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Abstract
Image acquisition of magnetic resonance imaging (MRI) can be accelerated by using multiple
receiving coils simultaneously. The problem of reconstructing an unaliased image from partially
sampled k-space data can be formulated as a large system of sparse linear equations. The k-space
sparse matrix (kSPA) algorithm proposes to solve the system of equations by finding a sparse
approximate inverse. This algorithm has been shown to accelerate the image reconstruction for a
large number of coils. The original kSPA algorithm requires knowledge of coil sensitivities. Here,
we propose and demonstrate an auto-calibrated kSPA algorithm that does not require the explicit
computation of the coil sensitivity maps. We have also shown that calibration data, in principle,
can be acquired at any region of k-space. This property applies to arbitrary sampling trajectories
and all reconstruction algorithms based on k-space. In practice, because of its higher SNR,
calibration data acquired at the center of k-space performed more favorably. Such auto-calibration
can be advantageous in cases where an accurate sensitivity map is difficult to obtain.

Index Terms
k-space sparse matrix (kSPA); magnetic resonance imaging (MRI); parallel imaging; sparse
approximate inverse; sparse matrix

I. Introduction
By utilizing the spatial variation of the receiving coil’s sensitivity, parallel imaging has
become a very useful technique for improving the acquisition speed of magnetic resonance
imaging (MRI) [1]–[5]. This fast imaging technique has found great utility in a variety of
imaging applications [6]–[13].

The main rationale of parallel MRI is to reduce the time-consuming process of phase
encoding with spatial encoding. By doing so, the image reconstruction procedure has
deviated from performing the fast Fourier transform to solving a system of large linear
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equations. In Fourier transform based MRI, the phase encoding coefficients can be
controlled by varying the magnetic field gradients. Although the gradients may not be
perfect, they can be predetermined fairly accurately with the continuing advance of gradient
coil design. In parallel imaging, however, the spatial encoding coefficient, that is the coil’s
sensitivity, cannot be controlled by the MRI scanner operator and is typically unknown. The
image quality of parallel imaging, on a large degree, depends on the accuracy of coil
sensitivity. Therefore, it is crucial to determine coil sensitivities as accurately as possible.

In general, there are two approaches to determine and utilize the coil sensitivity information.
One approach is to measure sensitivity maps directly and use them to form a system of
linear equations such as the approach adopted in sensitivity encoding (SENSE) [3], [4]. The
other approach is to estimate the reconstruction weights from some pre-measured calibration
data without determining the sensitivity maps explicitly such as the approach proposed in
the auto-calibrated simultaneous acquisition of spatial harmonics (AUTO-SMASH) [14] and
the approach adopted in the technique of generalized autocalibrating partially parallel
acquisitions (GRAPPA) [5]. The general idea of GRAPPA is that sensitivity information is
inherently captured by the calibration data, reconstruction weights, therefore, may be trained
on this calibration data. GRAPPA was originally introduced for Cartesian sampling
trajectory; however, some recent works have attempted to extend this technique to non-
Cartesian trajectories [15]–[17].

For the purpose of fast reconstruction of time-series images and massive parallel imaging
using a large number of coils, Liu et al. recently proposed a method for parallel imaging
reconstruction by inverting a k-space sparse matrix (kSPA) [18]. In the kSPA algorithm, the
image reconstruction problem is formulated as a system of sparse linear equations in the k-
space, and the system of equations is solved by computing a sparse approximate inverse
[19], [20]. This algorithm shares some characteristics of both SENSE and GRAPPA. Similar
to SENSE, kSPA requires an explicit estimation of the coil sensitivity. On the other hand,
kSPA reconstructs an image in the k-space similar to GRAPPA. In contrary to GRAPPA,
kSPA reconstructs a total of one image rather than one image for each coil.

In this paper, we propose a method of performing kSPA reconstruction without estimating
the coil sensitivity. Rather than calculating the sparse reconstruction matrix based on the coil
sensitivity, the reconstruction matrix is computed directly from calibration data. In addition,
we show mathematically that the calibration data can be situated in any location of k-space
and is not restricted to the center of k-space. The proposed algorithm demonstrates excellent
image quality for both simulated and in vivo data. Although the reconstruction speed is
generally slower than the original kSPA algorithm, the proposed kSPA variation can be
particularly advantageous in cases where an accurate sensitivity map is difficult to obtain.

