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Abstract
Trabecular bone (TB) is a complex quasi-random network of interconnected plates and rods. TB
constantly remodels to adapt to the stresses to which it is subjected (Wolff s Law). In osteoporosis,
this dynamic equilibrium between bone formation and resorption is perturbed, leading to bone loss
and structural deterioration, both increasing fracture risk. Bone s mechanical behavior can only be
partially explained by variations in bone mineral density, which led to the notion of bone structural
quality. Previously, we developed digital topological analysis (DTA) which classifies plates, rods,
profiles, edges, and junctions in a TB skeletal representation. Although the method has become quite
popular, a major limitation of DTA is that it provides only hard classifications of different topological
entities, failing to distinguish between narrow and wide plates. Here, we present a new method called
volumetric topological analysis (VTA) for regional quantification of TB topology. At each TB
location, the method uniquely classifies its topology on the continuum between perfect plates and
perfect rods, facilitating early detections of TB alterations from plates to rods according to the known
etiology of osteoporotic bone loss. Several new ideas, including manifold distance transform,
manifold scale, and feature propagation have been introduced here and combined with existing DTA
and distance transform methods, leading to the new VTA technology. This method has been applied
to multi-detector CT and μCT images of four cadaveric distal tibia and five distal radius specimens.
Both intra- and inter-modality reproducibility of the method has been examined using repeat CT and
μCT scans of distal tibia specimens. Also, the method s ability to predict experimental biomechanical
properties of TB via CT imaging under in vivo conditions has been quantitatively examined and the
results found are very encouraging.
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1 INTRODUCTION
Trabecular bone (TB) is a complex quasi-random network of interconnected plates and rods.
In human skeletons, trabeculae are typically 100–200 μm thick [1]. TB constantly remodels
through a complex interplay between bone formation by osteoblasts and bone resorption by
osteoclasts to adapt dynamically to the stresses to which it is subjected (Wolff s Law [2]). In
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osteoporosis, this dynamic equilibrium between bone formation and resorption is perturbed,
leading to bone loss and structural deterioration. Both bone loss and structural deterioration
increase fracture risk and most osteoporotic fractures occur at sites rich in TB. Approximately,
30% of postmenopausal white women in the United States suffer from osteoporosis [3] and
the prevalence in Europe and Asia is similar. In the United States alone, 10 million individuals
are estimated to have osteoporosis and almost 34 million more may have low bone mass, a
condition called “osteopenia”, placing the latter at high risk of developing the disease [4]. The
clinical manifestations of osteoporosis are fractures of the vertebrae, upper femur, humerus
and wrist. The continued rise in life expectancy is predicted to result in large increase in fracture
incidence in the current century [5].

Although the clinical definition of osteoporosis refers to a condition in which bone mineral
density (BMD) is at least 2.5 standard deviations below the mean of the young adult population
[6], bone s mechanical competence can only be partially explained by variations in BMD.
Recently, it has been shown that, on the average, BMD explains about 60% of bone strength
as estimated from a meta analysis of 38 studies investigating some measures of bone strength
[7]. These observations led to the notion of bone quality, chief among which is architecture as
a determinant of TB strength. Based on a study involving postmenopausal women, Kleerekoper
et al. [8] found that subjects with osteoporotic vertebral compression deformities, had a
significantly lower mean TB plate density as compared to an age and BMD matched control
group of subjects without fractures. In a study involving 69 postmenopausal women with 37
women suffering and 32 women without fractures, Moore et al. [9] reported inter-trabecular
spacing to be a more significant differentiator than BMD. Recker [10] observed decreased TB
plate density and increased marrow star volume [11] for a group of patients with vertebral crush
fractures as compared to another group consisting of equal number of BMD-matched controls.
There are several other clinical studies [12–16] supporting the notion of TB architectural
quality.

The conventional tool for assessing TB structure is histomorphometry from bone biopsies
[17–18]. Since histomorphometric approaches are primarily based on two-dimensional (2D)
cross-sections, in recent years, the method has been superseded by direct three-dimensional
(3D) analysis of biopsy specimens imaged by micro-computed tomography (μCT) [19]. μCT
instruments have maximum resolution of the order of 8 μm isotropic voxels providing detailed
insight into TB microarchitecture. Although the method is nondestructive, it is invasive, since
bone biopsies are required for μCT imaging which is rarely indicated clinically and not suited
for following patients longitudinally to evaluate treatment response. More recently, the μCT
cone-beam scanning technology has been incorporated into dedicated CT systems designed
for high-resolution imaging of TB at the distal extremities, i.e. the distal radius and tibia [20–
21]. The rapid diffusion of multi-detector CT systems also opens opportunities for TB structure
analysis in the axial skeleton or distal extremities [22–26]. Saha et al. [24] reported
reproducibility of multi-detector CT derived structural and topological measures of TB in
cadaveric ankle and also studied the correlation between TB measures derived via multi-
detector CT and μCT imaging. Bredella et al. [25] studied effectiveness of flat-panel volume
CT derived TB structural parameters in predicting anorexia nervosa in adolescent girls. They
observed bone structural abnormality in patients as compared with age and sex-matched
normal-weight control subjects. Recently, Diederichs et al. [26] has studied the correlation of
between TB parameters derived via multi-detector CT and μCT imaging of cadaveric ankles
and has also investigated the ability of CT derived parameters to predict bone mechanical
strength. Remarkable progress in high-resolution MRI during the past 10 years now offers a
new tool for TB structure assessment (for pertinent reviews, see [7, 27–30]). A review of
advanced imaging of bone macro and micro structure has been reported by Genant et al. [31].
In a comparative study between TB structural parameters obtained from high-resolution MR
and multi-detector CT, Link et al. [32] observed a high correlation between MR- and CT-
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derived structural parameters and those derived from contact radiographs. Although, recent
advances in CT and MRI allow imaging of TB in vivo, the limited SNR precludes voxel sizes
much smaller than TB thickness (100–200μm), therefore resulting in images that are inherently
fuzzy. Most conventional histomorphometric approaches to TB structural assessment are not
effective at in vivo resolution regime.

Various topologic and geometric approaches to characterize TB architecture have been
reported in literature [33–45]. Parfitt et al. [33] conceived a parallel interconnected plate model
of TB yielding bone area fraction, TB volume fraction, TB spacing, and TB number from 2D
histomorphometric sections. Vesterby et al. [34] conceived a new stereologic parameter, called
star volume, which is the average volume of an object region that can be seen from a point
inside that region un-obscured in all directions. Hahn et al. [35] introduced the “trabecular
bone pattern factor” which captures TB connectivity in terms of convexity property of TB
surface defined as ratio of the differences in perimeter and area under dilation. Hildebrand et
al. [36] developed a 3D structure model index, a function of global plate-to-rod ratio, based
on the observation that the rate of change of volume with thickness for a plate is different from
that for a rod. Majumdar et al. [37] have adopted apparent TB number, apparent TB thickness,
apparent TB spacing and fractal dimension to quantify TB structural quality. Stampa et al.
[38] introduced two new measures, namely, relative plate and relative rod volume using TB
voxel counts in 3 × 3 planes around each TB voxel. Some investigators [39–40] have analyzed
the nodes and free ends of TB. Feldkamp et al. [41] showed that the makeup of TB networks
can be expressed in terms of topological entities such as the 3D Euler number. Saha et al.
[42] introduced the notion of characterizing plat-like and rod-like geometry of a local structure
by analyzing structural anisotropy using tensor scale [46–47]. Recently, Vasili et al. [43] has
presented a method of characterizing rod-like and plate-like structures in a TB network using
inertial anisotropy. Bonnassie et al. [44] presented a new method of characterizing local shape
using medial axis transformation. Carballido-Gamio et al. [45] has developed a new method
of analyzing TB structure by analyzing structural anisotropy at junctions on 2D image-slices.

