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Abstract
Fast magnetic resonance imaging slice acquisition techniques such as single shot fast spin echo are
routinely used in the presence of uncontrollable motion. These techniques are widely used for fetal
MRI and MRI of moving subjects and organs. Although high-quality slices are frequently
acquired by these techniques, inter-slice motion leads to severe motion artifacts that are apparent
in out-of-plane views. Slice sequential acquisitions do not enable 3D volume representation. In
this study, we have developed a novel technique based on a slice acquisition model, which enables
the reconstruction of a volumetric image from multiple-scan slice acquisitions. The super-
resolution volume reconstruction is formulated as an inverse problem of finding the underlying
structure generating the acquired slices. We have developed a robust M-estimation solution which
minimizes a robust error norm function between the model-generated slices and the acquired
slices. The accuracy and robustness of this novel technique has been quantitatively assessed
through simulations with digital brain phantom images as well as high-resolution newborn images.
We also report here successful application of our new technique for the reconstruction of
volumetric fetal brain MRI from clinically acquired data.
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I. Introduction
In the presence of uncontrolled motion, high-quality and high-resolution slices can be
obtained through fast slice acquisition techniques such as half-Fourier acquisition single shot
fast spin echo (SSFSE)1.The slices are acquired as snapshots in fractions of a second, thus
freezing the motion of the subject. Important applications include fetal and neonatal
magnetic resonance imaging (MRI) [1], [2], [3], [4] and MRI of moving subjects and organs
[5], [6].

Motion does not normally affect the in-plane slice quality and resolution of SSFSE, but
severe inter-slice artifacts frequently appear in out-of-plane views. Therefore the acquisition
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of appropriate slices is important for effective evaluation. The acquisition of useful slices in
fetal MRI can be quite laborious. The imaging session starts with a localizer sequence and
oblique acquisitions are planned based on the position and orientation of the fetus to capture
fetal axial, coronal, and sagittal planes. The fetus moves during the scanning session and
subsequent acquisitions must be planned according to the latest estimated position and
orientation of the fetus. Although high-quality images are normally obtained in the slice
plane views, due to inter-slice motion and the thick slices necessary to maintain signal-to-
noise ratio (SNR) the cross-sectional views only poorly capture the 3D structure of the brain.
A sample axial SSFSE scan of a fetus is shown in Fig. 1. The three adjacent axial slices on
the left show the high-quality and high in-plane resolution of slice acquisitions, however
inter-slice motion is also observed by comparing these slices. The sagittal and coronal views
(shown on the right) do not reflect the subject’s anatomy.

The reconstruction of volumetric fetal brain MRI from slice acquisitions may improve the
efficacy of clinical evaluation but also greatly enhances the capacity of image analysis and
research on the dynamics of brain maturation [4], brain development [7], [8], and the
mechanism of brain injury [9]. There have been recent studies reporting promising results
for the reconstruction of volumetric fetal brain MRI from fast slice acquisitions [10], [11].
The slice acquisitions are normally obtained from multiple orthogonal scans to make sure
that the image space is sufficiently sampled. These reconstruction techniques utilize
iterations of slice-to-volume registration and scattered data interpolation (SDI) and are
referred to as SDI approaches here.

The main technical difference between the two previous SDI techniques is that local
neighborhood oriented Gaussian kernel scattered data interpolation has been used in [10],
while a regular grid of control-points cubic B-Spline scattered data interpolation [12] has
been used in [11]. There are also implementation differences between the two techniques for
instance in slice-to-volume registration [10], [11], [13]. However, these techniques do not
provide a mathematical framework to justify that the reconstructed volume is a minimum
error representation of the imaged object given the acquired MRI data. Our main
contribution in this article is the formulation of a novel maximum likelihood error norm
minimization for super-resolution volume reconstruction from slice acquisitions. For the
first time we presented this approach at the MICCAI2009 workshop on image analysis for
the developing brain [14]. We have further expanded this novel formulation by robust error
norm minimization through M-estimation. A review of the super-resolution image
reconstruction literature, given below, provides better understanding of the techniques
developed here.

A comprehensive mathematical analysis of the super-resolution image reconstruction
problem is initiated through an observation model [15]. The observation model is a forward
model which shows how the acquired images are obtained from the imaged scene or object.
The super-resolution reconstruction is the inverse problem [16], which involves finding the
original scene that generates the acquired images under the imaging conditions. Normally
the observation model can be written as a matrix equation such as y = Wx + v where x is a
vector of the high-resolution imaged scene or object pixels in the lexicographical order, y is
a vector of the acquired image pixels and v is the noise vector. W represents a matrix of the
geometric and photometric effects of the imaging device, sensor, and the environment.

Super-resolution image reconstruction takes advantage of different sampling positions of the
imaged object using multiple low-resolution image acquisitions. Sub-pixel shifts between
low-resolution image frames provide dense sampling of the imaged object, thus super-
resolution reconstruction is possible. Sub-pixel shifts between low-resolution image
acquisitions can be performed by the imaging device. Alternatively, different sampling
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positions may be caused by motion. This is particularly useful in imaging moving subjects
as well as in super-resolution reconstruction of video sequences. In these cases the motion
parameters should be estimated and incorporated in the geometric part of W. This makes the
problem nonlinear as both W and x will be unknowns.

Motion estimation and super-resolution reconstruction can be solved separately [17], [15],
[18]; so after motion estimation W is considered to be known and super-resolution
reconstruction will simplify to a linear inverse problem. The classical solution of this linear
inverse problem is analytically obtained through the Moore-Penrose pseudo-inverse of W
[16], [19]. From a probabilistic viewpoint the problem can be formulated as a maximum
likelihood estimation (MLE). When the noise (v) is Gaussian MLE leads to l2-norm error
minimization, which complies with the classical solution.

In practice W is a large matrix and the computation of the pseudo-inverse is prohibitive
[15], [19]. Therefore iterative solutions such as steepest descent or conjugate gradient are
normally used [20], [18]. However, the ill-posed nature of the super-resolution
reconstruction problem may cause numerical instability when methods such as conjugate
gradient are utilized [17]; therefore even in fast super-resolution applications [18] the
steepest descent method is normally preferred. When joint estimation of motion parameters
and super-resolution reconstruction is performed, nonlinear optimization methods such as
expectation maximization may be used [21].

Often the inverse problem of super-resolution image reconstruction is ill-posed due to an
insufficient number of acquired image samples. Under these conditions regularization is
sought to constrain and stabilize the solution. Regularization is typically interpreted as
incorporating image priors in the reconstruction problem, which can be formulated as a
maximum a posterior (MAP) estimation [15]. Various image priors may be used, for
example Gaussian and Gibbs priors [22], Laplacian priors [23], and total variation (TV)
[18]. Care should be taken when using Gaussian and Gibbs image priors to avoid excessive
smoothing. A Markov random field model with flexible edge constraints was developed in
[24]. Edge-preserving priors have been used in super-resolution image reconstruction [25],
[26]. Bilateral total variation is a good example in this category [18]. Also, a few groups
have recently developed super-resolution reconstruction techniques that are robust to motion
estimation errors [27], [28]. These techniques are particularly useful in video sequence
super-resolution and de-interlacing applications where the motion is local and cannot be
estimated or corrected accurately.

For the super-resolution volume reconstruction from slice acquisitions two main issues
should be addressed, which are considered to be the technical contributions secondary to the
main contribution of this work. First, an appropriate slice acquisition model is needed; as
compared to a common 2D observation model in the classical super-resolution problem
(which is based on planar motion, sensor point-spread-function, and down-sampling) [15],
the MRI slice acquisition model is a 3D model based on the physics of MRI which
incorporates 3D motion, slice selection and signal averaging (slice profile and signal blur),
and sampling. Second, the super-resolution volume reconstruction should be robust to
motion-corrupted and mis-registered slices, and noise. This is extremely important as the
estimation and correction of 3D inter-slice motion is very challenging, and volume re-
construction is quite sensitive to motion correction accuracy. Robustness to noise and
outliers was previously investigated in the super-resolution literature through the use of l1-
norm instead of l2-norm for error minimization and regularization [18]. Robust super-
resolution for digital imaging has been recently investigated in several studies [29], [30],
[31], [32].
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In this work, robust super-resolution has been formulated through the general M-estimation
approach [33] that covers a range of techniques between the most accurate estimation in the
presence of Gaussian noise (l2-norm estimation) to the best estimation in the presence of
Laplacian noise and outliers (l1-norm estimation). Nevertheless, in our experiments it was
also observed that the M-estimation formulation could not completely compensate the
effects of slice outliers. Therefore the technique has further been expanded to use more
reliable influence and weight functions. Data-dependent weight functions in the expanded
formulation are computed based on slice error metrics in addition to individual voxel error
samples. Extensive validation studies and in-vivo experiments show the effectiveness of the
developed techniques.

