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Abstract
Optical coherence tomography (OCT) is becoming one of the most important modalities for the
noninvasive assessment of retinal eye diseases. As the number of acquired OCT volumes
increases, automating the OCT image analysis is becoming increasingly relevant. In this paper, a
method for automated characterization of the normal macular appearance in spectral domain OCT
(SD-OCT) volumes is reported together with a general approach for local retinal abnormality
detection. Ten intraretinal layers are first automatically segmented and the 3-D image dataset
flattened to remove motion-based artifacts. From the flattened OCT data, 23 features are extracted
in each layer locally to characterize texture and thickness properties across the macula. The
normal ranges of layer-specific feature variations have been derived from 13 SD-OCT volumes
depicting normal retinas. Abnormalities are then detected by classifying the local differences
between the normal appearance and the retinal measures in question. This approach was applied to
determine footprints of fluid-filled regions—SEADs (Symptomatic Exudate-Associated
Derangements)—in 78 SD-OCT volumes from 23 repeatedly imaged patients with choroidal
neovascularization (CNV), intra-, and sub-retinal fluid and pigment epithelial detachment. The
automated SEAD footprint detection method was validated against an independent standard
obtained using an interactive 3-D SEAD segmentation approach. An area under the receiver-
operating characteristic curve of 0.961 ± 0.012 was obtained for the classification of vertical,
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cross-layer, macular columns. A study performed on 12 pairs of OCT volumes obtained from the
same eye on the same day shows that the repeatability of the automated method is comparable to
that of the human experts. This work demonstrates that useful 3-D textural information can be
extracted from SD-OCT scans and—together with an anatomical atlas of normal retinas—can be
used for clinically important applications.

Index Terms
Age-related macular degeneration (AMD); anatomical atlas; spectral domain optical coherence
tomography (SD-OCT); three-dimensional (3-D) texture; macula; symptomatic exudate-associated
derangements (SEADs)

I. Introduction
Optical coherence tomography (OCT) is an increasingly important modality for the
noninvasive management of eye diseases, including age-related macular degeneration
(AMD) [1]–[3], glaucoma [4], and diabetic macular edema [5]. An OCT image represents a
cross-sectional, micron-scale depiction of the optical reflectance properties of the tissue.
Spectral domain OCT (SD-OCT) [6] produces 3-D volumes, which have proven useful in
clinical practice [7]. It is a powerful modality to qualitatively assess retinal features and
pathologies or to make quantitative measurements of retinal morphology. As the number of
acquired SD-OCT volumes and their resolutions increase, automating these assessments
become increasingly desirable. We have previously reported methods for multilayer
segmentation of retinal OCT images [8], [9], methods for optic nerve head analysis from
SD-OCT [10], [11], and demonstrated the clinical potential of such quantitative approaches
[11]–[13]. In this paper, we propose an automated method for the 3-D analysis of retina
texture, and quantification of fluid-filled regions (either intra- or subretinal fluid, or pigment
epithelial detachment) associated with neo-vascular (or exudative) AMD.

Neovascular AMD is an advanced form of AMD that causes vision loss due to the growth of
an abnormal blood vessel membrane from the choroidal vasculature (choroidal
neovascularization or CNV) outside of the choroid, ultimately leading to leakage of fluid
into the macular retina. In the past, CNV treatment—mainly laser photocoagulation—was
guided by the appearance of the membrane on a fluorescein angiogram, which is invasive
[14], [15]. With the advent of the usually curative treatment of CNV using anti-angiogenic
intravitreal injections, the presence and amount of intraretinal fluid has become the main
criterion for guiding the frequency of these injections, typically by visual evaluation of one
or a small number of SD-OCT slices [16], [1], [17], [18], [2], [19], [3]. The choice of which
SD-OCT slices are reviewed and the visual judgment of the amount of fluid, are all
subjective, and in all likelihood lead to considerable variability in treatment decisions [18],
[20]. In the following of the text, we use the term symptomatic exudate associated
derangement (SEAD) for intraretinal and subretinal fluid as well as pigment epithelial
detachments in the macula. Until now, only semi-automated methods in 2-D OCT slices,
such as Cabrera Fernández’ manually-initialized deformable model [21], have been
proposed to help quantify the amount of SEADs. In this paper, we report a fully automated
3-D method to determine the SEAD footprint in SD-OCT images.