II. Theory
To aid the presentation, a table is provided that summarizes and defines the notations used
(Table I).

A. kSPA Algorithm
Following the Nyquist theorem, the data acquired by the nth channel of a multichannel coil
at an arbitrary k-space location κμ can be written as [18]
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(1)

To differentiate a Cartesian grid from an arbitrary sampling location, the Latin letter k is
used to indicate a Cartesian grid point while the Greek letter κ is used to indicate an
arbitrary location. Here, m(kρ) represents the Fourier transform of the underlying
magnetization distribution as expressed in k-space (ρ = 1 ··· N2 for an N × N grid); sn(kρ) is
the Fourier transform of the receiving sensitivity sn(rρ) of the nth coil; c(κμ) is the
interpolation kernel; and the sign “*” represents the 2-D convolution. In this study, c(κμ) is
approximated by a finite-width Kaiser-Bessel window. It should be noted that although a
typical MRI image is not band limited, higher frequency components beyond the coverage
of k-space are irrecoverable and, hence, assumed to be zero throughout this paper.

Equation (1) can be simplified to

(2)

Here s ̃n(κμ) is the spectrum of the coil sensitivity interpolated at an arbitrary k-space
location κμ according to

(3)

Notice that both sn(κμ − kρ) and c(kρ) are sampled on regular Cartesian grids for a given κμ.
With multiple receiving coils and a number of sampling locations, a system of linear
equations can be constructed using (2) and it can be written in a matrix form as

(4)

Here, d is a column vector stacked with the k-space data acquired by all coils; m is a column
vector stacked with the k-space value to be estimated; G is the coefficient matrix whose
entries are formed by corresponding values of s̃n (κμ − kρ). In other words, G is an inverse
gridding operator that transforms data on a Cartesian grid to arbitrary locations in k-space.
More specifically, d, G and m are defined, respectively

(5)

(6)
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(7)

In kSPA image reconstruction, an image is reconstructed from undersampled k-space data
by computing the pseudo inverse operator

(8)

For typical MRI exams, G is prohibitively large and its inverse cannot be practically
computed. To realistically compute the inverse operator, the kSPA algorithm makes two
basic approximations: the approximation of G as a sparse matrix and the approximation of
(GHG)−1 as a sparse matrix.

The first approximation is valid because coil sensitivity contains only low spatial frequency
components. Let ws be the cutoff bandwidth of the sensitivity, then

(9)

An empirical choice of ws is such that at the cutoff frequency sn(kρ) decreases to around
0.36% of its peak value. The second approximation originates from the concept of sparse
approximate inverse [19], [20] which was first introduced as a pre-conditioner for the
conjugate gradient (CG) method. Let M = (GHG) and M† be its pseudo inverse, then M is a
N2 × N2 symmetric matrix whose entries are given by

(10)

Note that, since Mρρ′ is nonzero only if there exists at least one sampling location κμ such

that both  and s̃n(κμ − κρ′) are nonzero. Furthermore, matrix M is a banded semi-
positive definite matrix. It can be shown that for such matrix, the entries of the inverse

matrix decay exponentially and are bounded by  where a > 0 and γ < 1.
The values of a and γ are determined by the spectrum of matrix M [21]. Intuitively, when

the distance ||kρ − kρ′|| is large, the size of the element , will be very small, that is, M† is
approximately sparse [21]–[23].

Assuming the inverse matrix M† can be approximated as a sparse matrix [19], [20], we can
find each row of M† by solving a small set of linear equations which is formed by varying
kσ following the condition set by (9)
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(11)

and

(12)

Here, w is the width of the reconstruction kernel that defines the sparsity of the inverse
matrix. After M† is computed, the Fourier transform of the image can be simply estimated as

(13)

To summarize, kSPA reconstruction consists of two steps: the first step is multiplying the
raw data with a gridding operator GH, and the second step is multiplying the gridded data
with an unmixing operator M†. The algorithm has been demonstrated with both simulated
and in vivo data sets sampled on arbitrary trajectories. The image quality has been shown to
be similar to that of iterative SENSE.

B. Auto-Calibrated kSPA
The original implementation of kSPA requires the estimation of coil sensitivity [18]. The
estimation of coil sensitivity typically involves the division of each individual coil’s image
by the sum-of-squares image, followed by postprocessing procedures such as low-pass
filtering and surface fitting [3]. Because image quality is sensitive to the accuracy of the
measured coil sensitivity, the requirement of accurate coil sensitivity is a critical source of
reconstruction error. An implementation of kSPA that does not require the explicit
estimation of coil sensitivity is therefore highly desirable. Such an implementation would
compute the inversion operator G† directly from some form of calibration data in acquired
k-space. Specifically, the auto-calibration method presented here shall compute G† directly
from measured k-space data rather than from the estimated coil sensitivity.

