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Abstract—This paper presents a new supervised method for
blood vessel detection in digital retinal images. This method uses a
neural network (NN) scheme for pixel classification and computes
a 7-D vector composed of gray-level and moment invariants-based
features for pixel representation. The method was evaluated on
the publicly available DRIVE and STARE databases, widely
used for this purpose, since they contain retinal images where
the vascular structure has been precisely marked by experts.
Method performance on both sets of test images is better than
other existing solutions in literature. The method proves especially
accurate for vessel detection in STARE images. Its application
to this database (even when the NN was trained on the DRIVE
database) outperforms all analyzed segmentation approaches.
Its effectiveness and robustness with different image conditions,
together with its simplicity and fast implementation, make this
blood vessel segmentation proposal suitable for retinal image
computer analyses such as automated screening for early diabetic
retinopathy detection.

Index Terms—Diabetic retinopathy, moment invariants, retinal
imaging, telemedicine, vessels segmentation.

I. INTRODUCTION

TABETIC retinopathy (DR) is the leading ophthalmic
D pathological cause of blindness among people of working
age in developed countries [1]. It is provoked by diabetes-mel-
litus complications and, although diabetes affection does not
necessarily involve vision impairment, about 2% of the patients
affected by this disorder are blind and 10% undergo vision
degradation after 15 years of diabetes [2], [3] as a consequence
of DR complications. The estimated prevalence of diabetes for
all age groups worldwide was 2.8% in 2000 and 4.4% in 2030,
meaning that the total number of diabetes patients is forecasted
to rise from 171 million in 2000 to 366 million in 2030 [4].
The main cause of DR is abnormal blood glucose level
elevation, which damages vessel endothelium, thus increasing
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vessel permeability. The first manifestations of DR are tiny
capillary dilations known as microaneurysms. DR progression
also causes neovascularization, hemorrhages, macular edema
and, in later stages, retinal detachment.

Although DR is not a curable disease, laser photocoagulation
can prevent major vision loss if detected in early stages [1], [5].
However, DR patients perceive no symptoms until visual loss
develops, usually in the later disease stages, when the treatment
is less effective. So, to ensure the treatment is received in time,
diabetic patients need annual eye-fundus examination [6]. How-
ever, this preventive action involves a huge challenge for Health
Systems due to the huge number of patients needing ophthal-
mologic revision, thus preventing many patients from receiving
adequate treatment. Therefore, DR also becomes a great eco-
nomic problem for Administrations since, only in U.S., cost of
ophthalmic chronic complications caused by diabetes exceeded
1 billion dollars in 2007 [7].

The employment of digital images for eye diseases diagnosis
could be exploited for computerized early detection of DR. A
system that could be used by nonexperts to filtrate cases of pa-
tients not affected by the disease, would reduce the specialists’
workload, and increase the effectiveness of preventive proto-
cols and early therapeutic treatments. Furthermore, it would also
result in economic benefits for public Health Systems, since
cost-effective treatments associated to early illness detection
lead to remarkable cost savings [8].

Since vascular anomalies are one of DR manifestations,
automatic assessment of eye-fundus blood vessels is necessary
for automated detection of DR. As a previous step, vessel
assessment demands vascular tree segmentation from the
background for further processing. Knowledge on blood vessel
location can be used to reduce the number of false positives in
microaneurysm and hemorrhage detection [9]-[12]. Besides
these applications motivated by automated early detection of
DR, vascular tree segmentation proves useful for other clinical
purposes: evaluation of the retinopathy of prematurity [15],
arteriolar narrowing [16], [17], vessel tortuosity to characterize
hypertensive retinopathy [18], vessel diameter measurement to
diagnose hypertension and cardiovascular diseases [19]-[21],
and computer-assisted laser surgery [22], [23], among others.
On the other hand, the vascular tree can also be useful as
valuable information to locate other fundus features such as the
optic disc [24]-[26] and the fovea [27]. Moreover, it may serve
as a mean for the registration of multimodal images [13], [14].

In this paper, a new methodology for blood vessel detec-
tion is presented. It is based on pixel classification using a 7-D
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feature vector extracted from preprocessed retinal images and
given as input to a neural network. Classification results (real
values between 0 and 1) are thresholded to classify each pixel
into two classes: vessel and nonvessel. Finally, a postprocessing
fills pixel gaps in detected blood vessels and removes falsely-de-
tected isolated vessel pixels.