One of the enabling steps for many applications of automated retinal OCT analysis is
automated intraretinal layer segmentation, performed both in macular scans [9] and in scans
of the optic nerve head [10], [11]. These segmentations allow the analysis of each retinal
layer individually. Consequently, it is possible to characterize normal appearance of retinal
layers across the anatomical region under study. By measuring the differences between
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layer-based indices from a new scan to the normal appearance, it is possible to detect retinal
abnormalities. In particular, it is possible to detect SEADs. Normal appearance of six layers
across the macula has been described previously in terms of thickness [13]. Though
thickness differences may characterize SEADs from normal regions, differences in texture
are usually more remarkable, because of the different optical properties of “dry” and “fluid-
filled” retinal tissue, and intraretinal layers can therefore be characterized in terms of 3-D
textures. The suitability of texture to classify tissues in OCT images has been shown in
previous studies [22]. In order to meaningfully characterize the texture of automatically
segmented intraretinal layers in normal eyes, it is preferable that the texture property of
these layers be homogeneous along the z-direction (the tissue depth). Here, we introduce a
novel ten-layer automated segmentation that fulfills this requirement. Twenty-one textural
features, originally defined to analyze 2-D images [23], [24] were implemented in 3-D, as
described partly in this paper and in [25], and measured locally for each layer. The
variations of texture and thickness across the macula in these ten layers, averaged over
thirteen normal eyes, defined the normal appearance of maculae in SD-OCT scans. A
machine learning approach that classifies the retinal pathology based on feature- and layer-
specific properties in comparison with the normal appearance of maculae is reported.

The presented automated SEAD footprint finding method was compared to an expert-
defined reference standard in 91 macula-centered 3-D OCT volumes obtained from 13
normal and 26 pathologic eyes. Finally, the repeatability of the reported approaches was
assessed by comparing the segmentations obtained in consecutive scans from 12 eyes of
patients acquired on the same day.

II. Automated Sead Footprint Detection
The principle of our automated SEAD footprint method is to measure the deviation of
texture and layer thickness properties in a pathological macula from corresponding values of
these properties in normal maculae. We describe in this section a procedure to characterize
the normal appearance of maculae in OCT scans from a set of macula-centered 3-D OCT
volumes acquired with technically similar devices (Fig. 1). In these volumetric images I(x,
y, z) of fixed size X × Y × Z, the x-, y-, and z-directions correspond to the nasal-temporal
direction, the superior-inferior direction, and the depth (direction perpendicular to the
layers), respectively. We assume that all the foveae are approximately aligned in the center
of the scans along the x-and y-directions, that all the left eyes have been flipped along the x-
axis, and the rotation and scale variations across images can be neglected. It implies that
only a registration along the z-direction is required to allow calculation of local features
describing the normal appearance of maculae and the normal feature ranges. For each
feature used in this study, a X × Y × L distribution map is built. Each cell (x, y, l) in these
maps describes the distribution across normal maculae of the feature values in the
neighborhood of the (x, y) line (i.e., a vertical column) within the lth layer, l = 1… L. The
number of layers (L = 10), was selected in advance so that the texture property in each of
these layers be homogeneous along the z-direction. The first step to characterize the normal
appearance of maculae consists of segmenting the L = 10 intraretinal layers. Because of
motion artifacts in OCT images, the layers are usually wavy along the y direction, which
artificially affects their texture properties. As a consequence, to correctly measure the
texture features within these layers, it is necessary to flatten them first.

A. Intraretinal Layer Segmentation
Our research group previously presented a 3-D graph search-based approach for
simultaneous detection of multiple interacting surfaces [27], with the incorporation of
regional information and varying constraints to segment six intraretinal layers in spectral-
domain macular OCT scans [9]. In addition, we had introduced a fast multiscale 3-D graph

Quellec et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



search method to detect three retinal surfaces from 3-D OCT scans centered at the optic
nerve head [10]. In this study, we report an extended method for automated segmentation of
10 intraretinal layers identified in Fig. 2 from 3-D macular OCT scans using our multiscale
3-D graph search technique [28]. The basic concept of this approach is to detect the retinal
surfaces in a subvolume constrained by the retinal surface segmented in a low-resolution
image volume. The cost functions for the graph searches, capable of detecting the retinal
surfaces having the minimum costs, are inverted gradient magnitudes of the dark-to-bright
transition from top to bottom of the OCT volume for surfaces 1,3,5,7,9,10 and those of the
bright-to-dark transition for surfaces 2, 4, 6, 8, 11 (see Fig. 2). The eleven surfaces are
hierarchically detected starting from the most easily detectable, i.e., starting with the highest
gradient magnitudes, and ending with the most subtle interfaces. Once detected, all
segmented surfaces are smoothed using thin plate splines.

Once all the surfaces are detected, the macula in the original SD-OCT volume is flattened
using the last intraretinal surface (surface 11) as a reference plane. The retina in the original
SD-OCT volume is flattened by adjusting scans up and down in the z-direction [9], [10].