Previously, we developed digital topological analysis [48–50] which classifies plates, rods,
profiles, junctions, and edges in a skeletal representation of a TB network. Although, the
method is being widely used for quantification of TB structural quality, a major limitation of
the method is that resulting classifications are inherently binary failing to distinguish between
narrow and wide plates. Here, we introduce a new method called volumetric topological
analysis for regional quantification of TB topology. At each TB location, the method uniquely
classifies topology of the local trabecula on the continuum between perfect plates and rods
facilitating early detections of TB alterations from plates to rods according to the known
etiology of osteoporotic bone loss.

2 THEORY AND ALGORITHMS
A previously published digital topological analysis (DTA) method [48–50] successfully
identifies different topological entities (Figure 1(a)) in a surface skeletal representation of a
TB network. However, it suffers from two major limitations – (1) binary classification of plates
and rods and (2) failure to obtain topological characterization in a volumetric representation.
The proposed volumetric topological analysis (VTA) method is aimed to overcome these two
limitations. VTA identifies topological entities on the continuum between perfect plates and
perfect rods in a volumetric representation of a quasi-random mesh-like structure including
TB networks (Figure 1(b)). Also, it may be applicable to simpler structures, often used in
robotic 3D object recognition [51]. VTA is accomplished using the following sequential steps
– (1) surface skeletonization [52–56], (2) digital topological analysis [48–49], (3) manifold
distance transform (MDT), (4) manifold scale computation, and (5) volumetric feature
propagation. The results of intermediate steps in VTA are illustrated in Figure 2. The first two
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steps are accomplished using our previously reported algorithms except that the output of
surface skeletonization is further improved using a new noise pruning algorithm described in
Section 2.4. In the rest of this paper, by skeletonization , we will understand surface
skeletonization unless stated otherwise. Several new concepts and algorithms including
manifold distance transform and manifold scale are introduced in this paper. Feature
propagation technique was previously presented by Bonnassie et al. [44]. Here, we propose a
scan-independent solution to the problem.

First, we schematically describe the measure we intend to compute using the new algorithm.
Let us consider a surface-like volume object and its skeleton as shown in Figure 3. As illustrated
in the figure local structure thickness and width are two independent measures. Local structure
thickness may be computed by sampling binary or fuzzy distance transform along skeletal
locations [57–58]. However, to compute local skeletal width (see Figure 3), we need a
technique similar to manifold distance transform (see Section 2.3). Following the description
in the figure, a manifold distance transform from skeletal surface edge only provides local
skeletal width. During a skeletonization process, a volume object is peeled by one voxel per
iteration leading to a difference in width between the volume object and its skeleton (see Figure
3). Moreover, this difference is related to structure thickness at skeletal edges. Therefore, it is
necessary to initialize manifold distance transform at skeletal edges by local thickness to
compute the thickness of actual volumetric object (see Section 2.3). Essentially, VTA is
designed to compute local width of a volume object which is subsequently used to classify
individual trabecula on the continuum between a perfect plate and a perfect rod. In following
sections, we describe the theory and algorithms for different steps involved in VTA starting
with common definitions and notations used throughout the paper.

2.1 Definitions and Notations
In this paper, we use ℝ to denote the set of real numbers while ℤ is used to denote the set of
integers. It may be noted that ℝ3 denotes the continuous 3D-space. We use ℤ3 to represent a
digital space and each element of a digital space is referred to as a voxel whose position is
denoted by Cartesian coordinates (x1, x2, x3)| x1, x2, x3 ∈ ℤ. For any two voxels p, q ∈ ℤ3, |p–
q| denotes the Euclidean distance between the two voxels. Although, the theory and methods
immediately extend to fuzzy objects, the current development of VTA is confined to binary
digital images, i.e., a voxel may have only two values – object and background. Such images
are often obtained by thresholding [59–60] a gray-scale intensity image into object and
background regions. An object in a binary image may be represented as a set O ⊂ ℤ3 of voxels.
Following the fact that the field of view of an acquired image is always finite, the cardinality
of an object O, denoted by || O ||, is always finite. We use Ō = ℤ3 – O to denote the background
for the object O. In the current application, the set of bone voxels constitutes the object and
the background represents the set of all marrow or other non-trabecular bone voxels. Two

voxels (x1, x2, x3)and (y1, y2, y3) are called 6-adjacent if and only if  (face

adjacent only); they are called 18-adjacent if and only if  (face or edge

adjacent); and they are called 26-adjacent if and only if  (face, edge, or
corner adjacent). Two α-adjacent voxels, where α ∈ {6,18,26}, are often referred to as α-
neighbors of each other. Let p = (x1, x2, x3) denote a voxel and let q = (y1, y2, y3) and r = (z1,
z2, z3) denote two 6-neighbors of p. The two voxels q, r are referred to as opposite 6-
neighbors of p if and only if yi–xi = xi–zi = ± 1, for some i ∈ {1,2,3}; note that the two opposite
6-neighbors q, r share two opposite faces of the voxel p. To satisfy the Jordan surface property
in a binary digital image, whenever 26-adjacency is used for object (i.e., the set of bone voxels),
6-adjacency must be used for the background (i.e., the set of marrow or other non-trabecular
bone voxels) and vice versa [61]. It ensures that a closed object surface is the necessary and
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sufficient condition to separate the background into two components – the interior and the
exterior. Here, we use 26-adjacency for object voxels and 6-adjacency for background voxels.
Often, a topological property derived with such an adjacency convention is referred to as a
(26,6) topological property.

In digital topology, we often refer to three entities – components, tunnels, and cavities; we
define these three entities in the following. Let S be a nonempty set of voxels. An α-path|α
∈ {6,18,26} in S between two voxels p, q ∈ S is a sequence of voxels 〈p = p0, p1, …, pn = q〉
in S such that pi is α-adjacent to pi+1 for all 0 ≤ i< n. An α-curve is an α-path 〈p0, p1, …,pn〉
if and only if pi, for 0 < i n, has exactly two α-neighbors on the path. An α-path (or, an α-
curve) is an α-closed path (respectively, an α-closed curve) if p0 is α-adjacent to pn. Two
voxels p, q ∈ S are α-connected in S if there exists an α-path from p to q in S. An α-
component of S is a maximal subset of S where each pair of voxels is α-connected in S. A
cavity in S is a 6-component of S̄ surrounded by S. Although tunnels are easily visualized and
intuitively described, they are difficult to formally define. However, the number of tunnels in
an object can be defined precisely. Intuitively, a tunnel is formed by bending a cylinder to
connect its two ends to each other or to a single connected object, e.g., the handle of a coffee
mug. More accurately, the number of tunnels in an object is the rank of its first homology group
[62].

In the following discussions, for any voxel p,  (p) denotes the set of all voxels in the 3 × 3
× 3 neighborhood of p including p and (p) denotes the set  (p) – {p}. Because of the
structure of 3 × 3 × 3 neighborhood, assuming that the central voxel p is an object voxel, the
set of all object voxels in  (p) always forms exactly one 26-connected component without
tunnels and cavities [63], i.e., the topological property of the set of object voxels in  (p) is
invariant. Therefore, the local topology of a voxel p is solely characterized by the set of object
voxels in (p). Let ξ (p), η(p) and δ(p), respectively, denote the numbers of object
components, tunnels, and cavities formed by the set of object voxels in (p). The entities ξ
(p), η(p), and δ(p) are referred to as local topological parameters of p [48–49]. Let X(p) and
Y(p) denote the sets of 6- and 18-adjacent background neighbors of p, respectively. The
following two theorems [48, 64–65] provide computational definitions of η(p) and δ(p):

Theorem 1—If X(p) is nonempty, the number of tunnels η(p) is one less than the number of
6-components of Y(p) intersecting with X(p), or zero otherwise.

Theorem 2—The number of cavities δ(p) is one when all the 6-neighbors of p are object
voxels and zero otherwise.