Despite its simplicity, the high accuracy achieved by this
method in blood vessel detection is comparable to that reported
by the most accurate methods in literature. Moreover, it offers a
better behavior against images of different conditions. This fact
is especially relevant if we keep in mind that the main aim of
implementing a vessel segmentation algorithm is its integration
in systems for automated detection of eye diseases. This kind
of systems should require no user interaction and, therefore, be
robust enough to analyze different kinds of images. Within the
field of retinal imaging, this involves a huge challenge, since
large variability is observed in the image acquisition process
and a natural variation is reported in the appearance of the
retina.

The rest of the paper is organized as follows. Next section re-
views other published vessel segmentation solutions. Section III
describes the material used in this study. Section IV explains and
illustrates the proposed method for retinal vessel segmentation,
while Section V presents its results and compares them to those
obtained with other existing methods. Finally, the authors’ con-
clusions and discussion conclude this paper.

II. STATE OF ART

Many methods for retinal vessel segmentation have been
reported. These can be divided into two groups: rule-based
methods and supervised methods. In the first group, we high-
light methods using vessel tracking, mathematical morphology,
matched filtering, model-based locally adaptive thresholding or
deformable models. On the other hand, supervised methods are
those based on pixel classification (implementing some kind of
classifier).

Regarding rule-based methods, vessel tracking methods
[28]-[33] attempt to obtain the vasculature structure by fol-
lowing vessel center lines. Starting from an initial set of points
established automatically or by manual labeling, vessels are
traced by deciding from local information the most appro-
priate candidate pixel from those close to that currently under
evaluation. Other methods use mathematical morphology [15],
[34]-[36] to benefit from a priori-known vasculature shape
features, such as being piecewise linear and connected. Then,
by applying morphological operators, the vasculature is filtered
from the background for final segmentation. Matched filtering
techniques [37]-[42] usually use a 2-D linear structural element
with a Gaussian cross-profile section, extruded or rotated into
three dimensions for blood vessel cross-profile identification
(typically a Gaussian or Gaussian-derivative profile). The
kernel is rotated into many different orientations (usually 8
or 12) to fit into vessels of different configuration. The image
is then thresholded to extract the vessel silhouette from the
background. Regarding model-based locally adaptive thresh-
olding, a general framework based on a verification-based
multithreshold probing scheme was presented by Jiang et al.
in [43]. These authors enriched this generic methodology by
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incorporating relevant information related to retinal vessels into
the verification process with the aim of enabling its application
to retinal images. On the other hand, deformable or snake
models have been also used in [44] and [45]. A snake is an
active contour model that, once placed on the image near the
contour of interest, can evolve to fit the shape of the desired
structure by an iterative adaption. Other rule-based methods
for retinal blood vessel segmentation were reported in [46]
and [47]. Martinez et al. [46] proposed a method based upon
multiscale feature extraction. The local maxima over scales of
the gradient magnitude and the maximum principal curvature of
the Hessian tensor were used in a multiple pass region growing
procedure. Growth progressively segmented the blood vessels
by using both feature and spatial information. In the method
presented in [47], blood vessel-like objects were extracted by
using the Laplacian operator and noisy objects were pruned
according to centerlines, detected by means of the normalized
gradient vector field.

On the other hand, supervised methods are based on pixel
classification, which consists on classifying each pixel into
two classes, vessel and non-vessel. Classifiers are trained by
supervised learning with data from manually-labeled images.
Gardner et al. [48] proposed a back propagation multilayer
neural network (NN) for vascular tree segmentation. After his-
togram equalization, smoothing and edge detection, the image
was divided into 20 x 20 pixel squares (400 input neurons).
The NN was then fed with the values of these pixel windows
for classifying each pixel into vessel or not. Sinthanayothin et
al. [49] also used a multilayer perceptron NN. Each pixel in
the image was classified by using the first principal component,
and the edge strength values from a 10 x 10 pixel subimage
centered on the pixel under evaluation, as input data. Niemeijer
et al. [50] implemented a K-nearest neighbor (kNN) classifier.
A 31-component pixel feature vector was constructed with the
Gaussian and its derivatives up to order 2 at 5 different scales,
augmented with the gray-level from the green channel of the
original image. The assumption that vessels are elongated struc-
tures is the basis for the supervised ridge-based vessel detection
method presented by Staal et al. [51]. Ridges were extracted
from the image and used as primitives to form line elements.
Each pixel was then assigned to its nearest line element, the
image thus being partitioned into patches. For every pixel, 27
features were firstly computed and those obtaining the best
class separability were finally selected. Feature vectors were
classified by using a kNN-classifier and sequential forward fea-
ture selection. Soares et al. [52] used a Gaussian mixture model
Bayesian classifier. Multiscale analysis was performed on the
image by using the Gabor wavelet transform. The gray-level of
the inverted green channel and the maximum Gabor transform
response over angles at four different scales were considered
as pixel features. Finally, Ricci and Pefetti [53] used a support
vector machine (SVM) for pixel classification as vessel or
nonvessel. They used two orthogonal line detectors along with
the gray-level of the target pixel to construct the feature vector.