B. 3-D Textural Feature Extraction
Once the layers are segmented and flattened, the properties of the macular tissues in each of
these layers are extracted and analyzed. In addition to layer thickness and layer thickness
variations, texture is well suited to characterize different tissues. Extracting 3-D textural
features in layer subvolumes is clearly more relevant than extracting 2-D textural features in
individual slices. Therefore, 21 3-D statistical texture features are computed in flattened
layer subvolumes. Each of these subvolumes consists of the intersection of a vertical
column, with a square base Sx × Sy centered on an (x, y) line, and of an intraretinal layer I.
The textural features are the intensity level distribution measures, run length measures, co-
occurrence matrix measures, and wavelet analysis measures [23], [24]. The intensity level
distribution measures are: the mean, variance, skewness, kurtosis, and gray level (intensity)
entropy. These measures are used to describe the occurrence frequency of all the intensity
levels in a subvolume of interest. The run length measures include the short run emphasis,
long run emphasis, gray level nonuniformity, run length nonuniformity, and run percentage.
The run length features describe the heterogeneity and tonal distributions of the intensity
levels in a subvolume of interest. The co-occurrence matrix measures are: the angular
second moment, correlation, contrast, entropy, inertia, and inverse difference moment. The
co-occurrence matrix measures describe the overall spatial relationships that the intensity
tones have to one another, in a sub-volume of interest. Three-dimensional formulations of
the intensity level distribution, run length, and co-occurrence matrix measures have been
described previously [25]. Run length and co-occurrence analyses both require quantifying
voxel intensities in the OCT images. That is obvious for run length measures because the
concept of uniform intensity sequences is ill-defined without quantification in the presence
of noise, in particular laser speckle. The gray-level intensities are quantified in equally-
populated bins.

The wavelet transform has been widely used in OCT images for denoising and despeckling
[29]–[31], where improvements of the signal-to-noise ratio of up to 14 dB have been
observed [31]. The wavelet transform has also been applied to OCT images for texture
analysis of tissues [32], where its effectiveness and its invariance to acquisition device have
been shown. The fact that the wavelet transform is well suited to remove the speckle is a
strong motivation to use it for tissue characterization [33]. To the best of our knowledge, all
existing applications of wavelets to retinal OCT have so far been performed in two
dimensions, probably for computational efficiency. We introduce the first 3-D wavelet
analysis of OCT images; it is based on a computationally efficient yet flexible non-separable
lifting scheme in arbitrary dimensions [34]. An adaptive implementation of this wavelet
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transform has previously been applied to 2-D texture retrieval by us [24]. Here, it is
extended to 3-D as explained hereafter.

The lifting scheme (Fig. 3) relies on a filter bank that decomposes an input signal x into an
approximation a and M − 1 signals x1 … xM−1 containing details of the input signal along
specific directions. The filter bank consists of a set of linear filters Pi (prediction) and Ui
(update), i = 1… M−1. It involves downsampling the signal by a dilation matrix D ∈  (ℤ)
denoted ↓ D, such that M = |det(D)|, where (ℤ) denotes the set of 3×3 matrices. The input
lattice ℤ3 is mapped to M sub-lattices  = D ℤ3 + ti, ti ∈ ℤ3, t0 = 0, i = 0 … M−1. After the
decomposition,  contains the approximation a of the signal and , i = 1… M−1, contains
its details di along direction ti. In order to analyze the signal at different scales, the
approximation a of the signal is further decomposed by the same filter bank, and so on until
the desired scale is reached. Note that the input signal can be reconstructed by reversing all
the operations. Two decimation matrices D are commonly used in 3-D; the face-centered
orthorhombic matrix (M = 2) and matrix D = 2.I (M = 23), generating the separable lattice.
Because the lattices generated by the latter matrix are separable, the decomposition is more
computationally efficient, so it was used in this study. The order of the prediction and update
filters is set to 4. In texture images, the wavelet coefficients in each sub-lattice have a zero-
mean generalized Gaussian distribution [35]. To characterize these distributions, and thus
the texture properties, we extract their standard deviations and their kurtosis measures. For
resolution purposes, the first two scales (i.e., the two highest frequency bands) are
characterized. Another texture descriptor immediately derived from this wavelet analysis is
the fractal dimension, which can be estimated by the logarithmic decay of the wavelet
coefficient variances across scales [36].

For some of the textural features described above (from the run length, co-occurrence matrix
and wavelet analyses), features are computed along all main directions. In order to reduce
the cardinality of the textural characterization, these values are averaged to form 21 scalar
features [23].