One option for realizing such a kind of auto-calibration is to acquire a fully sampled data set
on the designed trajectory and use this data set to estimate the weights for synthesizing
missing data points in an undersampled trajectory. However, such a calibration scheme is
expensive and recalibration is inconvenient. Here, we propose an alternative calibration
method that can rely on a small fully sampled area centered at any location of the k-space
for estimating the inversion operator G†.

Calibration Region can be Arbitrarily Located—We first show that the value of ,
is determined only by the sampling pattern surrounding kρ and it is independent of the exact
location of kρ. Let kρ be an arbitrary location in the k-space, then given a location kρ0, we
can translate the region within a distance of 2ws from kρ to center around kρ0 by adding a
displacement of Δk = kρ0 − kρ as illustrated in Fig. 1. As a result, we can rewrite (11) as

(14)

which can be simplified to
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(15)

Comparing (15) and (11), we conclude that .

That is, the value of , is independent of the absolute locations of kρ and kρ′ as long as
the sampling pattern surrounding kρ does not change.

Because of this shift-invariant property of , we only need to acquire a small region of k-
space for the purpose of auto-calibration. This calibration region can be centered at any
point kρ0 in k-space. To calculate the reconstruction weights for the grid point kρ, i.e., the
ρth row of G†, we simply identify all the sampling points within a distance of 2ws from kρ
and translate these points by Δk to center around kρ0. To express the elements of G† in
terms of the calibration data, we multiply both sides of (15) with d(kσ0) and sum over all σ0

(16)

Note that d(kσ0) is the data that would have been acquired with a single-channel coil of
homogeneous sensitivity. By recognizing the convolution summation on both sides, we can
simplify (16) to

(17)

which can be further reduced to

(18)

Based on (9) and (12), we recognize that

(19)

Here,  is the entry in the ρ0th row of G† that corresponds to the μ0th sampling
location of the nth coil. It is expressed as

(20)

Because , is independent of the absolute locations of kρ and , we observe  is the

same as .
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Obviously, computing  requires a set of linear independent equations such that the total

number of equations is larger than the number of unknowns in . Because of the shift-

invariant property of , such a set of linear equations can be constructed by translating
the sampling points around kρ to a set of grid points within the calibration region. For each
grid point, an equation can be constructed following (18). Therefore, by shifting all
sampling points around kρ to the region centered on kρ0, we are able to compute all
reconstruction weights using only the calibration data acquired near kρ0.

Auto-Calibrated kSPA Algorithm—The auto-calibration scheme based on (18) requires
the knowledge of both dn(κμ0) and d(kρ0). In our implementation, dn(κμ0) is calculated
using a Kaiser-Bessel interpolation kernel with a width of 4 pixels and an oversampling ratio
of 1.25 as described by Beatty et al. [24]. Although dn(κμ0) can be readily computed
through interpolation of the calibration data, d(kρ0) cannot be computed directly by using
the calibration data alone. To avoid this difficulty, we can modify (18) to

(21)

Similarly, , is sparse and satisfies (19). The indices nn′ indicate that there is one set of
weights for each pair of coils. That is, instead of synthesizing the true k-space data, the
calibration data from all coils are used to synthesize the k-space data of each individual coil.
Equation (21) can be simply verified by convolving (18) with sn′ (kρ). The final image can
then be approximated with the sum-of-squares image similar to the approach adopted in
GRAPPA.

This auto-calibrated kSPA algorithm can be summarized as followed.

Step 1) Acquire a small fully sampled region in k-space for auto-calibration and
compute dn(kρ0) through interpolation. The full width of the calibration
region should be larger than 2w.

Step 2) For a given grid point kρ in k-space, locate all sampling points within a
distance of w from that grid point.

Step 3) Translate these sampling points to center at a set of grid points in the
middle of the calibration region. At each grid point, compute dn(κμ0)
through interpolation and construct an equation following (21). Combine

all such equations and solve the resulting set of equations for .

Step 4) Repeat step 2 and 3 for all grid points and construct the matrix G†.

Step 5) Compute m for the nth coil as G†d. Filter m and FFT it to the image space.

Step 6) Calculate the sum-of-squares of all coil images.