III. MATERIALS

To evaluate the vessel segmentation methodology described
in the next section, two publicly available databases containing
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retinal images, the DRIVE [54] and STARE [55] databases,
were used. These databases have been widely used by other re-
searchers to test their vessel segmentation methodologies since,
apart from being public, they provide manual segmentations for
performance evaluation.

The DRIVE database comprises 40 eye-fundus color images
(seven of which present pathology) taken with a Canon CRS5
nonmydriatic 3CCD camera with a 45° field-of-view (FOV).
Each image was captured at 768 x 584 pixels, 8 bits per color
plane and, in spite of being offered in LZW compressed TIFF
format, they were originally saved in JPEG format. The database
is divided into two sets: a test set and a training set, each of them
containing 20 images. The test set provides the corresponding
FOV masks for the images, which are circular (approximated
diameter of 540 pixels) and two manual segmentations gener-
ated by two different specialists for each image. The selection
of the first observer is accepted as ground truth and used for al-
gorithm performance evaluation in literature. The training set
also includes the FOV masks for the images and a set of manual
segmentations made by the first observer.

The STARE database, originally collected by Hoover et al.
[38], comprises 20 eye-fundus color images (ten of them con-
tain pathology) captured with a TopCon TRV-50 fundus camera
at 35° FOV. The images were digitalized to 700 x 605 pixels,
8 bits per color channel and are available in PPM format. The
database contains two sets of manual segmentations made by
two different observers. Performance is computed with the seg-
mentations of the first observer as ground truth.

IV. PROPOSED VESSEL SEGMENTATION METHOD

This paper proposes a new supervised approach for blood
vessel detection based on a NN for pixel classification. The nec-
essary feature vector is computed from preprocessed retinal im-
ages in the neighborhood of the pixel under consideration. The
following process stages may be identified: 1) original fundus
image preprocessing for gray-level homogenization and blood
vessel enhancement, 2) feature extraction for pixel numerical
representation, 3) application of a classifier to label the pixel as
vessel or nonvessel, and 4) postprocessing for filling pixel gaps
in detected blood vessels and removing falsely-detected isolated
vessel pixels.

Input images are monochrome and obtained by extracting
the green band from original RGB retinal images. The green
channel provides the best vessel-background contrast of the
RGB-representation, while the red channel is the brightest
color channel and has low contrast, and the blue one offers poor
dynamic range. Thus, blood containing elements in the retinal
layer (such as vessels) are best represented and reach higher
contrast in the green channel [56].

All parameters described below were set by experiments car-
ried out on DRIVE images with the aim of contributing the best
segmentation performance on this database (performance was
evaluated in terms of average accuracy—a detailed description
is provided in Sections V-A and V-B). Therefore, they refer to
retinas of approximately 540 pixels in diameter. The applica-
tion of the methodology to retinas of different size (i.e., the di-
ameter in pixels of STARE database retinas is approximately
650 pixels) demands either resizing input images to fulfil this
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Fig. 1. Tllustration of the preprocessing process: (a) Green channel of the orig-
inal image. (b) The upper image is a fragment of the original image containing a
vessel with central light reflex, while the bottom image shows the effect of reflex
removal. (c) Background image. (d) Shade-corrected image. (¢) Homogenized
image. (f) Vessel-enhanced image.

condition or adapting proportionately the whole set of used pa-
rameters to this new retina size.

A. Preprocessing

Color fundus images often show important lighting vari-
ations, poor contrast and noise. In order to reduce these
imperfections and generate images more suitable for extracting
the pixel features demanded in the classification step, a pre-
processing comprising the following steps is applied: 1) vessel
central light reflex removal, 2) background homogenization,
and 3) vessel enhancement. Next, a description of the proce-
dure, illustrated through its application to a STARE database
fundus image (Fig. 1), is detailed.