C. Normal Appearance of Maculae in SD-OCT Scans
We have presented how to compute 21 textural features in subvolumes of interest within ten
segmented and flattened intraretinal layers. Two additional features, the average and
standard deviation of the layer thickness, are also computed for each subvolume. Thus, a
complete set of descriptors consists of 23 features. The normal appearance of maculae is
derived from a set of N OCT volumes from normal eyes. The distribution of each feature/
across these N volumes, in the neighborhood of an (x,y) line (i.e., a vertical column) within
the lth layer, is defined by the average μf,x,y,l and the standard deviation σf,x,y,l of the N
feature values (one feature value per OCT volume). This representation is convenient since
the local deviation d(x, y,l) between the feature value f(x,y,l) computed for a new sample
and the normality can be expressed in terms of z-score

(1)

Assuming a statistically slow variation of texture and thickness properties across each layer
of the macula, it is not necessary to estimate the average and the standard deviation directly
from the data for each location (x, y). The following fast approach is used instead.

1. The coronal plane is partitioned in patches of size Sx × Sy, for simplicity Sx = Sy =
S.
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2. The features are extracted in each layer within columns with a Sx × Sy rectangular
base.

3. The average and the standard deviation at the center of these patches are estimated
from the N feature values.

4. The entire average and standard deviational maps are obtained by bilinear
interpolation.

Because the local distribution of a feature in one layer of the macula is defined by only two
parameters (mean, standard deviation), the normal appearance of maculae can be derived
from a small set of images. However, should a large set of images become available, a
comprehensive atlas [38]–[42] consisting of feature histograms could be used instead,
together with histogram-based statistical distances.

D. Classifying the Deviations From the Normal Appearance of Maculae
A straightforward solution to detect retinal image abnormalities consists of computing the
local deviations from the normal appearance of maculae at each location (x,y) in each layer l
and selecting the areas where the absolute deviation is greater than a predefined cutoff (e.g.,
d(x, y, l) ≥ 1.98 at the 95% confidence level) for at least one feature. More generally, in
order to build an abnormality-specific detector, we propose to train a classifier whose inputs
are the z-scores computed for relevant features. The comprehensive z-scores are used
because an abnormality may affect several layers in the neighborhood of a given location
(x,y). A training dataset is used to tune a classifier. First, normal and abnormal columns are
sampled from this dataset. The label of each column is the percentage of the patch covered
by the target abnormality. The relevant features are selected by F-fold cross-validation,
using k-NN classifiers [43]. Finally, all the training samples are used to classify new
columns using a k-NN classifier based on the selected features.

E. Training and Assessment of SEAD Footprint Detection
The proposed abnormality detection is employed for the determination of SEAD footprints.
It was trained and independently validated, as described above, on a set of reference images,
some of which were acquired from normal eyes and the others from pathological eyes with
SEADs. Cross-validation was used to guarantee that the training and testing sets were
completely disjoint during the multilevel training process.

1. An expert standard for SEAD footprints is obtained for the subset of pathological
images by projecting the 3-D SEAD segmentations (obtained interactively by
experts, Section III-C) onto the coronal plane. This way, a binary footprint is
obtained that serves as ground truth for training and validation of our method.

2. The ten subretinal layers are segmented in each OCT volume from normal and
pathological eyes as described in Section II-A. An additional artificial layer is
added below the deepest intraretinal layer so that subretinal abnormalities can also
be detected. The lowest surface is obtained by translating surface 11 along the z-
direction by a predefined offset derived from observations of a typical depth of
subretinal fluid regions (we used 40 voxels in this work).

3. The set of images is divided into K groups of equal size, with the same proportion
of normal and pathological eyes. All images acquired from the same patient are
assigned to the same group.

4. The performance is assessed by K-fold cross-validation: it is successively trained
on K−1 groups and performance-tested on the remaining group.
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The detail of the training procedure performed on K− 1 groups, during one step of the cross-
validation, is as follows:

1. The most discriminative out of the 23 calculated features (Section II-B) are selected
by an inner leave-one-eye-out cross-validation procedure.

2. The subset of normal images in the inner training set is used to characterize the
normal appearance of maculae.

3. The performance of a (set of) feature(s) is assessed by calculating the area under
the ROC curve, or AUC, of the SEAD classifier. The parameter of the ROC curve
is the SEAD probability measured for OCT columns with a S × S square base from
the inner validation set (per-patch AUC).

4. Using the identified set of best features evaluated in OCT columns with a S × S
square base from the inner validation set (per-patch AUC), a forward feature
selection procedure is performed, in which features are sequentially selected until
the AUC stops increasing. At each step, the feature maximizing the AUC increase
is selected.

5. All the feature vectors extracted from nonoverlapping S × S patches in the inner
training set are used as reference samples by the k-NN classifier; their labels are
derived from the expert standard. Overlapping S × S patches from the OCT
volumes in the validation eye are then classified and the SEAD probability in each
pixel (x, y) is defined as the average probability of all the patches containing (x, y)
[44].