The purpose of the filter in step 5 is to suppress the signal in the edge of the k-space that is
not covered entirely by the sampling trajectory. For example, spiral and radial trajectories
have a circular coverage of k-space, leaving the corners of k-space unsampled. The
reconstructed data in those areas amplify noise and, therefore, should be eliminated. The
filter we used is a function that is 1 within the region of the k-space trajectory and linearly
decreases to zero outside the region with a transition width of five pixels. For spiral
trajectories, the function is similar to the filter used by Pruessmann et al. [4].
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Built-In Apodization Correction—Interpolation steps are involved in the resampling of
calibration data onto targeted sampling patterns. Interpolation in k-space with a small kernel
results in uneven intensity shading in the image space which is commonly referred to as
apodization [25]. This apodization effect is usually corrected by dividing the reconstructed
image by a de-apodization function, typically by the inverse Fourier transform of the
interpolation kernel. We provide an analysis and a solution to this effect in kSPA and auto-
calibrated kSPA. We show that the apodization effect is completely removed during the
estimation of reconstruction weights due to the resampling of calibration data, therefore,
there is no need for post apodization correction.

To evaluate the effect of the small interpolation kernel, we can combine (3) and (7) and
write out the entries of G explicitly as

(22)

Following (22), we can separate the coil sensitivity and the interpolation kernel in the
inverse gridding operator G such that

(23)

Here, Gs is a matrix of size (ncnk × N2) whose entries are formed by corresponding values of
sn(κμ − kρ″), and C is a matrix of size (N2 × N2) whose entries are formed by the
corresponding values of c(kρ″ − kρ). Here, nc is the total number of coils and nk is the total
number of k-space sampling points. Following this reformulation, the reconstructed image
becomes

(24)

Equation (24) shows that the reconstructed image is the true image multiplied by the inverse
interpolation matrix. To remove this apodization effect, we can modify the unmixing
operator M†. Instead of computing the unmixing operator as a direct inverse of M, we need
to find an unmixing operator M† such that

(25)

Specifically, we need to change the delta function in the right-hand side of (11) to the
corresponding interpolation weights. As a result, we have

(26)

Accordingly, in the case of auto-calibrated kSPA, (13) is changed to
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(27)

That is, the calibration data needs to be convolved with the interpolation kernel. When the
calibration data are acquired on non-Cartesian trajectories, the data are first interpolated onto
a Cartesian grid (see step 1 of the auto-calibrated kSPA algorithm); therefore, the
apodization correction is automatically realized. When the calibration data are acquired on a
Cartesian grid, (27) suggests that, the Cartesian data also need to be convolved with the
interpolation kernel in order to remove the apodization effect.

Solving Ill-Posed Problem With LSQR—The computation of the auto-calibrated kSPA
mainly lies in solving the system of linear equations defined by [15]. This equation needs to
be solved not only for each Cartesian grid location but also for each coil. Since at the same
grid location, this equation is the same for all coils, ideally, we would like to invert the
system matrix and apply the inverse matrix to all coils. By doing so, we can speed up the
computation by a factor comparable to the total number of coils. Unfortunately, such a kind
of strategy is not practical because the equation is typically ill-posed as a result of noise
contamination and gridding errors in the calibration data. As a result, an accurate inversion
matrix may not exist.

Alternatively, the equations can be solved iteratively without computing a matrix inversion
directly. There are a number of iterative algorithms that might be suitable for this task. In
this paper, we demonstrate an implementation with the least squares using orthogonal and
right triangular decomposition (LSQR) algorithm [26]. The LSQR algorithm has been
shown to be more robust than the conjugate gradient algorithm in the case of ill-posed
problems [26]. In this study, we use the implementation of LSQR by Matlab (Version 7,
Release 14, The Math-Works Inc.) with the default stopping criteria.

Error Analysis—There are two main sources of reconstruction error: approximation error

of matrix G denoted as Ge and approximation error of matrix M−1 denoted as . The

error matrix Ge results from the truncation of G; while  results from both the truncation
of M−1 and the interpolation of calibration data [left side of (21)]. In this section, we assume
G and M−1 are the exact matrices without sparse approximation and M−1 = (GHG)−1.
Following (13), the estimated image can be expressed as

(28)

With a first-order approximation of Taylor expansion, it can be reduced to

(29)

Taking into consideration the sparse approximation error of M−1, one gets

(30)

Finally, keeping terms up to the first order, one gets
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(31)

where m is the true image computed with the exact matrices G and M−1 as

(32)

The first two error terms in (31) result from the sparse approximation of matrix G, which is
primarily determined by the choice of ws and associated interpolation process. The last error
term in (31) results from the error in the inversion matrix M−1 which is determined by the
choice of ws, the choice of w and consequently the condition of (21).