The methodology including the slice acquisition model and the robust super-resolution
reconstruction approach is discussed in Section II. Section III involves the algorithm design
and implementation. In Section IV the developed technique has been validated through
simulations with digital brain phantom and high-resolution newborn images. Also in this
section the accuracy of the developed technique has been compared to that of the scattered
data interpolation approach and its performance has been evaluated by using different error
norm functions in the presence of noise and slice outliers. Section V discusses a volunteer
subject experiment. Finally, in Section VI experimental results have been reported for the
reconstruction of high-resolution volumetric images from clinically acquired fetal brain MRI
data. Section VII contains a brief discussion and the concluding remarks.

II. Robust super-resolution volume reconstruction
A. Slice Acquisition Model

In a trade-off between a realistic model and a feasible solution, the following slice
acquisition model is considered in this study:

(1)

where yk is the vector of the voxels of the kth 2D slice with slice thickness Δskand uniform
in-plane spacing of Δρk; x is a vector of the desired uniformly-sampled reconstructed image
voxels in the lexicographical order with uniform spacing of Δρ; vk is the residual noise
vector, n is the number of slices obtained from N scans, Mk is the matrix of motion
parameters, Sk is a matrix representing the slice selection profile, Bk is a blur matrix
representing the point spread function of the MRI signal acquisition process, and Dk is a
down-sampling matrix.

Slice selection is generated by selective excitation in MRI [34]. To selectively excite spins
in a slice, a gradient field and a shaped RF pulse are needed. An RF pulse is only frequency
selective therefore a linearly varying gradient field along the slice select direction is
augmented with the main magnetic field. In order to get precise localization an appropriate
selective excitation is desired to generate a rectangular (boxcar) slice profile with narrow
transition regions minimizing slice-to-slice interaction. Spatial selection in the form of a
boxcar function translates to a boxcar spectrum of the RF pulse around the Larmor
frequency, which in turn, based on the Fourier transform, should be generated by a sinc
excitation pulse in the time domain. Nevertheless the sinc function is not physically
realizable as it is non-causal and infinite in time.

In practice, a shifted and truncated sinc pulse envelope function is applied. The shift in time
results in a linear phase shift in the slice selection profile. This phase shift is compensated by
applying a refocusing gradient in the slice select direction in a process called post excitation
rephasing. The pulse truncation is modeled by the multiplication of the ideal sinc function
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with a rectangular window, which according to the Fourier transform is equivalent to the
convolution of the ideal boxcar slice profile with a sinc function. Normally the sidelobes of
the generated slice profile are small, therefore the slice profile generated by a truncated sinc
pulse envelope function can be estimated by a boxcar function. In practice a truncated
Gaussian pulse envelope function may be used instead of truncated sinc. In this case the
slice profile will be a Gaussian function. For the details of slice selection and spatial
localization the reader is referred to chapter five of [34].

In general the slice sampling of a volume in the slice select direction (z) can be written as
[35]

(2)

where m(z) is the volume, mq(z) is the sampled volume, q(z) is the slice profile, and j is slice
location. In the case of truncated sinc pulse envelope function, q(z) in Equation (2) can be
approximated by a boxcar function. For an arbitrary slice select direction defined by the
normal vector of the slice plane equation, the following geometrical equation is obtained for
the voxels of slice k (defined by a vector r ⃗) in the slice selection process:

(3)

where Δsk is the slice thickness, s0k is the distance of the slice from the origin, and 

specifies the slice (or slice-selection) orientation.  is interpreted as the normal vector of
the slice plane equation. The normal vector can be obtained in the physical coordinate
system based on the so-called direction cosines rotation matrix. This matrix is defined by the
scanner according to the rotation angles used to generate the requested slice selection
gradient field by the gradient coils.

In our formulation slices can be in any direction. This is in reality happening in fetal
imaging, as the fetal axial, coronal, and sagittal planes are in arbitrary orientation with
respect to the physical coordinates of the scanner. The orientation of fetal images obtained in
one scanning session usually vary as the fetus moves and the radiologist prescribes different
oblique acquisitions to get the best possible orthogonal views of the fetus. The slice
acquisition model can be interpreted as region selection, signal averaging and resampling in
the image space. According to Equation (2) in the case of truncated Gaussian pulse envelope
function the corresponding Gaussian slice profile results in low pass filtering (smoothing) of
the object during slice sampling. The implementation details of generating Sk in Equation
(1) from Equation (3) will be discussed in Section III-B.

B. Maximum Likelihood Estimation
Maximum likelihood estimation (MLE) provides an optimum solution to Equation (1)
through maximizing the conditional probability density function (PDF) of the acquired slices
yk: given the volume x. The likelihood function is simply defined by the conditional PDF,
which in-turn depends on the noise distribution model. If the noise vk is Gaussian with mean
of zero and standard deviation of σk, the conditional PDF is written in terms of the estimated
error samples having a Gaussian distribution representing the noise residuals:

(4)
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where yk(i) are the samples from the acquired slices yk, ŷk(i) are the samples from the
estimated slices ŷk = Wkx̂ + vk, Wk = DkBkSkMk, and x̂ is an estimate of the reconstructed
volume. The error samples are defined by ek (i) = ŷk(i) – yk(i), and the error vector for the
kth slice is defined as ek = Wkx̂ – yk. The log-likelihood function based on the PDF in
Equation (4) can be simplified to obtain:

(5)

The right hand side is equal to the l2-norm of the error between the estimated and acquired
values of yk. Assuming independent slice acquisitions the log-likelihood equals the sum of
the l2-norm of the error vectors over all slices. Consequently the maximization of the
likelihood function results in the minimization of the sum of the l2-norm of the error vectors
over the slices:

(6)

Since the cost function in Equation (6) is positive with a unique minimum at zero, the
minimization can be translated to an implicit equation based on error samples. This is
obtained by differentiating with respect to the samples of the estimated volume, i.e. x(i):

(7)

The solution to Equation (6) is equivalent to the pseudo-inverse and least-squares solution of
Equation (1), and is statistically equal to the computation of the sample mean [20] if all the
error samples have the same variance. If the noise vk has a Laplacian distribution the MLE
results in l1-norm minimization, which is equal to the least absolute deviations, and is
statistically equal to the computation of the sample median [18] if the error samples have the
same variance. The l2-norm MLE is not robust to outliers, but the l1-norm MLE is robust to
outliers and heavy-tailed noise [36]. However, the median estimator may lose as much as
40% efficiency over the sample mean when the noise is Gaussian [37].

C. Robust M-estimation
The l2-norm MLE provides the best solution to the super-resolution reconstruction problem
when the noise residuals in Equation (1) are drawn from a Gaussian distribution. In reality,
however, noise residuals may not be Gaussian and outliers may also present in the data for
various reasons such as inaccurate or failed registration (inaccurate slice motion estimation),
motion-induced signal loss, and magnetic field inhomogeneities. In the l2-norm MLE the
influence of the error samples on the output is proportional to their magnitude. Therefore
high error values and outliers have significant effects on the estimated output. To reduce the
effect of outliers we replace the l2-norm of the error in Equation (6) with a robust error norm
function f(ek):

(8)

The choice of robust error norm functions is discussed in robust statistics through the M-
estimation (ME) framework [33]. Obviously l1- and l2-norm MLE super-resolution
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formulations discussed in section II-B are special cases of the formulation given in Equation

(8) by replacing f(ek) with  and  respectively. Note that the error norm function
can be defined to be the sum of a function ρ(.) of the error samples:

(9)

An appropriate robust error function ρ(.) is symmetric and positive with a unique minimum
at zero, thus again similar to Equation (6) the minimization in Equation (8) can be written
based on the error samples:

(10)

where ω(e) = ψ(e)/e, and ψ(e) = dρ(e)/de is the influence function. This equation can be
compared to Equation (7). Within this framework the weight function ω(e) shows the
weights given to the error samples in the estimation. For the robust ρ(.) functions, the
influence functions saturate and the weights decrease as a function of the error magnitude.
For the l2-norm estimation, ρ(e) = e2/2, ψ(e) = e, and ω(e) = 1 which means that equal
weights are given to all error samples. Obviously the l2-norm is not robust as its influence
function is not bounded.

Among different choices for error norm functions, the lp-norm (power-norm) function with
ρ(e) = |e|p/p, ψ(e) = sign(e)|e|p−1, and ω(e) = |e|p−2 can be designed based on the variable p
to cover a wide range of estimators. When p changes between 2 to 1 the power-norm
estimation changes between the most accurate maximum likelihood estimation in the
Gaussian noise environment (l2-norm estimation) to the most robust estimation (l1-norm
estimation) in a non-Gaussian environment (according to its breakdown point of 50%). The
problem with this estimator is the infinite weights given to zero error values, which makes it
numerically problematic and inefficient when the error sample distribution is approximately
Gaussian.