The detail of the testing procedure performed on one of the K groups, during one step of the
outer cross-validation, is described as follows.

• The subset of normal images in the outer training set is used to characterize the
normal appearance of maculae.

• All the feature vectors extracted from nonoverlapping S × S patches in the outer
training set (the remaining K−1 groups) are used as reference samples by the k-NN
classifier. The optimal features found on the outer training set are extracted in
overlapping S × S patches from the OCT volumes in the outer testing set and
classified. The SEAD probability in each pixel (x,y) of a testing image is defined
from all the patches containing (x,y), as described above.

The average and the standard deviation of the area under the ROC curve across the K testing
sets is reported. Note that in the inner cross-validation loops, the validation data is used to
train the system, but in the outer loop, the validation data is completely independent of the
training procedure, which ensures a complete separation of the training and testing data in
the reported results.

This training/testing procedure is repeated for several patch sizes: S ∈ {10,15, 20}. The
performance of the system is also assessed for a varying numbers of images in the training
set. Two scenarios are considered: 1) either the features extracted from each macular column
are classified directly to obtain a probability that a SEAD is present in this column, or 2) the
deviations from the characterization of normal maculae are measured and classified, as
described in Section II-D.

F. Obtaining a Binary SEAD Footprint
In order to obtain a binary footprint for SEADs in an image input to the system, a
probability map is first obtained as described in the previous section. This probability map is
then thresholded and the footprint of the SEADs in this image defined as the set of all the
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pixels with a probability greater than a threshold. The threshold that minimizes the L1
distance between the expert standard for SEAD footprints and the thresholded probability
maps among all the images in the reference dataset is selected (see previous section).

III. Experimental Methods
A. Available Oct Images From Neovascular AMD Patients

In total, 91 macula-centered 3-D OCT volumes (200 × 200 × 1024 voxels, 6 × 6 × 2 mm3,
voxel size 30 × 30 × 1.95 μm3) were obtained from 13 normal and 26 pathologic eyes using
three technically identical Cirrus HD-OCT machines (Carl Zeiss Meditec, Inc., Dublin, CA).
The 13 OCT volumes from 13 normal subjects were used to characterize the normal
appearance of maculae, as described in Section II-C. The remaining 78 OCT volumes from
23 patients (26 eyes) were used to assess the performance of our SEAD footprint detection
method. Among these 78 volumes, twelve pairs were obtained from the same eyes on the
same days at close temporal intervals and were used for repeatability assessment. The study
protocol was approved by the institutional review board of the University of Iowa. For
cross-validation purposes, the dataset was divided in K = 6 groups of 13 images from
pathological eyes plus 2 (or 3) images from normal eyes.

B. Assessment of Retinal Layer Segmentation Performance
The retinal layer segmentation was assessed on an independent set of OCT volumes from
normal eyes, acquired by the Cirrus SD-OCT machines. An independent standard was
obtained from two experts. The layer segmentation was compared to the average in the z-
direction of the two manual tracings, following the layer segmentation performance
assessment reported in [9]. The unsigned border positioning errors were calculated by
measuring the Euclidean distance in the z-direction between the computer segmentation and
the reference standard.

C. Independent Standard: Expert-Definition of Seads in 3-D
Consistently annotating the SEADs in 3-D OCT images manually is a difficult task even for
expert observers. Therefore, we have developed a novel interactive computer-aided
approach that consists of three main steps: 1) SEAD locations are interactively identified by
defining an enclosing region of interest, in which a SEAD is located, followed by mouse-
clicking inside of the SEAD region using a convenient 3-D OCT viewer software; 2) the
candidate 3-D SEAD regions are detected by a region-growing approach that uses graph cuts
for regional energy function minimization; 3) the graph cut approach yields 3-D binary
regions, the surfaces of which are interactively edited by expert observers until full
satisfaction. This approach is completely independent from the SEAD footprint detection
method reported above and thus can be used to define an x, y projection independent
standard for SEAD footprint validation.

For a detailed description of the graph-cut approach used in the SEAD finding method (step
(2) of the above description) we refer the reader to Boykov’s work [45]. After the SEAD
regions are detected using the graph-cut approach and edited in 3-D by expert retinal
specialists who were unaware of the results of the automated SEAD footprint detection,
binary SEAD footprints are defined by x – y projecting the three-dimensional binary SEAD
regions. These binary SEAD footprints [see upper rows of Fig. 8(a) and (b)] were used for
validation of our automated method. To achieve the highest quality of the 3-D SEAD
regions, extensive editing of the SEAD surface was performed in 3-D, requiring on average
about 60 min of expert interaction per eye.
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The automatically detected footprints (Section II) are compared with the independent
standard footprint by calculating pixelwise sensitivity and specificity. For different
thresholds on the SEAD probability map, a foreground pixel is considered a match if and
only if it is also a foreground pixel in the independent standard footprint. A receiver-
operating characteristic curve is obtained as discussed earlier.