Rigorous proofs for these theorems may be found in Saha and Rosenfeld [63] while more
intuitive and illustrative clarifications are presented in [49]. Intuitively, a voxel p is a “simple
voxel” if and only if its binary transformation (i.e., conversion from object voxel to a
background voxel or vice versa) does not alter digital topology of an object. Following Saha
et al. [48, 64–65], a voxel p is a (26,6)-simple voxel if and only if the number of object
component ξ(p) in (p) is exactly one and the number of tunnels η(p) and the number of
cavities δ(p) in (p) are both zero. An efficient solution for computing both (26,6)-simple
voxels and local topological parameters ξ(p), η(p) and δ(p) was presented in [48–49, 63] using
the notions of dead faces, dead edges, effective voxels and geometric classes of 3 × 3 ×3
neighborhood. In the following, first, we briefly review the DTA method as the developments
in subsequent sections are dependent on several theoretical ideas of DTA.
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2.2 Digital Topological Analysis
The primary objective of digital topological analysis or DTA is to uniquely determine the
topological class of each voxel in a skeletal representation of a 3D object. The method was
originally invented by Saha and Chaudhuri [48] and later adopted in the context of trabecular
bone image analysis [49–50, 66]. Theory and methods behind DTA have been thoroughly
described in [48–49]. For the sake of brevity, here, we only describe some basic ideas necessary
to understand the developments in the following sections. Let us explain the idea on an object
⊂ℝ3 that may be represented as a union of finitely many surfaces and curves in a continuous

3D-space (see Figure 4(a)). It is interesting to note that a point in  may be classified depending
on its local topological property. For example, the removal of a point ps on a surface of 
creates exactly one tunnel in a sufficiently small neighborhood of that point. The removal of
a point pss on a junction of multiple surfaces creates multiple tunnels. It creates exactly two
objects on a curve (pc) and multiple objects at a junction of curves (pcc). At a junction of surface
and curve (psc), it creates multiple objects and exactly one tunnel and so on.

In a digital space, we indentify eight different topological classes of skeletal voxels, namely,
isolated, curve interiors, curve edges, surface interiors, surface edges, and curve-curve, surface-
curve, and surface-surface junctions (Figure 4(b)). However, the classification in a digital space
is not as straightforward as in the case of ℝ3. DTA is solved in three sequential steps – (1)
determination of local topological type, (2) initial topological classification based on these
types and (3) final classification after corrections at different topological junctions. Local
topological type [48] provides only a partial classification which is essentially derived from
the three local topological parameters ξ(p), η(p) and δ(p). During the second step, a unique
initial classification is achieved by reviewing the local topological type of 26-neighbors of each
voxel not uniquely classified during the first step. After initial classification, the process is
complete except for some possible corrections at junctions. This step is primarily accomplished
by analyzing the topology of edge type voxels and the fact that, under a normal circumstance,
edge voxels on a surface form a 26-closed curve and this normal topology of edge voxels is
perturbed only at junctions.

2.3 Manifold Distance Transform
In this section, we present the theory and algorithm for a new distance transform that may be
useful to analyze and derive quantitative measures related to geodesic geometry of a digital
shape. In the literature of digital topology, “geodesic distance” has been used to represent the
constrained distance between two points inside a connected region in a 2D digital space [67–
68]. Specifically, “geodesic distance” between two pixels inside a given region represents the
length of the shortest path between the two pixels under the constraint that the path lies entirely
inside the region. Piper and Granum [69] studied the properties of such paths in convex and
concave domains in 2D. Verwer et al. [70] presented an efficient algorithm in 2D for computing
constrained distance transform of a binary reference image where the paths are not allowed to
enter into the background of another constraint image. Here, we define a distance between two
voxels on a digital surface, say S, which is an union of finitely many digital manifolds embedded
in 3D and formulate a distance transform that, essentially, computes geodesic distance (in the
true sense) of a voxel p ∈ S from the nearest edge of S. To avoid conflicts with existing
terminologies, we will refer to it as “manifold distance transform” or “MDT” in short. Kimmel
and Sethian [71] presented an elegant algorithm for computing shortest path length on a
triangulated manifold often, generated by marching cube algorithm [72]. This method has been
applied for analyzing geometry of sulcal regions on cortical surface [73–75]. However, none
of the above works have discussed distance transform on a digital manifold which is essential
to analyze the geometry and topology of surface like structures or structures consisting of plates
and rods (e.g., a trabecular bone network) directly from their digital representation. It may be
pointed out that triangulated manifold representation require binarization; on the other hand,
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digital representations are capable of directly handling fuzzy representation of an object.
Therefore, such digital manifold distance transform may potentially be useful to analyze
geodesic geometry of fuzzy objects which may be a research topic of its own and not addressed
in the current paper. In the following, we formally define manifold distance transform and
present an algorithm.

A (26,6)-digital surface is a nonempty set S of voxels where each (26,6)-simple voxel [48,
64–65] p ∈ S has at least one pair of opposite 6-neighbors in the background S̄; such digital
surfaces are often obtained by applying skeletonization on binary or fuzzy digital images.
Manifold distance transform is a function MDT:S → ℝ, where S denotes a digital surface and,
∀ p, ∈ S, MDT(p) provides the “manifold distance” between p and the edge of S (see Figure
4(b) for examples of edges on a digital surface). First, let us consider the situation where S is
a digital surface containing no junction voxel (see Figure 4(b) for examples of junctions on a
digital surface); such a digital surface will be referred to as a (26,6)-digital manifold. Let SE
denote the set of all edge voxels on S. Between any two voxels p, q ∈ S, there may be infinitely
many 26-paths in S; let  (p, q, S) denote the set of all such paths from p to q in S. The length
of a path π = 〈p = p0, p1,…, pn = q〉, denoted by Π(π), is defined as follow:

The manifold distance between two voxels p, q on a (26,6)-digital manifold S, denoted as 
(p, q, S), is defined as follows:

It may be shown that, for any (26,6)-digital manifold S, the manifold distance  satisfies the
required metric property. MDT may be computed by initializing its values at edge voxels SE
and then propagating the MDT values into inner voxels along S using an wave-propagation
algorithm similar to the one followed in fuzzy connectivity or fuzzy distance transform methods
[76–78]. However, the skeleton of a real object generally contains junctions and we can
consider a skeleton as a union of finitely many digital manifolds glued at junctions. Intuitively,
a junction may be formed as a voxel (e.g., junction between multiple curves or between a curve
and a surface) or a path of voxels (e.g., junction between multiple surfaces) at the intersection
of multiple digital manifolds. Illustrations of different types of junctions on a digital surface
are presented in Figure 4(b); see [48] for formal definitions. Skeletons of real objects consist
of multiple digital manifolds attached at junctions and it is important to maintain the identity
of individual manifolds during MDT computation. As illustrated in Figure 5(a), individual
manifolds lose their identities when MDT values are allowed to propagate along paths crossing
junctions leading to artifacts in MDT values. For example, the central portion of the base
surface in the figure artificially inherits lower MDT values (reddish color) from the vertical
segment. Such artifacts are rectified (Figure 5(b)) by imposing a validity condition on 26-paths
as follows. Let S denote the set of all voxels in a (26,6)-digital surface representing the skeleton
of some object, say O. Let SJ ⊂ S denote the set of all junction voxels on the skeleton S; SJ
may be determined using the DTA method [48] reviewed in Section 2.2. A 26-path π = 〈 =
p0, p1, …, pn = q 〉 between two voxels p, q ∈ S is called a 26-valid path in S if – (1) ∀i = 1,2,
…, n–1, pi ∈ S –SJ and (2) ∄r ∈ SJ and 0 ≤ i < n such that |pi –pi+1| >max(|pi – r|, |r – pi+1|). A
violation of the second condition of a path is considered as a “crossing” with a junction without
sharing a common voxel, because, the path …, pi, r, pi+1,… is more natural as compared to the
path …, pi, pi+1, … in the sense that the former path accomplishes the move from pi to pi+1
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using shorter steps. An example of such crossing between a 26-path π (the path of red voxels)
and a junction line lJ (the path of blue voxels) is illustrated in Figure 5(c) where π and lJ have
no common voxel. The algorithm for computing MDT for a (26,6)-digital surface is presented
in the following. Here, by ordinary distance transform, we refer to either binary or fuzzy
distance transform [76, 79–81] where the distance feature values are initialized at every voxel
in the background of an object O. In our current implementation, fuzzy distance transform is
used for initialization. An example of manifold distance transform computation is presented
in Figure 2(e). Here, we have used a surface rendition technique instead of voxel rendition used
for Figure 2(a–d) as color variations are better rendered in surface display as compared to the
voxel mode. It may be noted that colors at surface edges are not always strongly red as MDT
values at edges are initialized as the value of local thickness. This method of initialization
allows us to capture the local width of a volumetric structure in VTA and not the skeletal
structure as discussed at the beginning of Section 2.