A convex robust error function that circumvents the problem with the power-norm
estimation yet parametrically gives l2-norm weights to the low error values and l1-norm
weights to the high error values, is the Huber’s error function defined by

(11)

where γ is a tuning parameter. When γ is large the estimation will be close to the l2-norm
estimation and when γ is small it will be close to the l1-norm estimation. It is assumed that
the error samples are normalized with a scale parameter which can be estimated or
approximated based on the data. As a rule of thumb, if the scale parameter is the median
absolute deviation of the error samples, an appropriate value of γ is 1.345 [37]. The
influence and weight functions associated with Equation (11) are ψ(e) = min(γ, max(−γ, e))
and ω(e) = min (1,γ/|e|) respectively.

Note that there are various choices for robust error functions [33]. Huber’s function is quite
popular as it performs well in both Gaussian and non-Gaussian environments as well as in
the presence of outliers. Complete rejection of extreme outliers may be preferred, which can
be achieved by choosing redescending influence functions. Redescending influence
functions are functions that decrease toward zero far from the origin, thus practically give
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zero weights to extreme outliers. Nevertheless poorly tuned redescending influence
functions may result in significant loss in efficiency [33] (page 101).

By replacing Equation (11) in Equation (9) and Equation (8) we obtain a robust error norm
minimization scheme for super-resolution volume reconstruction from slice acquisitions;
However, since the data-adaptive error weight functions in the formulated M-estimation
framework are functions of the individual voxel error samples, this estimation is vulnerable
to ill-posedness and inaccuracy when the samples are sparse. Regularization is one way of
dealing with ill-posedness and sparse samples, however it may result in over-smoothing.
Since the number of samples is limited, a very reliable and accurate data-adaptive scheme is
desired to effectively incorporate all the information from the acquired slices while
minimizing the effect of outliers.

In super-resolution volume reconstruction from slice acquisitions, noise affects the MRI
slices at the voxel level. On the other hand slice mis-registration and motion-induced signal
loss artifacts influence an entire slice or a set of voxels within a slice. Consequently error
vector norms of the slices, are relatively good indicators for computing robust error norm
functions. Therefore we further modify our robust super-resolution volume reconstruction
formulation by incorporating error weight functions based on the vector error norms in
addition to the individual voxel error samples. The modified error weight function is written
as:

(12)

where w(ek) is a non-negative function of the kth slice error vector norm. Consequently the
modified version of the minimization in Equation (10) is written as

(13)

This formulation is general and flexible. Appropriate functions may be used for w, for
example

(14)

where η is a tuning parameter similar to γ in Equation (11). The number of error samples
from N scans that contribute to the estimation of each voxel in the high-resolution
reconstructed volume space, is relatively small; therefore redescending influence functions
may not perform well for robust estimation at the voxel level. On the other hand, the number
of slices (n) is typically large, therefore the slice error vector norm can be reliably used as an
argument for error weight functions.

In summary we have developed a maximum likelihood formulation in Section II-B which
translates to an error minimization framework for super-resolution volume reconstruction
from slice acquisitions. This formulation is based on the slice acquisition model discussed in
Section II-A. In Section II-C we have made this formulation robust by using robust error
norm functions and we have further modified that formulation by incorporating error norm
weight functions based on the slice error vector norms. The solutions to the ordinary MLE in
Equation (6), robust M-estimation in Equation (8) and Equation (10) and the modified
robust M-estimation in Equation (13) along with the algorithm design, parameter
assignments, and implementation details will be discussed in the next section.
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III. Algorithm design and Implementation
A. Regularization

Before discussing approaches to solve the minimization problems formulated in section II, it
is worth noting that sometimes the number of acquired slices is small which results in an
under-determined super-resolution volume reconstruction problem. In this case
regularization terms can be added to the cost function to enforce a constrained minimal
norm solution. An appropriate regularization term penalizes the high-frequency components
in the estimated volumetric image, thus it can be defined by a norm function of the high-pass

filtered estimated volume. With the l2-norm regularization a simple term like  is
added to the cost functions in Equation (6) and Equation (8), where C is a positive definite
matrix and λ is a weighting coefficient. The regularized l2-norm MLE minimization is
written as:

(15)

B. Iterative Solution
The augmented matrix of all Wk matrices in Equation (15) is huge and the classical solution
through pseudo-inverse is prohibitive. Therefore an iterative solution should be used. In
order to avoid possible numerical instabilities caused by conjugate gradient method, we use
a steepest descent iterative minimization approach here. The steepest descent iterative
solution of Equation (15) is:

(16)

where α is the step size in the direction of the gradient. The matrices Dk, Bk, Sk, and Mk and
their transposes are exactly interpreted as corresponding image operators. Dk is defined as a
resampling operation. If the desired reconstructed image spacing is considered to be equal to
the uniform in-plane spacing (matrix resolution) of the acquired slices then Dk will be an I
matrix. Bk is defined as the convolution with a Gaussian kernel resembling the point spread
function (PSF) of the MRI signal acquisition process. Sk is defined for each slice based on

Equation (3); the slice plane normal vector  and the distance s0k are computed based on
the direction cosines matrix and the origin of each slice, respectively. This operation is
implemented as rigid 3D rotation with the rotation matrix directly obtained from direction
cosines matrix, and its transpose is the inverse (transpose) of the direction cosines matrix.
The motion matrix Mk is implemented as a 6-DOF 3D rigid transformation (including three
rotations and three translations) and is defined for each slice through slice-to-volume
registration, which will be discussed later in this section. C is implemented as a gradient
magnitude image operation. The image operations are applied to the reconstructed image
and their transposes are applied to the error image exactly as suggested by Equation (16).

An iterative solution to the robust M-estimation problem with the explicit formulation
defined in Equation (13) can be obtained by writing the explicit minimization as a weighted
least squares problem. This weighted least squares problem along with the regularization
term is written as:
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(17)

where ek = Wkx̂ − yk as defined before, and Ωk(ek) is a diagonal matrix with its ith diagonal
element defined by ω(ek(i))w(ek). The iterative solution involves updating Ωk(ek) in each
iteration and solving the resulting minimization problem similar to Equation (16). The error
vectors ek and the estimated image x̂ are iteratively computed until the variation in x̂ goes

below a threshold. Note that the slice error vector norm  used for computing w(ek) in
Equation (14) is the mean square intensity differences (MSD) between the voxels of the kth

motion-corrected slice and the reconstructed volume.

Given the above mathematical framework for the super-resolution reconstruction, the entire
volume reconstruction algorithm shown in Fig. 2 involves iterations of slice-to-volume
registration for motion correction, scattered data interpolation for initial estimation, and
super-resolution reconstruction for error minimization between the acquired slices and the
estimated volume. Slice-to-volume registration is performed to define Mk. After slice-to-
volume registration the acquired image samples will not be on a regular grid, therefore
scattered data interpolation is used to define an initial estimate of the reconstructed volume.
The estimate of the reconstructed volume in each iteration is used as the target for
registration in the next iteration. For the first iteration this target volume is obtained by
averaging the resampled acquired thick slice scans. Super-resolution reconstruction is
performed based on Equation (16) and Equation (17). The algorithms with the solution to
Equation (10) and Equation (13) are referred to as ME and RME respectively.

During the iterations the estimated volume which is used as the target volume for
registration improves, hence more accurate slice-to-volume registration (slice motion
correction) is achieved. The iterative solution of the ME and RME equations are terminated
when the associated cost functions or their change per iteration go below a threshold. This
threshold is set to be 10−5 for the norm of the cost function over the norm of the estimated
volume in our experiments. The termination condition (TC) for the registration iterations is
satisfied when the change per iteration of the root mean square error (RMSE) of the slice-to-
volume registration metrics goes below a threshold in two consecutive iterations. The
reconstructed volume corresponding to the minimum registration metric is considered as the
output. The two remaining blocks in the algorithm include slice-to-volume registration and
scattered data interpolation, which will be discussed below.

