulus for the numerical experiment with two inclusions for
a) the target solution, b) the solution to the inverse problem using the surface velocity
response with the DCM, and c) without the DCM.

Aguilo et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 12.
Mean and standard deviation of the surface velocity response obtained from 5 optimization
trials for the numerical experiment with two inclusions a) using the DCM and b) without
using the DCM.
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FIGURE 13.
a) Diagram of the experiment. b) Experimental setup. The photo shows the agar cylinder.
The marking on the cylinder are the laser motion measurement points that are 2 mm apart.
The transducer is behind the cylinder.
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FIGURE 14.
Schematic of the spatial distribution of elastic modulus for a) target solution and b) the
solution found through the inverse problem using the surface velocity from the physical
experiment.
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FIGURE 15.
Plane views for the spatial distribution of elastic modulus obtained as the solution to the
inverse problem using the surface velocity from the physical experiment.
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FIGURE 16.
Comparison between the magnitudes of the surface velocity response found as solution to
the inverse problem (IP) and the target response for: a) 100 Hz, b) 200 Hz. c) 300Hz, d)
400Hz, e) 500 Hz.
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TABLE 1

Search ranges for the optimization parameters of the numerical experiments.

Optimization Parameter Optimization Minimum Optimization Maximum

Eo 0.8 GPa 2.0 GPa

Einc 0.5 GPa 5.0 GPa

c 1.0 mm 3.0 mm

x −7.0 mm 7.0 mm

y −7.0 mm 7.0 mm
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TABLE 2

Mean and standard deviation of the matrix Young’s modulus for the numerical experiment with one inclusion
using the acoustic pressure response.

Case Target Eo (Pa) Mean Eo (Pa) Standard Deviation

With DCM 1.00×109 1.03×109 1.01×107

Without DCM 1.00×109 9.81×108 7.35×107
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TABLE 3

Mean and standard deviation of the matrix Young’s modulus for the numerical experiment with one inclusion
using the surface velocity response.

Case Target Eo (Pa) Mean Eo (Pa) Standard Deviation

With DCM 1.00×109 9.66×108 7.22×107

Without DCM 1.00×109 9.82×108 8.94×107
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TABLE 4

Mean and standard deviation of the matrix Young’s modulus for the numerical experiment with two inclusions
using the acoustic pressure response.

Case Target Eo (Pa) Mean Eo (Pa) Standard Deviation

With DCM 1.00×109 9.72×108 7.06×107

Without DCM 1.00×109 9.56×108 8.60×107
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TABLE 5

Mean and standard deviation of the matrix Young’s modulus for the numerical experiment with two inclusions
using the surface velocity response.

Case Target Eo (Pa) Mean Eo (Pa) Standard Deviation

With DCM 1.00×109 1.01×109 6.19×107

Without DCM 1.00×109 9.69×109 6.83×107
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TABLE 6

Search ranges for the optimization parameters of the physical experiment.

Optimization Parameter Optimization Minimum Optimization Maximum

Eo 10 kPa 50 kPa

Einc 100 kPa 500 kPa

α 5,000 15,000

c 1 mm 12 mm

x 0 mm 45 mm

y 0 mm 45 mm

z 0 mm 70 mm
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