begin
process compute_MDT
input:
a (26,6)-digital surface S
// S may be obtained by skeletonizing a binary digital object O ⊂ ⊂3
set of junction voxels SJ ⊂ S
set of edge voxels SE ⊂ S
ordinary distance transform DT: O → ⊂
output:
manifold distance transform MDT: S → ⊂
auxiliary data structure:
a sequential queue Q
for each voxel p ⊂ S
assign MDT (p) = max_MDT_value
for each voxel p in SE
assign MDT(p) = DT(p)
push p in Q
while
Q is not empty
pop a voxel p from Q
for each voxel q ⊂  (p)
define link (p, q) = |p – q|
if
q ⊂ SJ AND MDT (q) < MDT (p) + link (p, q)
assign MDT (q) = MDT (p) + link (p, q)
else if
MDT (q) < MDT (p) + link (p, q)
AND ⊂r ⊂ SJ that |p – q| > (|p – q|, r| – q|)
assign MDT (q) = MDT (p) + link (p, q)
push q in Q
end process compute_MDT

It may be mentioned that, in the above algorithm, the definition of the set SE of edge voxels
may be altered as per the requirement of an application. For example, SE may be – (1) the set
of all surface- and curve-edge voxels or (2) the set of all surface- and curve-edge, curve-interior,
and curve-curve junction voxels.
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2.4 Skeletonization
Here, we adopt a previously reported skeletonization method [53] which completes the
skeletonization process in two steps – primary and secondary skeletonization. Primary
skeletonization iteratively erodes object voxels from the current outer layer of an object while
preserving its topology and so-called “shape”. In order to preserve object topology, only (26,6)-
simple voxels [64–65] are considered for erosion. Both surface- and arc-like shape voxels
[53] are preserved during the erosion process. The output of primary skeletonization may
contain two-voxel thick surfaces and curves. Extra thick voxels [53] are removed using an
extra iteration referred to as secondary skeletonization. The output of the method is presented
in Figure 2(b). Although, the method attempts to reduce effects of noise in a skeleton, it does
so only using local context of object geometry and therefore, is destined to perform sub-
optimally. Here, we describe a new post-skeletonization algorithm to identify and eliminate
noisy branches in a skeleton. Unlike, the noise removal approaches, generally adopted within
a skeletonization algorithm, the current method identifies noise based on global context of
skeletal geometry as described in the following.

Let S denote the skeleton of an object O derived using the above algorithm. The basic idea here
is to distinguish skeletal branches contributed by true geometric features in the original object
from those originated by noisy bumps or dents, often, common in digital images. However,
often, a small branch originating from a one- or two-voxel protrusion grows iteratively due to
the topology preservation constraint and eventually leads to a long branch in the final skeleton
(see Figure 6). Frequently, such branches appear to be an important feature in a skeleton and
may not be recognized as a noisy branch without additional information. To overcome this
problem, in a skeletal branch, we distinguish voxels needed to maintain object shape features
from those survived merely for topology preservation. Fortunately, the skeletonization method
adopted here keeps track of voxels surviving for shape preservation. We refer to such voxels
as shape voxels and use SS to denote the set of all shape voxels in a skeleton S. In order to
determine the importance of a branch in a skeleton, we introduce a new “shape distance
transform” which is essentially a modification of MDT. The idea of shape distance transform
(STD) may be better understood using an example as illustrated in Figure 6. Let us consider a
linear digital shape as shown in the figure that contains a noisy pixel. Following that shape
pixels/voxels are always defined locally, a noisy pixel/voxel may slip through the constraint
of a shape pixel/voxel. Depending upon the constraints for a shape point, it is always possible
to create an example of a noisy protrusion that is wrongly chosen as a shape pixel/voxel. Here,
we have used a simple example as our main intension is to illustrate the idea of SDT. Although,
only one pixel in a noisy protrusion is selected as a shape pixel, it leads to a long branch in the
final skeleton caused by topology preservation. Therefore, just by looking at the skeleton, it s
often difficult to decide whether a branch is caused by noisy protrusion or it carries meaningful
information of the original shape. We formulate SDT such that only shape pixels/voxels
contribute to the “shape length” of a path (or a branch) and the pixels/voxels survived merely
because of topology preservation are ignored. Thus only one pixel will contribute to shape
length of the path π that later makes it easy to decide the path as a noisy branch. Shape length
is formulated using a new membership function μSS which takes ‘1’ value when a voxel is a
shape voxel and ‘0’, otherwise.

In order to formally defined shape distance, first, we define a modified set of edge voxels SE.
from which shape distance transform is computed. Intuitively, SE. should constitute of all
surface- and curve-edge voxels identified using DTA. However, in a TB network, two-voxel
wide ribbon-like structures appear and should be treated separately as follows. A surface-edge
voxel with no surface-interior voxel in its 3 × 3 × 3 neighborhood is reclassified as a profile
voxel [49]. Profile voxels form a two-voxel-wide ribbon-like structure and we need to remove
a pair of voxels to disconnect the structure into two except at its edges; based on this
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observation, profile edges are defined as follows. Let p be a profile voxel in S; we call p as a
profile-edge voxel if ∀ q ∈  (p) ∩ (S – {p}), q is a (26,6)-simple voxel in S – {p}. The set
of edge voxels SE is the set of all surface-, curve-, and profile-edge voxels; note that non-edge
profile voxels are no longer surface-edge voxels and therefore, is not included in SE. Shape
length of any 26-valid path π = 〈p0, p1, …, pn〉 on a skeleton S, denoted by ΠSS (π)is defined
as follows:

Shape distance transform or SDT is a function SDT: S → ℝ, where SDT(p) gives the shape
length of the shortest 26-valid path in S between p and the edge SE of the digital surface S; if
there is no 26-valid path from p to SE, SDT (p) is set to + ∞. The algorithm of computing shape
distance transform is exactly the same as the process compute_MDT except that the definition

of link (p, q) is modified to  following the spirit of the above
equation. Finally, noise pruning is accomplished using the following algorithm.

begin
process compute_noise_pruning
input:
a skeleton S
set of junction voxels SJ ⊂ S
shape distance transform SDT S → ⊂
a predefined threshold thr
output:
noise pruned skeleton S′
assign a temporary skeleton tS = S
for each voxel p ⊂ SJ
for each voxel q ⊂ (p) ∩ S – SJ
if SDT (q) < thr
assign tS = tS –{q}
assign a set of seed voxels Sd as follows
Sd = {p⊂p ⊂ tS and SDT (p) ≥ thr}
assign the noise pruned skeleton S′ as follows
S′ = {p⊂p ⊂ tS and p is 26-connected to Sd in tS}
augment S′ as follows
S′ = S′ ⊂ {p⊂p ⊂ Sj and p is 26-adjacent to S′ − SJ}
end
process compute_noise_pruning

The key idea behind the above noise pruning algorithm is to first unglue skeletal branches at
junctions and then retrieve the meaningful branches using a connectivity analysis from seeds
carrying significant shape information. The last augmentation step in the algorithm is used to
retrieve the part of a meaningful branch lost during the process of ungluing. The result of noise
pruning is illustrated in Figure 2(b). Here, we have used thr = 2 voxel units.
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2.5 Manifold scale
Manifold scale denotes the geodesic width of the local surface at each voxel on a digital surface
and is computed in two steps – (1) initiate manifold scale at each axial voxel p as MDT (p) and
(2) inherit manifold scale at a non-axial voxel from its nearest axial voxel. Often, the arc-
skeleton [53] derived from a digital surface S is used to represent the set of axial voxels of S.
However, in the present context, arc-skeleton may not be the best choice as a noisy protrusion
may extend a long branch all the way to a deeper axial line due to the topology preservation
constraint [64–65] and thus affecting manifold scales of more voxels. Therefore, instead of
computing an arc-skeleton, we identify only those voxels representing local elongatedness of
S. Specifically, we consider axial voxels as the set of all arc-shape voxels which is a modified
version of the original definition presented in [53].