1) Vessel Central Light Reflex Removal: Since retinal blood
vessels have lower reflectance when compared to other retinal
surfaces, they appear darker than the background. Although the
typical vessel cross-sectional gray-level profile can be approxi-
mated by a Gaussian shaped curve (inner vessel pixels are darker
than the outermost ones), some blood vessels include a light
streak (known as a light reflex) which runs down the central
length of the blood vessel.

To remove this brighter strip, the green plane of the image is
filtered by applying a morphological opening using a three-pixel
diameter disc, defined in a square grid by using eight-connexity,
as structuring element. Disc diameter was fixed to the possible
minimum value to reduce the risk of merging close vessels. I,
denotes the resultant image for future references.

An example of vessel central light reflex and its removal from
afundus image by means of opening filtering operation is shown
in Fig. 1(a) and (b).

2) Background Homogenization: Fundus images often con-
tain background intensity variation due to nonuniform illumi-
nation. Consequently, background pixels may have different in-
tensity for the same image and, although their gray-levels are
usually higher than those of vessel pixels (in relation to green
channel images), the intensity values of some background pixels
is comparable to that of brighter vessel pixels. Since the fea-
ture vector used to represent a pixel in the classification stage is



formed by gray-scale values, this effect may worsen the per-
formance of the vessel segmentation methodology. With the
purpose of removing these background lightening variations, a
shade-corrected image is accomplished from a background es-
timate. This image is the result of a filtering operation with a
large arithmetic mean kernel, as described below.

Firstly, a 3 X 3 mean filter is applied to smooth occasional
salt-and-pepper noise. Further noise smoothing is performed by
convolving the resultant image with a Gaussian kernel of dimen-
sions m x m = 9 x 9, mean p = 0 and variance o2 = 1.82,
GZ’,UZ = Gg’l_SQ. Secondly, a background image I, is pro-
duced by applying a 69 x 69 mean filter [Fig. 1(c)]. When this
filter is applied to the pixels in the FOV near the border, the
results are strongly biased by the external dark region. To over-
come this problem, out-of-the FOV gray-levels are replaced by
average gray-levels in the remaining pixels in the square. Then,
the difference D between I, and Ip is calculated for every pixel

D(x7y):I’Y(x7y)_IB (.’177’!/) (1)

To this respect, literature reports shade-correction methods
based on the subtraction of the background image from the
original image [10], [12], [57] or the division of the latter by
the former [58], [59]. Both procedures rendered similar results
upon testing. Moreover, none of them showed to contribute
any appreciable advantage relative to the other. The subtractive
approach in (1) was used in the present work.

Finally, a shade-corrected image Isc is obtained by trans-
forming linearly RD values into integers covering the whole
range of possible gray-levels ([0-255], referred to 8-bit images).
Fig. 1(d) shows the Igc corresponding to a nonuniformly illu-
minated image. The proposed shade-correction algorithm is ob-
served to reduce background intensity variations and enhance
contrast in relation to the original green channel image.

Besides the background intensity variations in images, in-
tensities can reveal significant variations between images due
to different illumination conditions in the acquisition process.
In order to reduce this influence, a homogenized image [x
[Fig. 1(a)] is produced as follows: the histogram of Isc is
displaced toward the middle of the gray-scale by modifying
pixel intensities according to the following gray-level global
transformation function:

0, ifg <0
gOutput = { 255, 1fg > 255 2)
g, otherwise
where
9 = YInput + 128 — JInput_Max (3)

and ginput and goutput are the gray-level variables of input and
output images (Isc and Iy, respectively). The variable denoted
by gmput_Max defines the gray-level presenting the highest
number of pixels in Isc. By means of this operation, pixels
with gray-level grnput_Max, Which are observed to correspond
to the background of the retina, are set to 128 for 8-bit images.
Thus, background pixels in images with different illumination
conditions will standardize their intensity around this value.
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Fig. 2. Two examples of application of the preprocessing on two images with
different illumination conditions. (a), (d) Green channel of the original images.
(b), (¢) Homogenized images. (c), (f) Vessel-enhanced images.

Fig. 2 (a), (b) and (d), (e), shows this effect for two fundus
images in the STARE database.

3) Vessel Enhancement: The final preprocessing step con-
sists on generating a new vessel-enhanced image (Iyg), which
proves more suitable for further extraction of moment invari-
ants-based features (see Section IV-B).