III. Methods
A. Simulations

The auto-calibrated kSPA algorithm is applied to a spiral k-space trajectory. The trajectory
consists of two segments: a short single-shot spiral-in navigator and an interleaved spiral-out
imaging trajectory. The spiral-in navigator corresponds to an image matrix size of 32 × 32
(Fig. 2); the spiral-out trajectory corresponds to an image matrix size of 256 × 256. The
spiral trajectory was designed based on the analytic method by Glover [27]. The spiral-out
trajectory contains of 32 interleaves. Each interleaf has 1744 sampling points.

A Shepp–Logan phantom and an 8-channel receiving coil were used to simulate the k-space
data via inverse gridding. The coil sensitivity maps were acquired using an 8-channel head
coil on a large water phantom (MRI Devices Corporation, Pewaukee, WI) and fitted with a
thin-plate spline function [18]. The image seen by each coil was simulated by multiplying
the phantom image with the corresponding coil sensitivity map. To reduce the effect of k-
space circular convolution resulting from this image-domain multiplication and subsequent
discrete Fourier Transform, both the phantom image and coil sensitivity maps were
upsampled by a factor of 2 prior to the multiplication of the phantom image with coil
sensitivity maps. The upsampling is accomplished by zero-padding in the Fourier domain.
To improve the accuracy of inverse gridding, each coil image was further zero-padded by a
factor of 2 before performing Fourier transform. In addition, the edges of the coil sensitivity
maps that were outside the imaging object were tapered with a Fermi window [18], [28] in
order to further suppress the energy leakage caused by Gibbs ringing. The radius of the
circular Fermi window was equal to the half-width of the imaging matrix; the transition
width of the window equals five pixels. This procedure was necessary because the coil
sensitivity fitted by the thin-plate-spline function covers the whole imaging matrix and has
an abrupt cutoff due to the limited field-of-view (FOV).

To study the effect of noise on the performance of the algorithm and to demonstrate the
advantage of LSQR, Gaussian noise was added to the image such that the signal-to-noise
ratio (SNR) was 20. The image was reconstructed with and without using the LSQR
algorithm for a comparison.

B. Experiments
In vivo brain images of a healthy volunteer were acquired using the same navigated spiral
readout trajectory (as described in Section III-A) on a 1.5 T whole-body system (GE Signa,
GE Healthcare, Waukesha, WI) equipped with a maximum gradient of 50mT/m and a slew
rate of 150 mT/m/s. An eight-channel head coil (MRI Devices Corporation, Pewaukee, WI)
was used for image acquisition. The scan parameters were: FOV = 24 cm, time of repetition
(TR) = 300 ms, time of echo (TE) = 15 ms, bandwidth (BW) = 125 kHz, and matrix size =
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256 × 256. Undersampling in k-space was achieved by skipping a certain number of
interleaves. The calibration data was acquired using the spiral-in navigator that samples the
k-space on a 32 × 32 grid and precedes each spiral-out interleaf.

All image reconstructions were performed using Matlab (Version 7, Release 14, The
MathWorks), running on a LINUX PC equipped with a 3.20 GHz Intel Xeon CPU and 5 GB
RAM. Images were reconstructed using reduction factors ranging from 1 to 3. The auto-
kSPA reconstruction parameters were: ws = 6, and w = R where R is the reduction factor.
For example, with R = 2, all sampling points within a distance of 2 pixels of a given
Cartesian grid point are used to synthesize the value on the particular grid point.
Furthermore, given ws = 6, for each coil, there are less than 64 linearly independent
equations (i.e., (2ws − 2w)2) that can be used to estimate the synthesizing weights. In our
Matlab implementation, it takes approximately 6.8 min to reconstruct one data set acquired
with eight coils.