The definition of arc-shape voxels is best understood in the context of a hypothetical erosion
process of a digital surface S in an increasing order of MDT values. Let p (x1, x2, x3) be a voxel
in S. At the time of finding whether or not p is an arc-shape voxel, all voxels q ∈ S with
MDT (q) MDT (p) have already been checked and some of those voxels may have been marked
as arc-shape voxels. Also, at the time p is being checked, all unmarked voxels with their MDT
values less MDT (p) are hypothetically removed as background voxels. With this context in
mind, let us define arc-shape voxels as follows. A voxel p may satisfy the arc-shape constraint
along any of the three coordinate axis directions; let us consider the first coordinate axis. A
middle plane orthogonal to the first coordinate axis and passing through the voxel p is denoted
by (p) and is defined as the set of all voxels with their first coordinate value equal to that of
p, i.e. (p)= {(x1, y2, y3) |y2, y3 ∈ ℤ}. Similarly, the upper and lower planes of p orthogonal
to the first coordinate axis, denoted by  (p) and  (p), respectively, are defined as  (p) =
{(x1 + 1, y2, y3) |y2, y3 ∈ ℤ} and  (p) = {(x1 – 1, y2, y3) |y2, y3 ∈ ℤ}. The 2 × 2 neighborhood
of p on (p) is the set of the voxels {(x1, x2, x3), (x1, x2 + 1, x3), (x1, x2, x3 + 1), (x1, x2, + 1,
x3 + 1)}; let A1(p) denote the set of all voxels in this 2 × 2 neighborhood with their MDT values
no less than MDT (p) or already marked as an arc-shape voxel. A voxel p is an arc-shape voxel
along the first coordinate axis direction if it satisfies all the following three conditions.

1. ∀q ∈ (∪r∈A1 (p)  (r) – A1(p) ) ∩  (p), MDT (q) < MDT(p) is not marked as an arc-
shape voxel.

2. ∃q ∈  (p) ∩  (p) such that

3. ∃q ∈  (p) ∩  (p) such

The first condition ensures that there exists a 6-closed path of current background voxel around
p on the middle plane  (p). The second and third conditions ensure that at least one voxel on
each of the planes  (p) and  (p), at the vicinity of p, survives while the voxel p is considered
for hypothetical erosion or marking. An illustrative description of arc-shape voxels is presented
in Saha et al. [53]. Arc-shape voxels along the directions of the second and third coordinate
axes are defined similarly. (S) is used to denote the set of all axial or arc-shape voxels on a
skeleton S; note that a skeleton is essentially a (26,6)-digital surface.

Manifold scale at an axial voxel p ∈ Axial (S), denoted by MS (p), is directly determined as the
MDT value of p. For a non-axial voxel q ∈ S – Axial (S), its manifold scale MS (q) is inherited
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from its nearest axial voxel. Manifold scale is computed using an algorithm similar to
compute_MDT as follows:

begin
process compute_Manifold_Scale
input:
a skeleton S
set of junction voxels SJ ⊂ S
set of axial voxels (S)
manifold distance transform MDT: S → ⊂
output:
nearest axial voxel mapping NAV: S → Axial (S)
manifold scale MS: S → ⊂
auxiliary data structure:
auxiliary manifold distance measure aMDM from axial voxels
a sequential queue Q
for all voxels p ⊂ S
assign aMDM (p) = max_value
for all voxels p ⊂ Axial (S)
assign aMDM (p) = −MDT (p)
assign NAV (p) = p
push p in Q
while
Q is not empty
pop a voxel p from Q
for all voxels q ⊂  (p)if
q ⊂ SJ AND aMDM (q) > aMDM (p) + |p – q|
assign aMDM (q) = aMDM (p) + |p – q|
assign NAV (q) = NAV (p)
else if
aMDM (q) >aMDM (p) + |p –q|
AND ⊂r ⊂ SJ such that |p – q| > max(|p – r|, |q – r|)
assign aMDM (q) = aMDM (p) + |p – q|
assign NAV (q) = NAV (p)
push q in Q
for all voxels p ⊂ S
assign MS(p) = MDT(NAV(p))
end process compute_Manifold_Scale

In the above algorithm, the step “assign aMDM (p) = −MDT ” reduces the domain of noisy
axial voxels as such voxels are commonly associated with smaller MDT values. Here, it s worth
mentioning that the MDT map used in the above algorithm as an input is computed with the
set SE of edge voxels (see Section 2.3) as the set of all SE-, C-, CE-, CC- and profile-type voxels
in the skeleton; also, for a C-, CE-, CC- or profile-type voxel, its MDT value is initiated as
twice the local fuzzy distance transform value to capture structure width. The result of
application of the method on a small region taken from a TB μCT image is illustrated in Figure
2(f).

2.6 Volumetric Feature Propagation
As described above, manifold scale essentially resembles a manifold topological
characterization at each skeletal voxel. Further, this manifold topological characterization
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immediately maps a voxel on the continuum between perfect plates and rods. The aim of the
current step is to propagate manifold scale or topological characterization from skeleton to the
entire TB volume leading to volumetric topological analysis or VTA. Bonnassie et al. [44]
proposed a feature propagation method from skeletal voxels to entire volume by copying
feature values from a skeletal voxel p to all voxels within the maximal ball centered at p.
However, as mentioned by the authors, the method suffers from the fact that final results depend
on the order in which skeletal voxels are processed. Here, we provide a classical solution to
this problem using nearest neighbor approach that is independent of such scan or processing
order.

VTA produces a function VTA: O → ℝ that assigns a topological classification at each voxel
p in a digital object O on the continuum between a plate and a rod. Differently, at each TB
voxel, VTA is capable to delivering the measure of the local TB width in micrometer. Similar
to manifold scale, computation of VTA is accomplished using the following steps – (1) initiate
VTA(p) at each voxel p on the skeletal S of O as the manifold scale MS(q) of p and (2) at a non-
skeletal voxel q, inherit VTA(q) from its nearest skeletal voxel. The algorithm for volumetric
feature propagation is exactly the same as that of manifold scale computation except the
following differences – (1) at each skeletal voxel p, the auxiliary distance measure aDM(p) is
initiated as ‘−DT(p)’, (2) no extra constraint related to junction crossing is needed and (3) at
each voxel p ∈ V, its VTA value is assigned as the manifold scale value of the nearest skeletal
voxel. Final VTA results are presented in Figure 2(g,h) from two different view angles.