C. Slice-to-Volume Registration
A robust algorithm has been developed for slice-to-volume registration. The goal is to
compute a single 6-DOF rigid transformation (three rotations and three translations) for each
slice. The algorithm works in three stages. In each stage, a 6-DOF rigid transformation is
computed for a subset of slices. In the first stage, the subset involves slices acquired in one
stack of the interleaved acquisition; for example, in a dual interleaved acquisition, two
subsets are used: subset of even slices and subset of odd slices. In the second stage of
registration, the rigid transformation for each slice is refined based on a subset including that
slice and its two interleaved neighbors. For example, in a dual interleaved acquisition the
transformation of slice 5 is computed based on registering the set of slices 3, 5, and 7 to the
target volume. Finally, in the third stage, only a single slice is used for registration. The
algorithm minimizes the mean square intensity differences (MSD) between each subset of
slices and the reference volume. Powell optimization [38] with step sizes of 0.05, 0.02, and
0.02 was used in the three stages of registration, respectively.
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D. Scattered Data Interpolation
After slice-to-volume registration the image voxels from motion corrected slices are not on a
regular grid and are considered as scattered data in the 3D space. Scattered data interpolation
(SDI) is needed to obtain a first estimation of the reconstructed volume from this data. As
mentioned before, the previous MRI volume reconstruction techniques only utilize iterations
of slice-to-volume registration and scattered data interpolation. The two main SDI
approaches used for MRI volume reconstruction from slice acquisitions, are the B-Spline
SDI [11] and local neighborhood SDI based on oriented Gaussian kernels [10]. In this study
we implemented the B-Spline SDI approach (BSP-SDI) as well as a fast local neighborhood
Gaussian kernel SDI approach (LNG-SDI) for comparison. The BSP-SDI was implemented
as a 3-level cubic B-Spline approximation [11]. The LNG-SDI was used for the initial
estimation of the reconstructed volumes in the super-resolution algorithm shown in Fig. 2.

The LNG-SDI involves weighted local intensity injection based on Gaussian kernels: motion
correction is performed on the original thick slice acquisitions by applying 6-DOF
transformations computed for each slice by slice-to-volume registration. The scattered data
points obtained from motion-corrected slices are then mapped to the nearest neighbor grid
points in the reconstructed image space and their intensity values are injected into the
neighborhood points using Gaussian kernel weights. The SDI volumetric reconstruction
approaches implemented in this study (i.e. BSP-SDI and LNG-SDI) only involve iterations
of slice-to-volume registration and scattered data interpolation. The performance of these
approaches are compared to the super-resolution reconstruction algorithms developed here.
The developed algorithms are referred to as ME for M-estimation through Equation (10) and
RME for the modified robust M-estimation through Equation (13).

IV. VALIDATION
A. Data for Validation

Prior to the main experiments the algorithm was quantitatively validated using digital brain
phantom (DBP) images as well as two cases of high-resolution newborn images. DBP MR
images were obtained from the Brainweb database [39] without initial noise and with 1 mm
uniform resolution. High-resolution T2-weighted Turbo Spin Echo (TSE) axial images of
the newborns were obtained from a database of newborn MRI scans collected at the
Children’s Hospital Boston using a Siemens Trio 3T scanner with a 32 channel receiver
head coil. The T2-weighted TSE imaging was performed with TR =16 s, TE = 85 ms, matrix
size of 192 × 154 pixels, slice thickness of 1.2 mm and in-plane resolution of 0.8 mm.

Slice acquisitions were synthetically generated from the original high-resolution volumes by
applying operations based on the slice acquisition model shown in Equation (1). Different
parameters were examined based on the requirements for the validation studies. N = 9 was
used in most experiments which corresponds to three scans in each of the axial, coronal, and
sagittal slice select directions. The in-plane resolution was chosen to be equal to the in-plane
resolution of the original high-resolution volumes, and the slice thickness was chosen to be 6
mm for the DBP experiments and 3 to 4 mm for the newborn image experiments. Subject
motion was randomly generated for each slice using a uniform random number generator for
each of six rigid motion parameters (three rotations and three translations). The range of the
uniform random numbers was set to −10 to 10 degrees for rotation parameters and −4 to 4
mm for translation parameters. Slice selection was performed according to Equation (3), and
the point spread function was simulated by Gaussian filtering with σ = 0.3. Different noise
models were used for noise experiments and outliers were injected by zero filling the slice
voxel intensity values when needed.
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Samples of the synthetic motion-corrupted slice acquisitions are shown in Fig. 3, where the
slice select direction in (a) is axial, in (b) is coronal, and in (c) is sagittal. Three slices from
orthogonal views (axial, coronal, and sagittal views) are shown for each image, where the
views are axial, coronal, and sagittal, respectively from top to bottom. We will consistently
use these three views (from top to bottom) to represent an image or volume in the rest of the
article. The images shown in (d) to (f) are also synthesized in the axial, coronal, and sagittal
slice select directions, respectively, but these images are contaminated with additive
Laplacian noise. In addition to noise, the image shown in (f) is corrupted with slice outliers.
Sets of multiple images similar to (d), (e), and (f) will be used in Section IV-E to study the
effects of noise and outliers on super-resolution volume reconstruction.

B. Slice-to-Volume Registration Accuracy
The slice-to-volume registration is very important as the accuracy of super-resolution
reconstruction is extremely sensitive to the accuracy of this part for motion correction. In
this section we will evaluate the accuracy of slice-to-volume registration, and later in
Section IV-C we will discuss about the sensitivity of the volume reconstruction to slice-to-
volume registration. The accuracy of the slice-to-volume registration algorithm discussed in
section III-C can be evaluated by comparing the known synthetic motion parameters with
the estimated motion parameters for each slice. These motion parameters are three
translations and three rotations in the 3D space for each slice. Ideally the estimated motion
parameters should be equal to the known synthetic motion parameters.

Fig. 4 shows the plots of the estimated motion parameters compared to the known synthetic
motion parameters (reference) for the final iteration of a volume reconstruction experiment.
Each point on these plots refers to the parameters for one slice. If the motion estimation was
perfect, all the points would have been mapped to the diagonal line. This Figure indicates
that the slice-to-volume registration was generally successful for estimating the slice motion
parameters. However, it also shows that the slice-to-volume registration was prone to
inaccuracies in motion estimation, and motion estimation completely failed for a number of
slices.

As discussed before the mis-registered slices should be considered as outliers in the super-
resolution volume reconstruction process. In order to examine the usefulness of the slice
error vector norm (i.e. the MSD of intensity values) for outlier weighting in robust
reconstruction through Equation (12) to Equation (14), we applied the statistical box-plot
method of quartiles for slice outlier detection [40]. This statistical method is based on
computing the upper (Q3) and lower (Q1) quartiles of the set of all slice MSD values, i.e.
{MSDk; k = 1…n}. The slices with MSDk > 2.5Q3 − 1.5Q1 are defined as moderate outliers
and the slices with MSDk > 4Q3 – 3Q1 are defined as extreme outliers. The points
corresponding to the detected slice outliers (moderate and extreme) are shown by asterisks
(*) in Fig. 4. It should be noted that the statistical box-plot method of quartiles based on

MSD values ( ) may not be perfect for slice outlier detection, but this analysis shows
that MSD is fairly accurate for the detection of mis-registered slices, hence is appropriate for
robust slice error vector norm weighting through Equation (12) to Equation (14).

The accuracy of slice-to-volume registration is quantitatively measured using the root mean
square error (RMSE) between the estimated motion parameters and the reference synthetic
motion parameters for each slice. Two sets of experiments were performed using the
validation datasets. In the first set of experiments, the original ground truth volumes, i.e. the
high-resolution DBP volumes and high-resolution TSE volumes of the newborns, were used
as the target for registration. These experiments assume a perfect target for registration, thus
they evaluate the accuracy of slice-to-volume registration independent of the accuracy of
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reconstruction. In practice, however, the original high-resolution images are not available
and the registration target should be estimated by the super-resolution reconstruction
algorithm iteratively. Therefore the second set of experiments with newborn cases are the
actual slice-to-volume registration (motion estimation) experiments in a super-resolution
volume reconstruction algorithm. In these experiments the reconstructed volume in each
iteration was used as the target for registration in the next iteration.

The average RMSE values over all the slices are shown in Table I for the first set of
experiments, and in Table II for the second set of experiments. On the basis of the slice
outlier detection using the box-plot method of quartiles we recomputed the average RMSE
values for all slices excluding the slices detected as outliers. These values are also shown in
the Tables. The results reported in Table I and Table II indicate that the developed slice-to-
volume registration algorithm is fairly accurate, however it is also evident that the super-
resolution volume reconstruction algorithm should be robust to mis-registered slices which
are considered to be outliers. The sensitivity of the volume reconstruction algorithm to the
slice-to-volume registration accuracy will be considered later in the next section.

C. Convergence Criteria and Performance
The super-resolution reconstruction algorithm shown in Fig. 2 iteratively refines the
reconstructed volume and the motion correction (slice-to-volume registration). Better
reconstructed volumes perform as better targets for registration in the consecutive iterations,
and improved registration results in better reconstruction. Within each iteration the robust
super-resolution reconstruction formulated in Section II-C is solved using the numerical
techniques discussed in Section III-B. The algorithm aims at minimizing a robust error norm
function between the reconstructed volume and the slice acquisitions.