Vessel enhancement is performed by estimating the comple-
mentary image of the homogenized image Iy, I§, and sub-
sequently applying the morphological Top-Hat transformation

[Fig. 1(D)]
Ivg = Iy — v (1) “)

where v is a morphological opening operation using a disc
of eight pixels in radius. Thus, while bright retinal structures
are removed (i.e., optic disc, possible presence of exudates
or reflection artifacts), the darker structures remaining after
the opening operation become enhanced (i.e., blood vessels,
fovea, possible presence of microaneurysms or hemorrhages).
Samples of vessel enhancement operation results are shown in
Fig. 2(c) and (f) for two fundus images with variable illumina-
tion conditions.

B. Feature Extraction

The aim of the feature extraction stage is pixel characteriza-
tion by means of a feature vector, a pixel representation in terms
of some quantifiable measurements which may be easily used in
the classification stage to decide whether pixels belong to a real
blood vessel or not. In this paper, the following sets of features
were selected.

e Gray-level-based features: features based on the differ-
ences between the gray-level in the candidate pixel and a
statistical value representative of its surroundings.

* Moment invariants-based features: features based on mo-
ment invariants for describing small image regions formed
by the gray-scale values of a window centered on the rep-
resented pixels.

1) Gray-Level-Based Features: Since blood vessels are

always darker than their surroundings, features based on de-
scribing gray-level variation in the surroundings of candidate
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pixels seem a good choice. A set of gray-level-based descrip-
tors taking this information into account were derived from
homogenized images [y considering only a small pixel region
centered on the described pixel (z,y). S, stands for the set of
coordinates in a w X w sized square w1nd0w centered on point
(z,y). Then, these descriptors can be expressed as

hie) =Tn @) = min (a0} ©)

fa(z,y) = (o hax, {Im (s, t)} Iy (z,y) (6)

f3(z,y) = In (=, )— mean {Ig (s,t)} (7
(s,1)€S?,

fa(z,y) = i tstd {Ig (s,t)} )

fs5 (z,y) =In (z, U) ©

2) Moment Invariants-Based Features: The vasculature in
retinal images is known to be piecewise linear and can be ap-
proximated by many connected line segments. For detecting
these quasi-linear shapes, which are not all equally wide and
may be oriented at any angle, shape descriptors invariant to
translation, rotation and scale change may play an important
role. Within this context, moment invariants proposed by Hu
[60] provide an attractive solution and are included in the fea-
ture vector. In this paper, they are computed as follows.

Given a pixel (z,y) of the vessel-enhanced image Iyg, a
subimage is generated by taking the region defined by S} 7y The
size of this region was fixed to 17 x 17 so that, considering that
the region is centered on the middle of a “wide” vessel (8-9-pixel
wide and referred to retinas of approximately 540 pixels in di-
ameter), the subimage includes an approximately equal number
of vessel and nonvessel pixels. For this subimage, denoted by

Iviigy, the 2-D moment of order (p + ¢) is defined as
g ST
Mpg = ZZZPJ(IIVTEH (i,9) p, q=0,1,2,...
t g

where summations are over the values of the spatial coordinates

(10)

1 and j spanning the subimage, and IVE (7, 7) is the gray-level
at point (i, j).
The corresponding central moment is defined as

S
lpg = ZZ i—0)" (=) Iyg? (5,4) (11
where
= = (12)
moo moo

are the coordinates of the center of gravity of the subimage.
The normalized central moment of order (p + ¢) is defined as

Hpq
= L q=0,1,2,... (13)
Tlpq (1100)” P, q
where
+
A=l 01 (prg)=2.3,.... (14)

A set of seven moment invariants under size, translation, and
rotation, known as Hu moment invariants, can be derived from
combinations of regular moments. Among them, our tests have
revealed that only those defined by

5)
(16)

d1 =20 + No2
b2 = (120 + 1m02)” + 4%,

constitute the combination providing optimal performance in
terms of average accuracy (see Section V-B). The inclusion of
the remainder moments result in decreasing classification per-
formance and increasing computation needed for classification.
Moreover, the module of the logarithm was used instead of its
values themselves. Using the logarithm reduces the dynamic
range and the module prevents from having to deal with the
complex numbers resulting from computing the logarithm of
negative moment invariants.