2.7 Normalized Plateness and Rodness Measures
The VTA algorithm described in the previous subsection may be assigned with a unit of
millimeter by expressing the Euclidean distance |p – q| between two voxels p, q in millimeter
as per image resolution. Here, we define two normalized measures of plateness and rodness
on the basis of the image-derived VTA function as follows:

and,

Here, we have used platemin = 0.15 mm and platemax = 1 mm. The minimum value of TB plate
width is determined by voxel size (here, 0.15 mm) and the upper bound was determined by
finding TB width at upper 97 percentile for the specimens used in our experiments. It may be
noted that no abrupt change in plateness/rodness values takes place at lower or upper ends;
rather it causes saturations at two ends, namely, platemin and platemax. Selection of the upper
bound at 97 percentile essentially ignores variations of plate width within upper three percentile
data putting saturation at 97 percentile. Therefore, the loss of data due to the normalization
step is minimal. It is worth mentioning that the normalization process described here may not
be optimum. Optimization of the normalization scale and, more importantly, the relation of
normalized plateness/rodness measures with different disease status need to be carefully
evaluated in a large patient study which is beyond the scope of the current paper.

3 EXPERIMENTAL PLANS AND METHODS
In this section, we describe our experimental plans and methods to examine the performance
of the VTA method and to compare it with bone volume/total volume (BV/TV), a representative
image-based measure for BMD, and DTA measures. Specifically, we examine the accuracy of
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the VTA method on computational phantom images of sinusoidal cross-plates of varying width
and quantitatively evaluate both intra- and inter-modality reproducibility of the method using
multi-scan CT and μCT imaging. Also, we examine the method s ability to predict experimental
biomechanical properties of TB via CT imaging under in vivo conditions. In the following, we
describe the detail plans and methods for all three experiments.

3.1 Accuracy Analysis on Phantom Images
Accuracy of the method has been examined quantitatively on computational phantoms (Figure
7). Twenty phantom images, each containing sinusoidal cross plates of known plate width,
were computer-generated. Initially, the phantom images were generated at a high isotropic
resolution of 50 μm and TB thickness of 200 μm. These high resolution images were down-
sampled at 150 μm isotropic voxel size to simulate partial volume effects. Each down-sampled
image was further degraded with additive random noise at SNR of 12. One cross sectional
image of a phantom is illustrated in Figure 7(a). A bone volume fraction image (Figure 7(b))
was computed from each of these phantom images and was subsequently binarized using
thresholding. Mean plate width was computed for each binarized image using VTA and the
linear correlation between the known plate width and computed plate width was examined.

3.2 Intra and Inter-Modality Reproducibility
Both intra- and inter-modality reproducibility of VTA have been quantitatively examined and
compared with those of BV/TV and DTA measures using repeat CT scans and μCT imaging
of four cadaveric distal tibia specimens. In the following, we describe the CT and μCT imaging
protocols and the data analysis procedures adopted for these experiments.

3.2.1 CT and μCT Imaging—Four cadaveric distal tibia specimens were scanned in a
Siemens Sensation 64 Multi-slice CT scanner at 120 kVp, 140 mAs, and pitch of 0.8 to
adequately visualize bony structures. After scanning each specimen in a helical mode with a
slice thickness of 0.6 mm and collimation of 12 × 0.6 min, data was reconstructed at 0.3 mm
slice thickness using a normal cone beam method with a special U75 kernel to achieve high
structural resolution. In the rest of this paper, by “CT”, we will understand “multi-slice CT”
unless stated otherwise. Three repeat CT scans of each distal tibia specimen were acquired
after repositioning the specimen on the CT table before each scan. Image parameters for these
scans were as follow: matrix size = 512 × 512 pixels; slice-thickness = 0.3 mm; pixel size =
0.15 mm. Each distal tibia specimen was also scanned on an Imtek Micro-cat II producing
images at 28.8 μm isotropic resolution after removing soft tissue and dislocating tibia from the
ankle joint. Three repeat CT scans of each of the four specimens were used to examine intra-
modality reproducibility while the first CT scan and the μCT data of all specimens were used
for evaluating inter-modality reproducibility.

3.2.2 Image Processing and Data Analysis—A total of twenty five cylindrical VOIs,
each of 3.75 mm radius and length, were randomly located in the first CT scan of four distal
tibia specimens. For each cylinder, its axis was aligned along the scan direction and the base
was randomly located above the position 8 mm proximal to the distal cortical endplate visually
identified in the image. Each of the other two repeat CT and the single μCT images of each
specimen were registered with the first CT image of the same specimen using the registration
graphical tools supported by the Analyze software. Each image data set was processed through
the following cascade of steps – (1) computation of bone volume fraction (BVF) image from
each of CT/μCT images using a step-up ramp function, (2) resampling of BVF images at 0.15
mm isotropic voxel using the windowed sinc interpolation method [82], (3) registration of the
BVF image derived from each of the second and third repeat CT and the μCT scans with that
from the first CT scan, and (4) application of DTA and VTA methods to each of the resampled
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and registered BVF images. Following the fact that TB region consists of marrow and bone
only, a step-up ramp is a natural choice to determine partial occupancy of bone in a voxel via
CT imaging [83]. In the literature, binary thresholding has been adopted to segment trabecular
bone region in CT and μCT imaging [1, 25–26]. Here, we have adopted a soft thresholding
using a step-up ramp function for BVF computation [24, 58] to capture partial volume effects.

In each VOI, the following TB measures were computed from all repeat CT and μCT images
– (1) bone volume/tissue volume or BV/TV, (2) surface to curve ratio SCRDTA and (3) erosion
index EIDTA using DTA, and (4) average surface-width SWVTA and (5) surface to curve ratio
SCRVTA using VTA. Two DTA-based measures were computed according to the descriptions
presented in [49, 66]. Here, we briefly describe the computation process for three other TB
measures. Let V denote the set of voxels representing a VOI over which TB measures are
computed and let BVF(p) denote the normalized BVF value at a voxel p, i.e., 0 ≤ BVF (p) ≤ 1.
Computations of VTA, plateness, and rodness measures were discussed in Section 2. In the
following, we define three TB measures, namely, BV/TV, SWVTA, and SCRVTA, that are
computed over the VOI V. It may be noted that the surface width measure SWVTA is expressed
in the unit of microns and is independent of soft thresholding technique used for plateness, and
rodness measures.

3.3 Predictability of Experimental Biomechanical Properties of TB
The purpose of this experiment was to evaluate the ability of each imaging measure to predict
biomechanical properties of TB specimens as determined experimentally using compressive
mechanical testing. Eight fresh-frozen cadaveric forearms were collected from the University
of Iowa s Deeded Bodies Program. No age or sex information was available for these
specimens. Among the eight TB specimens prepared as described below, three were rejected
as being too porotic for testing, so experimental data from five specimens are presented here.
CT imaging was first performed on these specimens using the same protocol described in
Section 3.2.1. The forearm specimens were then frozen until the test specimens were prepared.

3.3.1 Biomechanical experiments—A cylindrical core was harvested from each distal
radius specimen, and two compressive mechanical tests were performed on each core. Due to
the limited length of TB cores achievable at the distal radius, compression testing with platens
[84] was used instead of an endcap technique [85]. The first test was performed to determine
Young’s modulus (E) by measuring strain with an extensometer on the specimen (Figure 8a),
while the second test was performed to determine yield stress by measuring strain with the
testing machine at the compressing platens (Figure 8b). The second test was performed because
during the first test, most of the TB cores failed at a specimen end rather than within the
extensometer span; specimen lengths were therefore shortened to obtain more homogeneous
properties across each length. All specimen preparation and mechanical testing were performed
at the University of Iowa s Orthopaedic Biomechanics Laboratory.