IV. Results
Fig. 3 shows a set of typical individual coil images reconstructed with the auto-calibrated
kSPA algorithm and the corresponding sum-of-squares image. In either case, the calibration
data were not used to reconstruct the final image besides for the purpose of calibration.
However, the algorithm does not exclude the addition of calibration data in the final image.
Our goal is to evaluate the ability of the algorithm in removing aliasing artifacts. Although
adding navigation data will certainly improve the SNR of the final image, it may require
additional consideration when the navigator has different image contrast compared to the
imaging data [29]. As an illustration of the improved image quality, images reconstructed
with the simple gridding algorithm are also shown. Excellent image quality is achieved with
auto-calibrated kSPA for all tested reduction factors. Fig. 4 shows a similar set of images
reconstructed with the in vivo data. Similarly to the simulated data, the reconstructed in vivo
images have excellent image quality and have no obvious artifacts.

To illustrate the location independency of calibration data, Fig. 5 compares images
reconstructed using calibration data centered around the k-space origin to those
reconstructed using calibration data centered around (kx = 16, ky = 16) and (kx = 64, ky =
64). For the simulated data, there is no difference in the image quality with different
calibration region. For the in vivo data, however, some residual aliasing artifacts remain
when the calibration data are off-center [Fig. 5(c)]. These residual artifacts are caused by the
increasing noise level in the calibration data.

Fig. 6 compares the image quality when direct matrix inversion is used to compute the
reconstruction weights to that when LSQR is used to compute the weights. For the simulated
data without noise, both direct matrix inversion and LSQR results in good image quality and
there is no significant difference. However, for the simulated data with noise and the in vivo
data, although the direct matrix inversion results in good image reconstruction for R = 2, no
successful reconstruction is obtained for higher reduction factors. On the other hand, with
LSQR, the auto-calibrated kSPA achieves successful reconstruction for all reduction factors
up to R = 4.

The image reconstruction quality is also affected by the size of the calibration data and the
width of the reconstruction kernel, that is, the number of nonzero elements in each row of
G†. Fig. 7(a) plots the square root of mean square error (RMSE) as a function of ws and w.
Fig. 7(b) shows the trade-off between reconstruction accuracy and efficiency for different
choices of ws and w. The RMSE is normalized by the ground truth image and displayed as
percentage error because MRI data are in general subject to arbitrary scaling. In general,
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increasing ws improves the image quality. On the other hand, increasing w only improves
the image quality when ws is sufficiently large. Once ws and w reach a certain value, further
improvement in the image quality becomes slower and limited.

V. Discussions
Auto-calibration in the image reconstruction of partially-acquired k-space data has shown
some favorable properties in previous studies of parallel imaging methods [5], [14], [16],
[17], [30], [31]. We have demonstrated that auto-calibration schemes can also be
incorporated into the kSPA algorithm. In addition, we have shown that the calibration data
can be acquired, in principle, at any region in k-space.

The proposed auto-calibrated kSPA shares the same characteristics as AUTO-SMASH [14],
[30] and GRAPPA in which calibration steps are performed directly on acquired extra k-
space calibration data. Although the popular GRAPPA algorithm was originally proposed
for Cartesian trajectory, a number of recent works have extended GRAPPA for spiral and
radial trajectories. For example, Heidemann et al. presented a method for constant angular-
velocity spiral trajectory [17]. In that method, samples on a constant angular-velocity spiral
trajectory are reordered and placed on a hybrid Cartesian grid where the original GRAPPA
algorithm is applicable. More recently, Heberlein and Hu introduced a method to interpolate
missing spiral interleaves using GRAPPA interpolation kernels by dividing the k-space into
angular sectors and assuming that the kernel within each sector is radially invariant [16].
While a GRAPPA based kernel provides the weighting factors to directly synthesize missing
data in k-space, auto-calibrated kSPA uses the calibration data to estimate the sparse matrix
inversion. In addition, auto-kSPA does not attempt to fill in missing data points in k-space,
instead, it computes the whole k-space based on measured samples. Auto-calibrated kSPA is
a general reconstruction algorithm that applies to all sampling patterns. Some recent studies
have also extended GRAPPA auto-calibration to non-Cartesian trajectories. For example,
Seiberlich et al. used a procedure with GRAPPA operator gridding (GROG) to reconstruct
non-Cartesian data [15], [32]. In addition, Samsonov established a connection between the
technique of parallel magnetic resonance imaging with adaptive radius in k-space (PARS)
[33] and GRAPPA by using the concept of in vivo coil sensitivity which is the true
sensitivity modulated by the object [34]. Such a connection should also allow auto-
calibration for PARS.