The convergence of the algorithm is evident from the error volumes shown in Fig. 5; the
reconstructed error volumes based on the synthesized and estimated slices are shown in (a)
and (b) for the first iteration and the last iteration of the algorithm, respectively. Since the
ground truth (the original high-resolution volume) was available for the validation datasets,
it was also possible to compute the actual error volume between the original high-resolution
volume and the estimated volume. These error volumes for the first and the last iterations of
the algorithm are shown in (c) and (d), respectively.

Obviously the algorithm minimizes the error between the estimated volume and the
available slice acquisitions (Fig. 5 (b)), but this may not result in a perfect match between
the reconstructed volume and the original ground truth volume, thus the error volume shown
in Fig. 5 (d) represents the actual loss in anatomic details due to the entire process of thick-
slice image acquisition and super-resolution volume reconstruction. This is expected as
some information is lost during the slice acquisition, signal averaging, and resampling
processes. Performance limits in super-resolution volume reconstruction from slice
acquisitions are mainly induced by thick slice acquisitions causing signal averaging and
partial voluming, limited number of slice acquisitions, and limited slice-to-volume
registration accuracy.

Since the original high-resolution volumes are available for the validation datasets (i.e. the
original DBP and newborn volumes), the accuracy of reconstruction can be measured
quantitatively. Two measures are used here: Mean Absolute Error (MAE) and Peak Signal
to Noise Ratio (PSNR). MAE is simply defined as the mean absolute differences of the
voxel intensity values between the original volume and the reconstructed volume. PSNR is

defined in the logarithmic decibel (dB) scale as , where MAX is the
maximum possible voxel intensity value (4096 in our experiments) and MSE is the mean
square error of the voxel intensity values between the original volume and the reconstructed
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volume. During six registration iterations of the algorithm for newborn volume
reconstruction, MAE was reduced from 155 to 90, and PSNR was increased from 23.9 dB to
28.1 dB. The algorithm was automatically terminated in the 13th iteration and the volume
reconstructed in the 11th iteration was given as the output.

Various factors affect the accuracy of super-resolution volume reconstruction. The
performance limits in super-resolution image reconstruction and the effect of various factors
have been addressed in [41] through statistical analysis based on Cramer-Rao bounds. One
of the important factors is the number of input scans. Intuitively, better reconstruction is
expected when higher number of input scans are available for reconstruction; however in
practice the number of scans is limited due to the constraints on total scan time. This is
particularly an important constraint in fetal imaging. Using the validation datasets, we
carried out experiments with various number of synthetic input scans (between one to seven
inputs in each orthogonal slice select direction which translated to total numbers of 3 to 21
input scans). The results indicate that higher PSNR and lower MAE values are obtained with
higher number of input scans. According to our analysis the accuracy of volume
reconstruction dramatically dropped when less than a total number of 9 input scans were
used for reconstruction. The analysis also showed that the accuracy of reconstruction did not
significantly improve when the total number of scans went above 15. This analysis basically
showed that to effectively reconstruct volumes with uniform resolutions being one-third of
the slice thickness, at least three thick-slice scans in each orthogonal direction were needed.
However, an effective volume reconstruction technique may provide relatively good
reconstructions with lower number of scans.

A very important factor that affects the quality of super-resolution volume reconstruction is
the accuracy of slice-to-volume registration. The degradation in performance of super-
resolution image reconstruction due to motion estimation has been approximated to be at
least 10% to 25% in [41] based on the number of low-resolution observations. In practice
this degradation can be much higher in super-resolution volume reconstruction from slice
acquisitions. The sensitivity of volume reconstruction to the accuracy of slice-to-volume
registration can be quantified by a set of experiments comparing the reconstruction with
known slice motion parameters to reconstruction with estimated motion parameters. Inspired
by the statistical analysis in [41] we utilize the root mean square differences (RMSD) of
voxel intensity values between the reconstructed volumes and the original high-resolution
volumes available for the validation datasets. We carried out experiments with known and
estimated motion parameters for various number of input scans. The RMSD values and the
performance degradation computed as the percentage increase in RMSD due to motion
estimation, have been reported in Table III.

The results of the reconstruction experiments with the newborn database are shown in Fig.
6, where (a) shows the initial estimation of the reconstructed volume obtained by averaging
the resampled input scans (AVE), (b) is the reconstructed volume after ten iterations of
slice-to-volume registration and super-resolution volume reconstruction (MLE), (c) is the
reconstructed volume with known slice motion parameters, (d) is the original high-
resolution TSE volume, and (e) is the volume reconstructed with known motion parameters
using the B-Spline scattered data interpolation approach (BSP-SDI). The degradation in
performance due to motion estimation is observed by comparing (b) and (c). Note that these
volumes are reconstructed from thick-slice motion-corrupted input scans similar to those
shown in Fig. 3. Simple averaging of these input scans results in the volume shown in (a).
Apparently the developed volume reconstruction technique is quite effective in recovering
the 3D anatomy and coherent boundaries of structures from motion-corrupted input scans.
The comparison between MLE and BSP-SDI reconstructions can be observed from (c) and
(e) and will be discussed in the next section.
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D. Comparison to Scattered Data Interpolation
It is important to determine if the super-resolution volume reconstruction based on error
minimization (i.e. MLE in the simplest form) outperforms the scattered data interpolation
(SDI) techniques. Using the newborn datasets without additional noise or outliers, we
compared the accuracy of MLE with the initial reconstruction obtained from averaging
(AVE) and the reconstructions using B-Spline SDI (BSP-SDI) and local neighborhood
Gaussian SDI (LNG-SDI). The difference between the MLE reconstructed volume and the
BSP-SDI can be seen by comparing Fig. 6 (c) and (e). It is visually evident that the MLE
reconstruction in (c) is much sharper and is a much better approximation to the original
volume (d) as compared to the reconstruction by BSP-SDI (e). The volumes reconstructed
by LNG-SDI were visually similar to those reconstructed by BSP-SDI. Table IV shows the
values of MAE and PSNR for the AVE, BSP-SDI, LNG-SDI, and MLE reconstruction
techniques. The best values, shown in bold, are achieved by the MLE reconstruction.

E. Robustness to Noise and Slice Outliers
Thick slices are normally acquired in SSFSE scans to maintain good SNR. Thinner slices
needed to capture the small structures of fetal and neonatal brains are quite noisy. On the
other hand, fast impulsive motion may cause partial or complete signal loss during slice
acquisitions. Motion-induced and field inhomogeneity artifacts may degrade a number of
slices in a dataset. Consequently many of the slices in each SSFSE scanning session may not
be perfect or may have significant signal loss artifacts. But the most important source of
error in super-resolution volume reconstruction is failed or inaccurate registration. Mis-
registered slices result in severe artifacts in the reconstructed volume. Under the
circumstances, robustness to noise and outliers is strongly desired for super-resolution
volume reconstruction from slice acquisitions.

In order to validate the robustness of the developed robust reconstruction technique (RME)
as compared to the developed ME (and MLE) techniques, experiments were carried out with
different types of noise and slice outliers. In our experiments nine input scans were used for
reconstruction. Gaussian, Laplacian, and mixed (ε-contaminated) noise [36], [33] were
added to the synthetic slices obtained from high-resolution DBP and newborn volumes. A
block of slice outliers (a region of one-fourth of the slices in one scan) were added to one of
the coronal and one of the sagittal scans when needed.

In the first set of experiments, the effect of various noise conditions was considered. The
noise conditions are shown by NN for no additive noise, GN for Gaussian noise with
mean=0 and σ = 200, LN for Laplacian noise with mean=0 and σ = 200, and MN for mixed
ε-contaminated noise with mean=0, σ = 200, and ε = 0.5). MAE and PSNR between the
reconstructed volumes and the original ground truth volumes were used for quantitative
evaluation. The results for the noise experiments are shown in Table V and Table VI for the
DBP and newborn datasets respectively. The M-estimation approach (ME) with different γ
values was used for comparison, where γ = 0.001 was used for l1-norm estimation, γ =
1.345 was used for Huber function estimation, and γ = 1000 was used for l2-norm
estimation. Note that the error values were normalized with respect to their mean absolute
deviation.

Note that the number of scans (N) is typically small and limited number of samples are
available for robust statistical noise filtering. Under these conditions the results shown in
Table V and Table VI indicate that the Huber’s error norm function generally performed
better than the other estimators. The results also indicate that the l1-norm ME reconstruction
may result in significant loss of efficiency when there is little noise or the noise is Gaussian,
and the l2-norm ME reconstruction may result in significant error in the presence of heavy-
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tailed Laplacian noise. The conclusion from these experiments is that the Huber’s error
norm function can be used for robust volume reconstruction under unknown noise
conditions.