D. Repeatability Study
The repeatability of our automated SEAD segmentation and that of the interactive SEAD
detection method (used to define SEAD independent standard), denoted respectively rauto
and rsemi_auto, are evaluated separately on the set of 12 pairs obtained from the same eyes on
the same days. While the 3-D images are expected to differ due to the nature of the image
acquisition process, the SEAD coronal plane footprints are expected to be fairly repeatable.
This invariance should hold even if the position of the patient eye moves slightly between
the repeated scans. The repeatability of each of these methods is defined as the complement
to 1 of the L1 distance between the probability maps obtained for the first series of scans and
the one obtained for the second series of scans. Note that, for the (binary) semi-automated
segmentations, rsemi_auto represents the detection accuracy. The confidence interval for rauto
and rsemi_auto, obtained from the average and the standard error of these accuracies across
image pairs, are compared. The comparison between the repeatability of both methods gives
us insight into which proportion of the variability between scans is explained by the imaging
protocol (and thus affects both methods) and which one is specific to each method. If the
repeatability of the automated method were to be significantly lower than the repeatability of
defining the reference standard, it would mean that the reported automated texture-based
characterization is less reproducible than manual annotation.

IV. Results
The intraretinal layer segmentation method was compared to the reference standard defined
by two experts. Mean unsigned surface positioning errors are reported in Table I. The
overall mean unsigned surface positioning error for all 11 detected surfaces was slightly
higher than that obtained in the previously published six-layer segmentation method [9]. The
reason is that surface 3, that is obscured in some OCT scans and was not segmented in [9], is
segmented with a higher error than the other surfaces. The layer segmentation processing
time was approximately 70 s per eye [28] running on one core of a standard PC at 2.4 GHz;
up to 800 MB of RAM was used.

An example of a SEAD footprint detection is presented in Fig. 4. The performance of each
computed feature for SEAD footprint detection is given in Table II. The performance of
SEAD footprint detection, whether the features are directly classified or whether their
deviations from the normal appearance of maculae are classified, is reported in Fig. 5 as a
function of the training set size. The ROC of the five most frequently selected features is
reported in Fig. 6. The normal appearance of maculae in the space of these features is
illustrated in Fig. 7. The average total processing time to find the footprint of SEADs in an
image, including the layer segmentation, is 83 s.

The repeatability of the reported SEAD footprint detection approaches is illustrated in Fig.
8. The repeatability of our automated SEAD footprint detection is statistically the same (p =
0.401)as the repeatability of interactive expert-driven footprint definition by projecting the
expert-defined 3-D SEAD regions [rauto = 0.963 (CI at the 95% confidence level
[0.946;0.980]); rsemi_auto = 0.948 (CI = [0.921; 0.976])].

Finally, the influence of texture extraction resolution on the segmentation results (i.e., the
influence of the size S of the patches, Section II-C) was evaluated and results are shown in
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Fig. 9. Note that changing the size of the patch changes the detector but it also changes the
evaluation measure: consequently, even if the spatial pattern of the probabilities changes
with resolution (as a result of changing the classifier), the per patch AUC does not
necessarily change.

V. Discussion and Conclusion
We have presented in this paper a novel automated method for detection of the footprint of
SEADs in SD-OCT scans from AMD patients. This method relies on the characterization of
ten automatically segmented intraretinal layers by their thickness as well as by their 3-D
textural features. The method utilizes a multiscale 3-D graph search approach to
automatically segment 11 retinal surfaces defining 10 intraretinal layers from 3-D macula
OCT scans. Since SEADs can appear anywhere within, between, or under these layers, their
footprints were detected by classifying vertical, cross-layer, macular columns. A SEAD
probability was measured for each macular column by assessing in each layer the local
deviations from the normal appearance of maculae in the space of the most relevant features;
the normal appearance of maculae was obtained from thirteen normal OCT scans. The
reported approach was trained using a set of 78 SD-OCT volumes from 23 patients in a
leave-one-eye-out fashion and evaluated against a human reference standard. To define the
SEAD independent standard, the manual segmentation of the SEADs in the 3-D volumes
was made possible by a novel semi-automated segmentation based on a graph-cut approach.
While serving well for our purpose of independent standard definition, the interactive SEAD
definition in 3-D remains tedious and time consuming, despite the semi-automated character
of the process.