3.3.1.1 Specimen preparation: Cylindrical TB specimens of nominally 8 mm in diameter
were cored from distal radii in situ along the proximal-distal direction. A-P and M-L
radiographs were first used to determine the plane of an initial distal cut done to eliminate the
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growth plate from a test specimen, and then to determine the central axis of the bone and thus
the core location. Each specimen was cored with saline immersion using an 8.25 mm inner
diameter diamond coring bit (Starlite Industries, Rosemont, PA). The core was released from
the distal radius by cutting it with a razor saw, and the specimen ends were sanded smooth,
flat, and parallel. Specimen length and diameter were measured three times and averaged, and
the middle 6 mm of the specimen length was marked for extensometer attachment position.
Each core was wrapped in saline-soaked gauze, and frozen until thawed for testing. For the
non-extensometer testing, the specimen ends were again sanded to remove damaged bone from
the specimen ends. For extensometer testing, a minimum specimen length of 18 mm was
desired, to achieve both the minimum aspect ratio of 2:1 recommended for TB compression
specimens [84] and a 3:1 ratio of specimen length to extensometer gage length used in an earlier
study [84]. (One specimen did not achieve this minimum specimen length; because of poor
bone quality resulting in bone damage during specimen preparation, its length was 15.9 mm.)
For the subsequent non-extensometer testing, specimen length was dependent on how much
bone needed to be removed from the damaged ends; the resulting aspect ratios were all greater
than 1:1.

3.3.1.2 Mechanical testing of TB specimens: The TB cores were mechanically tested in
compression using an electromechanical materials testing machine (MTS Insight, MTS
Systems Corp., Eden Prairie, MN). Each specimen was placed between unlubricated, polished,
plano-parallel steel platens. For the first test, to minimize specimen end effects, strain was
measured with a 6 mm gage length extensometer (model 632.29F-30, MTS Systems Corp.,
Eden Prairie, MN) attached directly to the midsection of the bone (Figure 8a). For the second
test, strain was measured with the testing machine at the compressing platens (Figure 8b). A
compressive preload of 10 N was applied and strains then set to zero. At a strain rate of 0.005
sec−1, each specimen was preconditioned to a low strain with at least ten cycles and then loaded
to failure. Young’s modulus (E) was determined for each specimen as the highest 20% section
slope of the stress-strain curve. Yield stress was determined as the intersection of the stress-
strain curve and a 0.2% strain offset of the modulus.

3.3.2 Image Processing and Data Analysis—Each CT image data set was processed
through the same cascade of image processing steps described in Section 3.2.2. For each
specimen, two VOIs were manually determined using the graphical interface supported by the
Analyze software. Size and location of these VOIs were chosen as par the information recoded
during specimen preparation for each experiment. The first VOI was used for computing TB
measures to examine their abilities to predict Young’s modulus while the other VOI was used
for comparison with yield stress. For both VOIs, a cylinder of 8 mm diameter was used and
was first visually aligned along the forearm axis. Subsequently, the proximal end of the cylinder
was positioned at the center of cortical rim at corresponding slice location using in-plane
translations. Finally, the location of the distal end of the VOI cylinder in the slice direction and
its length were determined as par the recorded core location and length. For comparison with
Young’s modulus, the VOI was selected as the central 6 mm region from a cylinder (length as
per the recorded specimen length for the extensometer test) with its distal end located at 2mm
proximal of growth plate identified visually. Growth plate was visually located on a CT image
of each specimen. For comparison with yield stress, the VOI was selected as a cylinder (length
as per the recorded specimen length for the platen test) located at 4 mm proximal to the growth
plate. Finally, five different TB measures, mentioned in Section 3.2.2, were computed over
each selected VOI and used to examine their abilities to predict corresponding mechanical
measures.
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4 RESULTS AND DISCUSSION
Results of VTA-based classification of plates and rods for two cylinders TB specimens are
illustrated in Figure 9. A common color coding scheme (Figure 9(e): green=1.0, i.e., plates;
red=0.0, i.e., rods; and yellow=0.5) is used to represent the VTA based classification of
trabeculae for both specimens. The specimen of Figure 9(a) represents a highly rod-like
trabecular structure while that of Figure 9(b) contains a large amount of plate-like trabeculae.
The color coded VTA based classifications at different TB locations in both specimens,
illustrated in Figure 9(c,d), agrees with visual perception. The BV/TV for these two specimens
are 0.20 and 0.33 while the average TB width, computed by VTA, are 272 μm and 492 μm,
respectively.

Results of accuracy analysis on computational phantom images of sinusoidal cross plates of
varying widths, described in Section 3.1, are qualitatively presented in Figure 7. An image
slice from an original phantom is displayed in Figure 7(a) while the computed BVF map is
shown Figure 7(b). Figure 7(d-i) present color-coded illustrations of VTA-based classification
at each voxel in six different phantoms; for these images, true plate thickness was 2, 5, 9, 13,
17, and 21 voxels, respectively. Gradual changes in color are visually noticeable from Figure
7(d) to Figure 7(i). To quantitatively examine the accuracy of the method, we performed a
linear correlation analysis between true structure width and computed width using VTA method
was performed and the results are presented in Figure 10. As indicated in the figure, computed
mean structure width showed a high correlation (R2 = 0.998) with its true width.

As described in Section 3.2.2, measurements over randomly selected twenty five VOIs from
post-registered repeat-scan CT and μCT images of four distal tibia specimens were used for
both intra- and inter-modality reproducibility analyses. An axial and a coronal slice from the
first CT scan of one distal tibia specimen are illustrated in Figure 11(a,b). TB structures are
visually distinguishable in both images; also, the coronal slice shows remarkable continuity of
TB structures along the slice direction. Matching axial slice from computer-registered BVF
data from three repeat CT scans and the single μCT scan are presented in Figure 11(c–f).
Agreement of TB structures in three repeat CT scans and the μCT scan is visually noticeable
in these figures. Also, it may be noticed in these figures that the trabecular structures in CT
scans are more blurred as compared to the μCT data. It is caused by relatively wide point-
spread function of CT imaging which sometimes leads to false filling of narrow holes in CT
imaging of TB networks (Figure 12).

A visual comparison of VTA-based TB structural classification from three repeat CT scans
and μCT imaging is illustrated in Figure 12. Among the three repeat CT scans, reproducibility
of both TB structures as well as their VTA-based classification of plates and rods is visually
remarkable. In comparison with the μCT data, some narrow holes are filled in CT images due
to the blurring caused by relatively wider point-spread function of latter imaging technology
and it leads to reduced rodness in CT data. However, the overall agreement in VTA-based
classification of TB structures via CT and μCT imaging is visually satisfactory. In order to
quantitatively assess the intra-modality reproducibility of the methods, for each of the five TB
measures mentioned in Section 3.2.2, its intra-class correlation was computed from three repeat
CT scan measurements over twenty five VOIs randomly selected from four cadaveric distal
tibia specimens. Graphical illustrations of repeat scan measures for five TB measures are
presented in Figure 13(a–e). All the five TB measures have shown high repeat scan
reproducibility in CT, although, the DTA based measures have produced slightly lower ICC
values. The two VTA-based measures SWVTA and SCRVTA have resulted ICC values similar
to that of the BV/TV measure which is expected to be a highly reproducible measure in CT
imaging modality. Correlations of different TB measures in CT and μCT imaging are
graphically illustrated in Figure 14(a–c). Both VTA-based measures SWVTA and SCRVTA
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have demonstrated high correlation between CT- and μCT-derived measures and have resulted
better R2 values as compared to BV/TV and the two DTA-based measures. It may be noted in
Figure 14(b) that, despite the high linear correlation between the surface width measure
SWVTA derived from MDCT and μCT, there is a difference in values by a factor of ~1.5 in
two modalities and the same pattern is seen in Figure 14(c) with SCRDTA. These results are
expected since the voxel sizes are bigger in MDCT than in μCT and similar observations were
found in [50].

As described in Section 3.3.1.2, two different experimental mechanical indices, namely,
Youngs’s modulus and yield stress, were used to evaluate the strength of each CT-derived
measure to predict TB s mechanical properties. For a given CT-derived TB measure, its mean
value over the corresponding VOI (see Section 3.3.2) was computed and its linear correlation
with each of the two target mechanical measures was examined. Correlation of each of the
three TB measures, namely, BV/TV, SWVTA, and SCRDTA with Young’s modulus, is
presented in Figure 15(a–c). The linear correlation of each of the five CT derived TB measures
with Young’s modulus is listed in Table 1(a). Results of correlation analysis of TB measures
with yield stress are given in Figure 15(d–f) and Table 1(b). All CT-derived TB measures had
good linear correlation with experimental mechanical properties of TB specimens (R2 range:
0.782 to 0.964) except for SCRDTA versus Young’s modulus (R2 = 0.457); see Table 1 and
Figure 15. The results obtained from the limited number of specimens shows that the new
method performs significantly better as compared to BMD measure BV/TV and the
improvement of the new method over DTA is obvious.