In the second set of experiments the performance of the RME reconstruction technique was
considered under different noise conditions with and without slice outliers. The RME
technique was applied with γ = 1.345 for robust voxel-level noise filtering and with various
η values. For slice error norm weighting, η was chosen to be 0.001, 1.345, and 1000 for l1-
norm, Huber, and l2-norm functions, respectively. The slice error vector norms (MSD)
values were normalized with respect to their mean absolute deviation. The reconstructed
volumes in these experiments are quantitatively compared using the MAE and PSNR
measures for both DBP and newborn validation datasets. The results are shown in Table VII
and Table VIII. The results for noise experiments without slice outliers are shown by NN for
no noise, GN for Gaussian noise, LN for Laplacian noise, and MN for mixed noise. The
results with slice outliers are shown by SO. The best values for each experiment are shown
in bold text.

The results reported in Table VII and Table VIII indicate that when there is no slice outlier,
RME (l2-norm) provides the most accurate results; however, in the presence of slice outliers
the performance of this technique dramatically drops. In this case the RME (Huber) which
applies robust slice error vector norm weighting, provides the best performance. It is
observed that if we use RME (Huber) in all experiments, the loss in accuracy for the
experiments without slice outliers is not remarkable; however, if we use RME (l2-norm) in
all cases, there will be a significant loss in accuracy when slice outliers present. Note that
slice-to-volume registration in super-resolution volume reconstruction may fail and is not
always accurate, therefore the use of robust reconstruction based on slice error vector norm
weighting is often helpful.

Fig. 7 shows the reconstructed volumes of one of the newborn experiments with additive ε-
contaminated noise (mean=0, σ = 200, and ε = 0.5) and slice outliers. Twelve synthetic
motion-corrupted scans were used in this experiment. All of the scans were contaminated
with noise and one of the coronal and one of the sagittal scans contained a block of slice
outliers as shown in Fig. 3 (f). The volumes shown in Fig. 7 involve (a) the reconstructed
volume using l2-norm ME, (b) the reconstructed volume using l1-norm ME, and (c) the
reconstructed volume using RME (Huber). The original high-resolution TSE volume shown
in (d) is considered to be the ground truth reference. Severe artifacts are observed in the
volume obtained from non-robust l2-norm ME reconstruction in (a). The robust l1-norm ME
reconstructed volume in (b) is much better but is relatively blurred and yet has some artifacts
in the outlier affected regions. On the other hand, the RME reconstructed volume in (c) is
sharp and the effect of slice outliers is appropriately eliminated. These observations strongly
comply with the quantitative evaluation results discussed above. Finally it should be noted
that the volume shown in Fig. 7 (c) was reconstructed from input scans that were strongly
affected by ε-contaminated noise and slice outliers. Samples of these input scans were
shown in Fig. 3 (d) to (f).

V. VOLUNTEER SUBJECT EXPERIMENTS
The developed super-resolution volume reconstruction algorithm can be primarily used for
the reconstruction of brain volume from fast MRI slice acquisitions. This is particularly
useful for T2-weighted imaging of subjects who may move in the scanner, for example
newborns or neonates. In this section we report a volunteer subject experiment. Six HASTE
scans were acquired for a volunteer subject using a Siemens Trio 3-Tesla scanner.
Orthogonal (axial, coronal, and sagittal) views of these scans are shown in Fig. 8 and
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include three axial, two coronal, and one sagittal acquisitions shown in (a) to (f)
respectively. HASTE imaging was performed with TR = 1400 ms, TE = 98 ms, slice
thickness of 5.2 mm, and in-plane resolution of 0.86 mm. The subject significantly moved
during scans (b), (c), and (e). The imaging session also involved high-resolution T2-
weighted axial Turbo Spin Echo (TSE) imaging with TR = 16000 ms, TE = 85 ms, matrix
size of 192 × 192 pixels, slice thickness of 1.2 mm, and in-plane resolution of 1.09 mm. The
TSE volume was obtained when the volunteer did not move in the scanner. This volume was
used as the reference for comparison.

Orthogonal slice views of the reconstructed volumes in this experiment are shown in Fig. 9.
In this figure (a) is the reconstructed volume based on LNG-SDI, and (b) is the
reconstructed volume using the developed RME technique. The reference TSE volume is
shown in (c); and (d) shows a TSE volume acquired when the subject was moving.
Apparently the TSE volume provides different contrast and better details of the anatomy as
compared to the original HASTE scans shown in Fig. 8 and consequently in Fig. 9 (b), but
the TSE imaging is not robust to motion. The HASTE scans, on the other hand, are robust to
motion, in the sense that the quality and resolution of the fast slice acquisitions is generally
preserved despite subject’s movements.

Due to the differences between the contrast in HASTE and TSE imaging, the TSE volume
cannot be considered as a ground truth reference of contrast and intensity values for the
reconstructed volumes. However, we expect to see similar anatomical structures in the
reconstructed volumes and the TSE volume. Therefore, in addition to visual inspection, we
try several measures for quantitative evaluation in this experiment. These measures include
(1) similarity to high-resolution TSE volume, (2) RMSE of slice-to-volume registration, and
(3) sharpness measures.

First, similarity to a high-resolution volumetric MRI acquisition (reference) is useful in
evaluating and comparing the reconstruction techniques. Similar to the validation studies
reported in Section IV, MAE and PSNR can be measured between the reconstructed volume
and the reference volume. We report these metrics here, however, due to the natural
differences in contrast and intensity values of the TSE and HASTE scans, these metrics will
not be physically meaningful and cannot be fully trusted. In fact the relationship between the
intensity values in the TSE and HASTE volumes is nonlinear and can be better quantified by
information-theoretic similarity measures such as mutual information. Here, we compute the
normalized mutual information (NMI) similarity measure between the reconstructed
volumes and the reference volume. NMI has been widely used in computing the similarity of
multi-modal images [42] and is computed based on the marginal and joint entropies of the
two volumes [43]. Higher NMI values indicate higher similarity between two volumes.

Second, RMSD of intensity values between the motion-corrected slices and the
reconstructed volume was previously used in Section IV-C to assess the sensitivity of
volume reconstruction to motion estimation. This measure can be used for performance
evaluation of the iterative registration and volume reconstruction. Lower RMSD indicates
better convergence of the registration iterations, which in-turn indicates that better
reconstructed volumes were used as target (reference) for slice-to-volume registration. Since
the same slice-to-volume registration algorithm was used in our experiments, the difference
between the RMSD of different reconstruction algorithms is interpreted as the difference
between super-resolution reconstruction formulation and the parameters. Therefore lower
RMSD indicates better reconstruction technique.

The third set of metrics are from the class of sharpness (focus) measures. The rationale
behind using sharpness measures is that when there are uncorrected motion or error residuals
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between the input slice acquisitions, the average image will be an out-of-focus motion
blurred version of the imaged structure. When the motion is more effectively estimated and
corrected and the motion-corrected images are more accurately fused in the reconstruction
process, sharper structures appear in the reconstructed volume. Two sharpness measures are
used in this study: M1 (the intensity variance measure) and M2 (the energy of image
gradient measure). Both measures are monotonic and robust to noise [44]. The variance
measure is calculated as the sum of square differences (SSD) between each voxel intensity
value and the mean image intensity value. M2 is computed by integrating the magnitude of
image gradient at all voxels.

Table IX shows the comparison of the above-mentioned measures for volume reconstruction
using four techniques: (1) the averaging of three orthogonal scans with the least amount of
motion (AVE), (2) scattered data interpolation (SDI), (3) ME with l2-norm (i.e. MLE) and
(4) RME with robust slice error vector norm weighting (RME Huber). The computed
measures include MAE, PSNR, and NMI between the reference TSE volume and the
reconstructed volumes, RMSE of slice-to-volume registration, and M1 and M2 sharpness
measures of the reconstructed volumes. The best value for each measure is shown by bold
text. The results suggest that the best volume reconstruction is obtained from RME
formulation with Huber’s function for robust slice error norm weighting.

VI. Experiments: Fetal brain MRI reconstruction
A. Data Acquisition and Visual Assessment of the Reconstruction Quality

Fetal MRI data was obtained from clinical MRI of pregnant patients with diagnosed or
suspected cases of fetal anomalies after diagnostic ultrasonography. Clinical fetal MRI was
performed using a 1.5-T TwinSpeed Signa system (GE healthcare) and an 8-channel phased-
array cardiac coil, without maternal sedation or breath-hold, with the mother supine or in left
decubitus position to minimize caval compression. The protocol involved acquisitions in the
fetal sagittal, axial and coronal planes using half-Fourier acquisition single-shot fast spin
echo (SSFSE) MR imaging with TR varying between 1000 and 4500 ms; TE varying
between 80 and 100 ms; variable field of view based on the maternal and fetal body size
(between 24–40 cm); variable matrix size between 160 and 512 pixels; and slice thickness
between 3 and 6 mm.