Fig. 3 shows several samples of pixels, marked with so}i7d

white dots on an Iyg image [Fig. 3(a)], and the subimages Is’;:’y
generated around them [Fig. 3(b)—(i)]. Pairs of pixels were se-
lected for different vessels: one inside and the other outside
the vessel but near enough so that both subimages contain the
vessel. Table I shows the moment values corresponding to each
subimage. It can be checked that numbers are close, thus indi-
cating a high degree of invariance to size, rotation and transla-
tion. Moments computed as mentioned above characterize nu-
merically a vessel independently of its width, orientation and
location in the subimage. However, they are not useful to de-
scribe the central pixel of the subimage in terms of vessel or
nonvessel, as their values do not distinguish between these two
situations.

To overcome this problem, moments are computed on new
sulzimages Ir,, produced by multiplying the original ones,

s . . . .
I,g", by an equal-dimension matrix (17 x 17) of Gaussian
values, whose mean is 0 and variance is 1.72, G(1]_71_72. That is,
for every point of coordinates (3, j)

17

B (6:5) X Go'y 72 (i) -

With this choice of parameters, the 929 central values in G{| ..
contain the 97% of the area of the represented Gaussian distri-
bution, the remalnder values being close to O (supposing that the

I (i) = Iy (17)

central pixel of I = " is located on the middle of a “wide” vessel,
these 9 %X 9 central values in GO 1 72 correspond to vessel pixels

in I v ;:y ). This operation is illustrated in Fig. 3(b)—(i) and (j)—(q).
The effect of this multiplication is clearly observed in these
new subimages and their associated moment values (Table II).
These values become sensitive for describing vessel and non-
vessel central pixels, as they now reflect significant differences
between them. Both ¢ and ¢5 values, in comparison with their
original ones, increase if they describe vessel pixels and de-
crease otherwise.

In conclusion, the following descriptors were considered to
be part of the feature vector of a pixel located at (z, y)

fo (z,y) =|log (¢1) |
f (z,y) = |log (¢2) |

(18)
19)
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Fig. 3. Examples of obtaining pixel environments for moment invariants calculation. (a) Vessel enhanced subimage. Four pairs of pixels are marked with white
dots: P—kaand P —kb withk = 1,2, 3, 4; P — ka are vessel pixels and P — kb are background pixels close to their corresponding pair. (b)—(i) From left to right,

sl7
. Splp
extracted subimages I,

TABLE I
MODULE OF THE ¢; AND qu) MOMENTS LOGARITHM CALCULATED

FROM THE SUBIMAGES IVE 'Y SHOWN IN FIG. 3 IMAGES (B)—(1)

| [[ P-1a | P-1b | P-Za | P-2b | P-3a | P-3b | P-4a [ P-db |

Tog (,)11]] 526 | 4.73 | 487 | 502 | 436 | 423 | 396 | 3.92
| log (¢2) | 11.70 | 11.29 | 10.71 | 11.81 | 10.92 | 10.90 | 10.59 | 12.11
TABLE II

MODULE OF THE ¢1 AND ¢2 MOMENTS LOGARITHM CALCULATED
FROM THE SUBIMAGES [, SHOWN IN FIG. 3 IMAGES (1)—(Q)

=)

13.57]1 9.16 | 12.85 ] 10.11 | 11.19 | 8.31 | 10.82

| [[P-1a [ P-1b | P-2a [ P-2b | P-3a | P-3b | P-da | P-4D |
‘ 7.79

(é1) 1 H 5.34 ‘ 2.89‘ 5.16 ‘ 3.13 ‘ 4.79 ’2.34 ‘ 4.12 ‘ 2.21 ‘

where ¢ and ¢, are the moment invariants given by (15) and
(16) computed on the subimages I, generated according to
am7).

C. Classification

In the feature extraction stage, each pixel from a fundus image
is characterized by a vector in a 7-D feature space

F(z,y)

Il
Yy
=
—
&
NS
SN—
\
—

8
NS
SN—
SN—

(20)

Now, a classification procedure assigns one of the classes C'1
(vessel) or C'2 (nonvessel) to each candidate pixel when its rep-
resentation is known. In order to select a suitable classifier, the
distribution of the training set data (described below) in the fea-
ture space was analyzed. The results of this analysis showed that

® withk =1,2,3,4and § = a,b. (j)—(q) Subimages I, result of multiplying the original ones in (b)—(i) by the Gaussian matrix.

the class linear separability grade was not high enough for the
accuracy level required for vasculature segmentation in retinal
images. Therefore, the use of a non linear classifier was nec-
essary. The following nonlinear classifiers can be found in the
existing literature on this topic: the kNN method [51] and [49],
support vector machines [52], Bayesian classifier [50], or neural
networks [43], [48]. A multilayer feedforward NN was selected
in this paper.