The proposed algorithm has been demonstrated with both simulated and in vivo data. The
quality of reconstructed images is good. The average RMSE is 2.1% for simulated data and
4.0% for in vivo data as shown in Figs. 3 and 4. In the simulated data, the residual artifacts
mainly originate from the edges of the Shepp-Logan phantom where high spatial frequency
components exist. Such artifacts are consistent with the interpolation nature of the kSPA
algorithm and the non-Cartesian sampling in k-space. On the other hand, there is noticeable
noise amplification in the center of the in vivo images. This noise enhancement is explained
by the increased g-factor and is consistent with that observed commonly in SENSE
reconstruction [3], [4].

We show, in theory, that calibration data can be acquired at any location in k-space. This
result applies to all sampling trajectories and is consistent with the well-known shift-
invariant feature of the GRAPPA kernel for Cartesian trajectory [5] and the technique of
parallel magnetic resonance imaging with adaptive radius in k-space (PARS) [33]. This
result implies that the reconstruction matrix or the interpolation weights in k-space are
solely determined by the sampling pattern and the coil configurations, and they are
independent of the absolute location in k-space. This observation is also verified with both
simulated and in vivo data as shown in Fig. 5. While there are no observable artifacts in the
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simulated data without noise, the quality of the simulated images with noise and the in vivo
images appears to deteriorate as the calibration region shifts towards outer k-space. This
disparity demonstrates that although the location of the calibration region does not affect the
algorithm in the noiseless situation, image quality may decrease due to the higher noise level
at outer k-space.

Computing the reconstruction matrix requires solving ill-conditioned systems of linear
equations. The system of linear equations shown in (12) is generally poorly conditioned as a
result of both the irregular sampling pattern and noisy k-space data that appear in both sides
of (21). Because data are sampled on a non-Cartesian trajectory, data values on both sides of
the equation have to be computed with interpolation. Errors resulting from imperfect
sampling density correction or limited width of interpolation kernel will worsen the
condition of (18). Finding the solution using matrix pseudo-inversion seems to work well for
the simulated data without noise but not for the simulated data with noise and the in vivo
data especially at relatively high reduction factors as shown in Fig. 6. This issue is resolved
effectively by using the LSQR algorithm that has been shown to be more robust for solving
ill-posed linear problems.

There are two parameters that need to be optimized for the auto-calibrated kSPA algorithm:
the cutoff bandwidth of sensitivity ws and the half-width of reconstruction kernel w. At first
thought, it seems that larger ws and larger w should improve image reconstruction quality.
Although our limited data seem to support the idea that RMSE decreases monotonically as
the calibration region grows, there does not seem to be a monotonic relationship between
RMSE and the width of the reconstruction kernel w as shown in Fig. 7. At R = 3, it appears
that a w of 3 or 4 performs consistently better that other values. One reason that further
increasing w does not reduce RMSE is that the number of independent equations is limited
given a value of ws. On the other hand, increasing the value of w increases the total number
of unknowns. Further evaluation is necessary to investigate whether there is an optimal
combination of these two parameters that achieves the best reconstruction quality.

In comparison to the original kSPA algorithm, auto-calibrated kSPA reconstructs one image
for each coil instead of one final image without sensitivity weighting. As a result, the
computation for auto-kSPA is approximately slowed by a factor equal to the total number of
coils. Therefore, for massively parallel imaging, kSPA would still be the method of choice.
For a small number of coils which is what is currently used by a vast majority of scanners,
auto-kSPA offers the advantage of robustness and immunity to coil sensitivity estimation
error. A further improvement to auto-kSPA would be reconstructing one final image instead
of reconstructing one image for each coil, which is currently under investigation.
Furthermore, auto-calibrated kSPA provides a solution for cases where an accurate
sensitivity map is difficult or impossible to obtain. These scenarios include, for example,
calibration data being too noisy, calibration data being off center and image being sparse
such that it does not support a sensitivity map over the whole field-of-view. In the specific
examples shown in Fig. 5(a), the original kSPA algorithm is certainly capable of
reconstructing images of similar quality when the calibration data are located around the
center of k-space and are of high SNR. However, it is not applicable for the two cases in
Fig. 5(b) and (c).