Fifteen datasets were used in this study, which were obtained for fetuses in the gestational
age (GA) range of 19 weeks and 2 days (19w2d) to 36 weeks and 2 days (36w2d) (mean
28.11, stdev 6.34). A subset of acquired scans in each dataset was pre-selected by visual
inspection. The selected scans normally contain high-quality slices, however, occasionally
motion-induced intensity distortions and signal loss artifacts present in a number of slices in
each dataset. Table X shows the important parameters of the datasets for volumetric MRI
reconstruction.

Figure 10 and Figure 11 show the reconstructions of the youngest (C6) and the oldest (C12)
fetuses in the database, respectively. The first three columns show three original SSFSE
scans acquired in the axial, coronal, and sagittal planes. Fig. 10(d) shows the reconstruction
by the SDI (LNG-SDI) technique and (e) shows the reconstruction by the developed l2-norm
ME technique (MLE). Fig. 11(d) shows the initial reconstruction by averaging the
resampled input scans (AVE), and (e) shows the reconstruction by the RME technique.

The case C12 was quite challenging; only four input scans with a total of 60 slices were
available for reconstruction. The slice thickness was relatively large (i.e. 6 mm), and one of
the input scans (i.e. the sagittal acquisition shown in Fig. 11(c)) did not cover the full brain
region. The volumetric image shown in Fig. 11(e) was generated despite these limitations.
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The reconstructed volume shown in Fig. 11(e), was generated after 10 iterations of slice-to-
volume registration and super-resolution volume reconstruction.

As observed in Figure 10 and Figure 11 the reconstructed volumes clearly reflect the
underlying continuity of tissue structure boundaries in all three planes, whereas the original
acquisitions exhibit discontinuous tissue boundaries in the out-of-plane views due to the
effect of inter-slice motion, thick-slice acquisitions, and partial volume averaging. When
coherent structural boundaries appear in all three planes of the reconstructed volumes for an
experiment we refer to it as good-quality volume reconstruction. The visual assessment of
the quality of reconstructed volumes indicates that good-quality volumetric images were
obtained for 14 cases (all cases except C10). Mis-registration artifacts were observed in the
reconstructed volumes for C10 (GA 34w4d, N = 4) using all techniques. Artifacts were also
observed in the MLE reconstructed volumes for C13 and C14, but good-quality volumes
were obtained for these cases by RME. Almost in all cases the volumes reconstructed by
MLE and RME were visually much sharper than the volumes reconstructed by SDI These
observations are supported by the quantitative evaluation in the next section.

B. Quantitative Evaluation
Two sets of metrics were used to evaluate the relative effectiveness of the RME technique as
compared to the initial estimation (AVE), SDI (LNG-SDI), and MLE. The first metric is the
root mean square differences (RMSD) of intensity values between the motion-corrected
acquired slices and the reconstructed volumes. The average of this metric over the slices for
each case was normalized with respect to the RMSD metric of its corresponding initial
reconstructed volume (AVE). The results are shown in Table XI for six techniques: AVE,
SDI, MLE, and RME reconstructions with η = 1.345 and different values of γ, i.e. γ =
0.001 for RME (l1-norm), γ = 1000 for RME (l2-norm), and γ = 1.345 for RME (Huber).

Lower RMSD indicates better convergence of registration iterations, which in-turn indicates
better reconstructed volumes were used as target (reference) for slice-to-volume registration.
The lowest values of RMSD in each row (for each case) are shown in bold text. Obviously
in all cases the MLE and RME (with Huber’s and l2-norm error functions) provided
improvements over the initial reconstruction (AVE) and performed better than SDI. It is
observed that in many cases the ordinary MLE (l2-norm ME) generated the best results.
However, the mean values over all 15 datasets indicate that RME performed better. In fact
for those cases that MLE provided the lowest RMSE, the difference between RME and MLE
was not significant. Those cases are considered to be the cases without significant slice
outliers or non-Gaussian noise, for which the slice-to-volume registration was also fairly
accurate. But significant improvements were observed for cases C4, C8, C11, and C13 by
using RME as compared to MLE. These cases are considered to be affected by mis-
registered slices, outliers, and/or non-Gaussian noise artifacts.

The second set of metrics are the sharpness measures (M1 and M2) discussed in section V.
The results for M1 and M2 sharpness measures are shown in Table XII and Table XIII
respectively. Again all the values for each case are normalized with respect to the AVE
value for that case. The highest sharpness measures for each case are shown in bold text.
The results show that sharper volumetric images are generally obtained by the RME
technique as compared to SDI and MLE. In particular these measures suggest that the best
performance was obtained from RME with l2-norm error function. When comparing RME
with MLE, significant improvement was seen in M1 for C8, and in M2 for C2, C4, C8, C14,
and C15.
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VII. Discussion and Conclusion
Novel super-resolution volume reconstruction techniques have been developed in this study
based on maximum likelihood and robust M-estimation error minimization for the
reconstruction of volumetric MRI from multiple-scan slice acquisitions. The model-based
formulation of volume reconstruction is considered as a major development in this area
which leads to remarkable improvement in applications that were previously addressed by
scattered data interpolation techniques. Both validation studies and experimental results
show that the developed model-based technique outperforms the scattered data interpolation
techniques. Furthermore, the novel data-adaptive M-estimation approach developed in this
study performs well in the presence of slice outliers and appropriately eliminates the effect
of mis-registered slices.

The developed formulation is general and the approach can be effectively used for any type
of slice acquisitions or any number of input scans. However, in order to guarantee high-
resolution reconstruction, multiple orthogonal or overlapped or repeated slice acquisitions
are desired. The validation studies carried out here and the fetal brain MRI experiments are
based on multiple orthogonal scans, which are normally acquired in clinical imaging. The
reconstruction of volumetric images from clinical datasets is quite challenging due to
various limitations such as the total scan time, large slice thickness for high SNR, and
uncontrolled intermittent motion. Under the circumstances the developed robust
reconstruction technique is extremely beneficial. The improved reconstruction capability of
volumetric fetal brain MRI enables enhanced clinical evaluation and facilitates further
research in automated image analysis, atlas construction, and the research on early brain
development, cortical maturation, neuro-developmental disorders, fetal anomalies, and the
mechanism of brain injury in newborns and premature infants.
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Fig. 1.
Sample fetal MRI acquired in the axial plane: the three slices on the left show the high in-
plane resolution and quality of the slice acquisitions, however, motion can be seen by
comparing these three adjacent slices; on the right: sagittal and coronal views of this scan do
not reflect the anatomical details due to the fetal motion and the 4 mm slice thickness
needed for sufficient signal-to-noise ratio.
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Fig. 2.
Algorithmic overview: block diagram of the developed super-resolution reconstruction
algorithm; TC stands for the termination condition. Note that the previously developed SDI
approaches do not involve the super-resolution reconstruction block. This block aims at
minimizing an error norm function between the acquired slices and the estimated volume.
This is performed through iterative solutions of Equation (10) and Equation (13).