Good layer segmentation results were obtained and the performance of automated SEAD
footprint detection based on 3-D texture and layer thickness is excellent. An area under the
receiver-operating characteristic of 0.961±0.012 (average ± standard deviation across the six
testing sets) was obtained for the classification of macular columns of using a 15 × 15
square base while varying a threshold of local SEAD probability. This performance is
slightly higher than the classification of macular columns using a 10 × 10 or a 20 × 20
square base. The false positives observed on this dataset are caused by abnormal tissues
other than SEADs such as vascular growths. In normal subjects, where there are no SEADs
and thus no footprint, the highest SEAD probability is usually observed at the center of the
macula. As can be seen in Fig. 2 representing a normal case, a low-probability SEAD-like
region is usually detected between surfaces 8 and 9 at this location. However, the SEAD
probability is lower than the probability threshold observed at the center of any SEAD in the
dataset and no SEAD footprint is therefore detected. We can see from Fig. 5 that a higher
detection performance can be achieved with a smaller number of training images if the
SEAD probability in a macular column is derived from the local deviations of the relevant
features against the normal appearance of maculae, instead of being derived from the
relevant features themselves. This is to be expected because two columns from different
areas of the macula can only be compared when compensating for the normal variations of
their features across the macula. This implies that more training samples are required if the
features are not normalized with respect to their deviations from the characterization of
normal maculae.

A repeatability study conducted from a set of 12 pairs of scans obtained on the same day
from the same eye reveals that the automated approach is at least as repeatable as the semi-
automated definition of the human expert standard in 3-D followed by x – y projection (Fig.
8).
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Further experiments suggested that the method is quite robust across OCT scanners from
different manufacturers and certainly for the same model across OCT scanners from the
same manufacturer (even across generations like 2-D time-domain OCT Stratus versus 3D
spectral-domain OCT Zeiss Cirrus). As for the SEAD footprint finding method, should the
proposed method be applied to another dataset obtained with a different OCT acquisition
properties, it would be advisable to repeat the training process due to its reliance on k-NN,
an example-based classifier.

Because SEADs are fluid-filled regions, two features were highly expected to be relevant:
the thickness of the layers (due to the appearance of layer swelling) and the average intensity
(the reflectance of fluids or fluid filled tissue being lower than “dry” macula tissues). This
study reveals that several 3-D textural features compare favorably with these two features
(Table II), for example the gray level nonuniformity and the run length nonuniformity, two
run length analysis features, as well as the angular second moment, the contrast, the inertia
or the inverse difference moment, and the four co-occurrence matrix analysis features.
Combining the thickness of the layers and the average intensity with other features reduces
the number of false positives, hence the increase of the per-column AUC after feature
combination. The optimal set of features, that was identified by cross-validation, includes
the best three features as measured independently: the average intensity, the average
thickness of the layers and the inertia. It also includes two features with a lower
performance: the standard deviation of high frequency wavelet coefficients and the entropy
(co-occurrence matrix analysis). The reason why these features were most frequently
selected instead of seemingly better features is that they are less correlated to the thickness
of the layers, i.e., they bring more additional information to the combined set of features.
This can be seen in Fig. 7. The normal distribution of the entropy and of the standard
deviation of wavelet coefficients across the macula are much less correlated to the thickness
of the layer than that of inertia. In fact, the normal distribution of these two features is
almost invariant across the macula, which suggests that they better characterize the nature of
the tissues, as opposed to inertia which better characterizes the shape and deformations.
These properties are desirable to detect SEADs: 1) the appearance of a SEAD within a layer
obviously modifies the tissue optical properties of the layer (the layer consists of normal
tissues plus fluid) and 2) the surrounding tissues, which are included in the macular column
vector that form the input for the classifier, are stretched.

One conclusion we can derive from this study is that although SD-OCT suffers from
presence of noise—in particular laser speckle noise—it is still possible to extract useful 3-D
textural information for clinical applications. It may even be possible to exploit the variance
information to characterize tissues, as suggested by the inclusion of the standard deviation of
high frequency wavelet coefficients in the optimal feature set.