VI. Conclusion
We have proposed and implemented an auto-calibrated kSPA algorithm that does not
require the explicit computation of the coil sensitivity maps. We have also shown that
calibration data, in principle, can be acquired at any region of k-space. This property applies
to arbitrary sampling trajectories and all reconstruction algorithms based on k-space. In

Liu et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 December 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



practice, because of its higher SNR, calibration data acquired at the center of k-space
performed more favorably.
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Fig. 1.
The weights for synthesizing data on a Cartesian grid depend only on the surrounding
sampling pattern. The shaded area indicates the calibration region where k-space is fully
sampled. The circle indicates the region whose sampling pattern is used to construct (11).
The radius of the circle is 2ws because of the convolution of the sensitivity spectrum. To
calculate the reconstruction weights for kρ near which there is no calibration data, we simply
translate its surrounding sampling pattern to the calibration region and compute the weights
using the calibration data.
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Fig. 2.
Sprial-in navigator. (a) Readout gradient waveform consisting of a short spiral-in navigator
followed by a regular spiral trajectory. (b) k-Space trajectory of the spiral-in navigator. (c)
Image reconstructed from the navigator for one coil.
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Fig. 3.
Demonstration of auto-calibrated kSPA with simulated data. (a) R = 2; (b) R = 3. In each
row, images from left to right are: image reconstructed with standard gridding, two typical
coil images, image reconstructed with auto-calibrated kSPA, difference with the true image.
As expected, the images reconstructed with gridding show typical spiral aliasing artifacts.
Such aliasin artifacts are not seen in the images reconstructed with auto-calibrated kSPA.
The residual error is less than 6%.
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Fig. 4.
Demonstration of auto-calibrated kSPA with in vivo data. (a) R = 2; (b) R = 3. In each row,
images from left to right are: image reconstructed with standard gridding, two typical coil
images, image reconstructed with auto-calibrated kSPA, difference with the true image. As
expected, the images reconstructed with gridding show typical spiral aliasing artifacts. Such
aliasing artifacts are not seen in the images reconstructed with auto-calibrated kSPA. The
maximum residual error is less than 10% compared to fully sampled data reconstructed with
auto-calibrated kSPA.
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Fig. 5.
Images reconstructed with calibration data centered at different location in k-space and with
R = 2. The center of the calibration data are (a) (0,0); (b) (16,16); (c) (64,64), respectively.
The first column is simulated data without noise, the second column is simulated data with
an SNR of 20 and the third column is in vivo data. For the simulated data without noise,
there is no difference in the image quality with different calibration region. For the
simulated data with noise and the in vivo data, some residual aliasing artifacts remain when
the calibration data are off-center (see arrows).
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Fig. 6.
Representative coil images reconstructed using weights calculated by (a) the LSQR
algorithm and (b) matrix pseudo-inversion. In both cases, the reduction factor is R = 3. The
first row is simulated data without noise; the second row is simulated data with a SNR of 20
when the image is fully sampled with a homogeneous coil; the third row is in vivo data.
When there is no noise in the data as the case of the simulated data, LSQR and matrix
pseudo-inversion performs similarly well. However, when there is noise as the case of in
vivo data, matrix pseudo-inversion results in poor image quality. LSQR becomes necessary.
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Fig. 7.
Effects of the cutoff bandwidth (ws) of the coil sensitivity and the reconstruction kernel
width (w) on the image quality. The result is computed using the simulated data without
noise for R = 3. In general, the larger the cutoff bandwidth is, the smaller the RMSE is.
However, the RMSE does not necessarily decrease with increasing reconstruction kernel
width.
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TABLE I

List of Symbols

Symbols Meanings

N the number of pixels of a square image in each dimension

ρ, ρ′, ρ0 one dimensional index of Cartesian grid

σ, σ0 one dimensional index of Cartesian grid

μ one dimensional index of sampling trajectory

n the n-th coil

kρ the ρ-th sample on a Cartesian grid

κμ the μ-th sample on an arbitrary trajectory

sn(.) spectrum of the sensitivity of the n-th coil

c(.) Kaiser-Bessel interpolation kernel

S̃n(·) spectrum of the sensitivity of the n-th coil convolved with a Kaiser-Bessel window

m(.) Fourier transform of the image

d(.) data acquired by a coil with uniform sensitivity

dn(.) data acquired by the n-th coil

d column vector of k-space data from all coils

m column vector of Fourier transform of the image

G inverse gridding operator whose entries are S̃n (·)

Gs inverse gridding operator whose entries are sn(.)

G† pseudo inverse of matrix G

C matrix formed by Kaiser-Bessel interpolation kernel

M autocorrelation matrix of matrix G

M† pseudo inverse of matrix M

ws cut-off bandwidth of the spectrum of coil sensitivity; also the half width of calibration data

w Half width of reconstruction kernel that defines the sparsity of matrix M†

nc the total number of coils

nk the total number of k-space samples

δ(.) Dirac delta functin
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