Gholipour et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Sample synthetic motion-corrupted slice acquisitions generated from a high-resolution T2-
weighted TSE image of a newborn subject. Three views (axial, coronal, sagittal views) of
each synthetic image are shown in a column. The slice select direction in (a) and (d) is axial,
in (b) and (e) is coronal, and in (c) and (f) is sagittal. No noise or outlier was added to the
images in (a) to (c), while images (d) to (f) were contaminated with additive Laplacian noise
(power of noise is σ = 200). Image (f) was also corrupted by synthetic slice outliers. Note
that the synthetic images involve high-quality slice plane views but exhibit discontinuous
tissue boundaries in the out-of-plane views. For example, the synthetic image in (a) with
axial slice select direction exhibits sharp anatomic details in the axial view but not in the
coronal and sagittal views.
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Fig. 4.
The plots of the estimated slice motion parameters (estimated) compared to the actual
synthesized slice motion parameters (reference) for the iterative registration and
reconstruction of newborn case 2. The six parameters of the randomly generated motion
parameters involve three rotations (rx, ry, rz) in degrees and three translations (tx, ty, tz) in
millimeters. Each point corresponds to a slice. The points marked by asterisks (*)
correspond to the slices detected as moderate and extreme outliers by the box-plot outlier
detection method of quartiles based on the MSD of intensity values. Note that the statistical
outlier detection method is not perfect and thus a few number of mis-registered slices may
not be detected as outliers by MSD, but this analysis indicates that MSD can be used as a
relatively reliable measure for assessing the fidelity of slice-to-volume registration.
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Fig. 5.
Error image volumes at the beginning and the end of the super-resolution reconstruction
algorithm show the convergence of the algorithm; (a) and (b) show the reconstructed error
volumes between the estimated volume and the synthesized slice acquisitions. (c) and (d)
show the actual error volumes between the estimated volume and the original high-
resolution volumes that are available for the validation datasets. Obviously, the algorithm
minimizes the error between the estimated volume and the available slice acquisitions (b),
but this may not result in perfect match between the reconstructed volume and the original
ground truth volume, thus the actual error volume shown in (d) is not as good as (b).
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Fig. 6.
The reconstructed volumes for newborn case 2; (a) shows the initial reconstructed volume
based on averaging the resampled input scans (AVE), (b) shows the reconstructed volume
after ten iterations of slice-to-volume registration and MLE super-resolution reconstruction
algorithm, (c) shows the reconstructed volume obtained from one iteration of MLE with
known slice motion parameters, (d) shows the original high-resolution TSE volume (used as
the ground truth reference for this validation dataset), and (e) shows the reconstructed
volume obtained from BSP-SDI with known slice motion parameters. The comparison
between BSP-SDI and MLE is considered in section IV-D.
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Fig. 7.
The reconstructed volumes for an experiment with mixed noise and slice outliers with the
newborn validation dataset; (a) shows the volume reconstructed by ME with l2-norm error
function (i.e. ordinary MLE), (b) shows the volume reconstructed by ME with l1-norm error
function, and (c) shows the volume reconstructed using the RME technique with Huber’s
slice error vector norm function. Severe artifacts appear in the non-robust l2-norm ME
volume reconstruction in (a); the black arrows point at some of these artifacts. The volume
reconstructed with l1-norm ME in (b) is blurred and still has some artifacts; finally the
volume reconstructed with data-adaptive robust RME in (c) is sharp and the effect of slice
outliers is appropriately eliminated.
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Fig. 8.
Acquired HASTE scans for the volunteer subject experiment; (a)–(c): axial HASTE
acquisitions, (d) and (e): coronal HASTE acquisitions, and (f) a sagittal HASTE acquisition.
Note that despite the large scale of volunteer motion, the slice quality and resolution is
generally preserved in HASTE imaging. However, if the motion is fast, a number of slices
may be affected by signal loss and intensity distortion artifacts. A few of these affected
slices can be seen in the coronal and sagittal views of the axial acquisition in (b).
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Fig. 9.
The reconstructed volumes for the volunteer subject experiment with six HASTE input
scans shown in Fig. 8; (a) is the reconstructed volume using LNG-SDI, (b) is the
reconstructed volume using the RME technique, (c) is the reference high-resolution TSE
volume, and (d) is a TSE volume acquired when the subject was moving in the scanner.
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Fig. 10.
The reconstruction of volumetric fetal brain MRI for C6 (GA 19w2d, N = 5); (a)–(c): the
acquired SSFSE scans in (a) axial, (b) coronal, and (c) sagittal orthogonal planes, (d)
volumetric image reconstructed by LNG-SDI approach, and (e) volumetric image
reconstructed by the developed ME technique (with ordinary MLE formulation).
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Fig. 11.
The reconstruction of volumetric fetal brain MRI for C12 (GA 36w2d, N = 4); (a)–(c): the
acquired SSFSE scans in (a) axial, (b) coronal, and (c) sagittal orthogonal planes, (d) the
initial reconstructed volume by averaging (AVE), and (e) the volume reconstructed by the
developed RME technique.
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TABLE III

Sensitivity of volume reconstruction accuracy to motion estimation based on the RMSD of intensity values
between the original ground truth volumes and the volumes reconstructed with known motion parameters and
with unknown (ESTIMATED) motion parameters.

Number of input scans (N) 6 9 12 15

RMSD (MLE with known motion parameters) 113.763 109.669 107.447 106.885

RMSD (MLE with estimated motion parameters) 171.287 147.700 146.65 145.895

Degradation in performance (%) 50.56% 34.68% 36.49% 36.50%
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TABLE IV

Comparing the MAE and PSNR of the original and reconstructed images for the reconstructions by the super-
resolution reconstruction technique (MLE), averaging (AVE), and scattered data interpolation based on BSP-
SDI and LNG-SDI. The best values in each line are shown in bold text.

MAE

AVE BSP–SDI LNG–SDI MLE

Case 1 114.973 56.636 55.606 40.758

Case 2 155.387 69.546 69.535 62.075

PSNR (dB)

AVE BSP–SDI LNG–SDI MLE

Case 1 26.909 33.266 32.648 35.358

Case 2 23.866 31.095 30.137 31.462
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TABLE V

Comparing the MAE of intensity values and PSNR (dB) of the M-estimation reconstruction (ME) of the dbp
images with various noise conditions using different norm functions. The best values in each row are shown in
bold text.

MAE

ME (l1–norm) ME(Huber) ME (l2–norm)

NN 95.019 68.350 74.210

GN 131.887 128.092 128.816

LN 134.481 149.329 172.777

MN 120.955 117.746 121.834

PSNR (dB)

ME (l1–norm) ME(Huber) ME (l2–norm)

NN 27.644 30.282 29.681

GN 25.346 25.715 25.393

LN 25.193 24.948 24.185

MN 25.581 25.997 25.760
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TABLE VI

Comparing the MAE of intensity values and PSNR (dB) of the M-estimation reconstruction (ME) of the
newborn images with various noise conditions using different norm functions. The best values in each row are
shown in bold text.

MAE

ME (l1–norm) ME(Huber) ME (l2–norm)

NN 64.642 46.673 46.259

GN 75.907 67.968 67.896

LN 78.290 78.884 76.756

MN 72.787 63.070 63.604

PSNR (dB)

ME (l1–norm) ME(Huber) ME (l2–norm)

NN 30.779 33.673 33.747

GN 30.381 32.218 32.229

LN 30.189 31.176 31.378

MN 30.520 32.585 32.547
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TABLE VII

Comparing the MAE of intensity values and PSNR (dB) of the robust M-estimation reconstruction (RME) of
the dbp images with various noise and slice outlier conditions using different slice error norm functions. the
best values in each row are shown in bold text.

MAE

RME (l1–norm) RME(Huber) RME (l2–norm)

NN 87.729 77.919 68.350

GN 131.179 131.174 128.092

LN 151.162 151.162 149.329

MN 120.408 120.362 117.746

SO 80.680 76.175 97.704

SO+GN 149.843 148.176 164.733

SO+LN 175.455 174.429 189.688

SO+MN 135.114 133.506 150.957

PSNR (dB)

RME (l1–norm) RME(Huber) RME (l2–norm)

NN 28.608 29.250 30.282

GN 25.433 25.433 25.715

LN 24.868 24.868 24.948

MN 25.798 25.800 25.997

SO 26.727 26.888 25.202

SO+GN 24.960 24.991 23.855

SO+LN 23.961 23.979 23.052

SO+MN 25.418 25.442 24.188
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TABLE VIII

Comparing the MAE of intensity values and PSNR (dB) of the robust m-estimation reconstruction (RME) of
the newborn images with various noise and slice outlier conditions using different slice error norm functions.
The best values in each row are shown in bold text.

MAE

RME (l1–norm) RME(Huber) RME (l2–norm)

NN 52.687 47.606 46.673

GN 71.616 70.129 67.968

LN 81.368 81.019 79.756

MN 66.979 65.041 63.070

SO 51 .776 46.956 56.011

SO+GN 76.512 73.512 80.434

SO+LN 87.563 85.366 92.453

SO+MN 70.780 67.712 75.057

PSNR (dB)

RME (l1–norm) RME(Huber) RME (l2–norm)

NN 32.615 33.511 33.673

GN 31.779 31.947 32.218

LN 30.917 30.954 31.078

MN 32.084 32.322 32.585

SO 32.831 33.639 31.963

SO+GN 31.417 31.691 30.612

SO+LN 30.369 30.557 29.211

SO+MN 31.835 32.139 30.937
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TABLE IX

Measures used for the evaluation and comparison of reconstructed volumes in the volunteer subiect
experiment.

AVE SDI MLE RME(Huber)

MAE 110.74 100.92 101..317 100.191

PSNR 24.507 25.269 25.272 25.300

NMI 1.137 1.142 1.146 1.150

RMSD ----- 137.397 136.245 136.177

Ml 178531 178051 178377 178972

M2 1.2 × 1011 9.5 × 1010 1.3 × 1011 1.3 × 1011
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