Another important feature with the VTA technology is that it provides an entirely new class
of information that is not deliverable using current methods. As illustrated in Figure 16, the
new method is capable of delivering bone-mass distribution across various plate widths. It is
notable that the bone mass to plate width distribution patterns for bones with different strengths
are different. More interestingly, the bone mass distributions at low plate-width, primarily
resembling rod-like trabeculae, are similar for all five TB specimens despite significantly
different strengths. A possible justification behind this observation may be that, in the dynamic
process of bone loss, disruptions of rods are mostly balanced with rod creations by perforations
as well as erosions of plates. It will be interesting to determine a mean bone mass distribution
across various plate widths for a healthy population and studying the nature of alteration of
such a distribution in the process of disease progression or treatments. However, such studies
are well beyond the scope of the current paper.

5 CONCLUDING REMARKS
In this paper, we have presented a new volumetric topological analysis method VTA that
uniquely classifies TB topology on the continuum between perfect plates and rods at every TB
location. Major novel contributions of this paper are stated in the following: (1) overall design
of the method that provides a unique local classification trabecula on the continuum between
perfect plates and rods via images at low resolution regime currently available through in
vivo imaging technologies, (2) manifold distance transform for digital surfaces, (3) manifold
scale, (4) a classical solution to propagate features from one set of voxels to a larger set of
voxels using shortest distance approach, and (5) shape distance transform and skeletal noise
pruning. Although the current method works only on binary images, the theory and algorithms
directly extends to fuzzy images. Several new concepts including manifold distance transform,
manifold scale and feature propagation have been introduced here along with the new
development of VTA. Both intra- and inter-modality reproducibility of the method have been
examined using CT repeat scans and μCT imaging of a cadaveric distal tibia specimen.
Preliminary results demonstrate high intra- and inter modality reproducibility of VTA
measures. The method s ability to predict TB s mechanical properties have been studied on a
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limited number of cadaveric distal radius specimens and the results are promising. Results
obtained from a limited number of specimens have demonstrated that the new method performs
significantly better as compared to BV/TV and its improvement over DTA is obvious. Finally,
VTA is suited for quantitative TB structural analysis in longitudinal as well as cross-sectional
patient as well as animal studies via in vivo imaging.
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Figure 1.
An illustrative comparison between DTA and VTA technologies. (a) A color-coded display of
plates (green), rods (red), junctions (blue) and profiles (yellow) in a TB skeleton computed
using DTA. (b) Classification of trabeculae on the continuum between perfect plates (green)
and rod (red) using the proposed VTA method.
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Figure 2.
Results of intermediate steps in VTA. (a) A TB region selected from μCT image of a human
ankle specimen. (b) Results of skeletonization; noisy branches detected by pruning algorithm
are colored in red. (c) Results of DTA indicating surface (green), surface-edge (light green),
curve (red), curve-edge (pink), and junction (blue) voxels. (d) Results of arc skeletonization.
(e–g) Color coded surface renditions of manifold distance transform (e), manifold scale (f) and
volumetric topological analysis (g). (h) Same as (g) but from a different view.
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Figure 3.
An illustration of different measures on a surface-like volume objects and its skeleton. Local
thickness may be computed by sampling binary or fuzzy distance transform values along
skeletal locations. On the other hand, a technique similar to manifold distance transform (see
Section 2.3) is needed to determine the width of an object. The difference between skeletal and
volumetric widths is caused by iterative peeling technique used for skeletonization. This
difference is alleviated by using an appropriate initialization of manifold distance transform at
skeletal edges as discussed in Section 2.3.
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Figure 4.
Illustrations of possible topological classifications. (a) An example in the continuous 3D space.
(b) An example in a digital space.
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Figure 5.
(a) An illustration of MDT computed on a digital surface allowing MDT wave propagation
paths to cross junctions. (b) Rectified MDT computation on the same digital surface. (c) An
example of crossing between a 26-path (red) and a junction line (blue) on a (26,6) digital
surface.
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Figure 6.
An illustration of shape distance transform. Both black and textured pixels indicate skeletal
pixels in the given shape. Black pixels survive in the skeletonization process as shape pixels,
i.e., saved to preserve local shape of the structure. On the other hand textured pixels are
preserved to maintain the topology. Shape distance only counts shape voxels on a path. For
example, only one shape voxel contributes to the shape length of the path π.
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Figure 7.
Qualitative results of phantom analysis. (a,b) An image slice (a) and computed BVF map (b)
from a phantom. (c) The commons color coding scheme used in (d–i). (d–i) VTA based
classifications of plates and rods in different phantom images containing sinusoidal cross-plates
at various widths.
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Figure 8.
Compressive mechanical testing of TB specimens. (a) Extensometer testing. (b) Non-
extensometer testing; note black lines indicating original extensometer position, with damaged
bone removed from the bottom (proximal part) of the specimen.
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Figure 9.
Qualitative illustrations of the result of VTA classification on two TB specimens with distinctly
different trabecular architecture. (a) A TB specimen with mostly rod-like trabeculae. (b)
Another TB specimen with mostly plate-like trabeculae. (c,d) VTA based classifications of
plates and rods of trabeculae in (a,b). (e) The commons color coding scheme used in (c,d).
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Figure 10.
Results of linear correlation analysis between true structure width and computed width using
VTA method on computational phantoms illustrated in Figure 7.
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Figure 11.
A qualitative comparison of TB structures in repeat CT and μCT scans. (a,b) An axial and a
coronal image slice from the first CT scan of distal tibia in a cadaveric ankle specimen. (c–f)
A matching axial slice from post-registered BVF images of three repeat scans (c–e) and the
single μCT scan (f).
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Figure 12.
Visual illustration of intra- and inter-modality reproducibility of VTA-based classification of
TB. (a–c) Three dimensional renditions of TB over a matching VOI from post-registered repeat
CT scans of a distal tibia specimen. (d–e) VTA-based classifications of three repeat scan TB
data of (a–c). (g,h) Same as (a,d) but from the post-registered μCT data. (i) The common color
coding bar used in (d–f, h).
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Figure 13.
Intra-modality reproducibility of different TB measures. (a–e) Intra-class correlation of
different TB measures computed from matching VOIs in three repeat CT scans. Although,
other TB measures are unit less, SWVTA was computed in the unit of microns.
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Figure 14.
Correlation of different TB measures computed via CT and μCT imaging. (a–e) Linear
correlation of different TB measures computed from matching VOIs in CT and μCT images.
Although, other TB measures are unit less, SWVTA was computed in the unit of micronS.
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Figure 15.
Ability of different CT image-derived TB measures to predict TB s mechanical properties, with
linear correlation (R2 value) shown. Young’s modulus vs. (a) BV/TV, (b) SWVTA and (c)
SCRDTA. Yield stress vs. (d) BV/TV, (e) SWVTA and (f) SCRDTA.
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Figure 16.
Patterns of bone mass distributions at various plate widths for TB specimens with different
measured mechanical strengths.
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Table 1

Ability of different CT image-derived TB measures to predict TB s mechanical properties. Linear correlation

(R2 value) of different CT image-derived TB measures with (a) Young’s modulus and (b) yield stress are listed.

(a)

BV/TV SWVTA SCRVTA SCRDTA EIDTA

0.782 0.889 0.916 0.457 0.795

(b)

BV/TV SWVTA SCRVTA SCRDTA EIDTA

0.801 0.964 0.954 0.797 0.898
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