The presented automated method may be applicable to clinical setting in its present state.
The sum of the SEAD probabilities obtained for each macular column could be used as an
estimate of SEAD volumes. Nevertheless, we plan to develop a method for determination of
the true SEAD volume in future studies: the automatically detected SEAD footprints will be
used to initialize the currently semi-automated SEAD segmentation method and the relevant
3-D textural indices identified in this study will be used to derive a fully automated 3-D
SEAD segmentation method. Moreover, the methodology presented in this paper may be
applied to the 3-D textural characterization of SD-OCT scans of the optic nerve head, for
which automated layer segmentation methods were previously reported by our group, in
order to improve the OCT-guided assessment of the optic nerve head.
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Fig. 1.
Geometry of the textural characterization of the macula. Local textural or thickness indices
are extracted within the intersection of rectangular columns with each segmented intraretinal
layer. The features computed in each of these intersections are used to define an abnormality
index for the (x, y) line at the center of the column.
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Fig. 2.
Segmentation results of 11 retinal surfaces (10 layers). (a) X-Z image of the OCT volume.
(b) Segmentation results, nerve fiber layer (NFL), ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear
layer (ONL), outer limiting membrane (OLM), inner segment layer (ISL), connecting cilia
(CL), outer segment layer (OSL), Verhoeff’ s membrane (VM), and retinal pigment
epithelium (RPE) [26]. The stated anatomical labeling is based on observed relationships
with histology although no general agreement exists among experts about precise
correspondence of some layers, especially the outermost layers. (c) 3-D rendering of the
segmented surfaces (N: nasal, T: temporal).
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Fig. 3.
M-band lifting scheme filter bank.
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Fig. 4.
Example of SEAD footprint detection. Figure (a) presents an x — z slice running through
SEADs in an SD-OCT volume. The expert standard for the footprint of these SEADs and
the automatically generated SEAD footprint probability map, in the x — y plane, are
presented in figures (b) and (c) respectively. Note the probability scale in panel (c). The
projection of the x — z slice in the x — y plane is represented by a vertical line in figure (b)
and (c). The location of the layer detachments observed in figure (a) are indicated by vertical
lines in each panel.
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Fig. 5.
Performance of SEAD footprint detection using or not using the characterization of normal
maculae as a function of the number of images in the training set.

Quellec et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
ROC of the most frequently selected features for SEAD footprint detection. These ROC
curves were obtained by leave-one-eye-out cross validation.
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Fig. 7.
Normal appearance of three intraretinal layers (NFL, INL, and OSL, see Fig. 2) in the
feature space optimized for SEAD footprint detection. For each feature, a map of the
average (standard deviation) of the feature values across the macula is displayed on the left
(right). Inertia (b) is correlated with the thickness of the layer (d). The standard deviation of
the wavelet coefficients (c) and entropy (e), on the other hand, are almost uniform across the
macula in normal eyes.
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Fig. 8.
Repeatability study—Two scans from the same eye were acquired on the same day at close
temporal intervals. For each panel (a), (b), the upper row shows the binary SEAD footprint
representing the independent standard. The lower row shows the SEAD footprints obtained
by our automated method, the gray levels represent the probability of the point belonging to
the SEAD footprint; probability scale is provided in Fig. 4(c). These probabilities were
thresholded to arrive at a binary segmentation, varying the threshold levels yielded the ROC
curves given in Fig. 6.
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Fig. 9.
Influence of texture extraction resolution on the segmentation results [probability scale
provided in Fig. 4(c)].
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TABLE I

Summary of Mean Unsigned Surface Positioning Errors (Average ± Standard Deviation In Micrometers)

surface 6-layer segmentation [9] current 11-layer segmentation

1 2.85 ± 0.32 2.70 ± 0.35

2 4.98 ± 1.24 6.89 ± 2.23

3 13.59 ± 2.01

4 7.25 ± 1.10 4.98 ± 0.73

5 7.79 ± 0.74 7.45 ± 1.19

6 5.18 ± 0.82 5.87 ± 1.22

7 3.30 ± 1.60 3.13 ± 1.46

8 2.59 ± 0.57

9 8.47 ± 2.29 5.37 ± 1.37

10 6.60 ± 2.97

11 4.07 ± 0.93

overall 5.69 ± 2.41 5.75 ± 1.37
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TABLE II

Performance of the Computed Features in Terms of Per-Patch Area Under the Receiver-Operating
Characteristic Curve (Average ± Standard Deviation Across the Six Testing Sets)

thickness
mean 0.913±0.034

standard deviation 0.587±0.044

intensity

mean 0.938±0.024

variance 0.908±0.024

skewness 0.931±0.019

kurtosis 0.880±0.037

entropy 0.851±0.042

run length

short run emphasis 0.821±0.042

long run emphasis 0.828±0.041

gray level non-uniformity 0.906±0.038

run length non-uniformity 0.918±0.032

run percentage 0.831±0.033

co-occurrence matrix

angular second moment 0.887±0.040

correlation 0.782±0.069

contrast 0.901±0.024

entropy 0.892±0.034

inertia 0.935±0.024

inverse difference moment 0.912±0.038

wavelet analysis

standard deviation (level 1) 0.898±0.041

standard deviation (level 2) 0.867±0.044

kurtosis (level 1) 0.836±0.032

kurtosis (level 2) 0.724±0.036

fractal dimension 0.729±0.058
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