Two classification stages can be distinguished: a design stage,
in which the NN configuration is decided and the NN is trained,
and an application stage, in which the trained NN is used to clas-
sify each pixel as vessel or nonvessel to obtain a vessel binary
image.

1) Neural Network Design: A multilayer feedforward net-
work, consisting of an input layer, three hidden layers and an
output layer, is adopted in this paper. The input layer is com-
posed by a number of neurons equal to the dimension of the fea-
ture vector (seven neurons). Regarding the hidden layers, sev-
eral topologies with different numbers of neurons were tested.
A number of three hidden layers, each containing 15 neurons,
provided optimal NN configuration. The output layer contains a
single neuron and is attached, as the remainder units, to a non-
linear logistic sigmoid activation function, so its output ranges
between 0 and 1. This choice was grounded on the fact of inter-
preting NN output as posterior probabilities.

The training set, St, is composed of a set of N candidates for
which the feature vector [ F—(20)], and the classification result
(Cq or Cy: vessel or nonvessel) are known

Sp = {(F<”>,C,§">) m=1,...,N; ke {1,2}}. 1)
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(@) (b)

(C))

Fig. 4. (a) Green channel of the original image. (b) Obtained probability map represented as an image. (c) Thresholded image. (d) Postprocessed image.

The samples forming St were collected from manually labeled
nonvessel and vessel pixels in the DRIVE training images.
Specifically, around 30000 pixel samples, fairly divided into
vessel and non-vessel pixels, were used (as a reference, this
number represents 0.65% of the total number of the DRIVE
test image pixels that will be classified later on). Unlike other
authors [52], [53], who selected their training set by random
pixel-sample extraction from available manual segmentations
of DRIVE and STARE images, we produced our own training
set by hand.! As discussed in literature, gold-standard images
may contain errors (see Bioux et al. [61] for a comprehensive
discussion on this issue) due to the considerable difficulty in-
volved by the creation of these handmade images. To reduce the
risk of introducing errors in St and, therefore, of introducing
noise in the NN, we opted for carefully selecting specific
training samples covering all possible vessel, background, and
noise patterns. Moreover, it should be pointed out that the
network trained with the just defined S, in spite of taking
information from DRIVE images only, was applied to compute
method performance with both DRIVE and STARE databases.

Since the features f; of F' have very different ranges and
values, each of these features is normalized to zero mean and
unit variance independently by applying

fi_ﬂli

;i

Ji=

(22)

where p; and o; stand for the average and standard deviation of
the 7th feature calculated over St.

Once St is established, NN is trained by adjusting the
weights of the connections through error interpretation. The
back-propagation training algorithm [62] was used with this
purpose.

2) Neural Network Application: At this stage, the trained
NN is applied to an “unseen” fundus image to generate a
binary image in which blood vessels are identified from retinal
background: pixels’ mathematical descriptions are individu-
ally passed through the NN. In our case, the NN input units
receive the set of features provided by (5)-(9) and (18) and
(19), normalized according to (22). Since a logistic sigmoidal
activation function was selected for the single neuron of the
output layer, the NN decision determines a classification value
between 0 and 1. Thus, a vessel probability map indicating
the probability for the pixel to be part of a vessel is produced.
[lustratively, the resultant probability map corresponding to

I'The used training set is available online at http://www.uhu.es/retinopathy/
eng/bd.php

a DRIVE database fundus image [Fig. 4(a)] is shown as an
image in Fig. 4(b). The bright pixels in this image indicate
higher probability of being vessel pixel. In order to obtain
a vessel binary segmentation, a thresholding scheme on the
probability map is used to decide whether a particular pixel is
part of a vessel or not. Therefore, the classification procedure
assigns one of the classes C (vessel) or C'y (nonvessel) to each
candidate pixel, depending on if its associated probability is
greater than a threshold T'h. Thus, a classification output image
Ico [Fig. 4(c)], is obtained by associating classes C; and C'; to
the gray level values 255 and 0, respectively. Mathematically

Too (z,y) = 255 (= C1), ifp(Ci|F(z,y)) > Th
COTIIT 0(=C2) otherwise

where p (C,|F (z,y)) denotes the probability of a pixel (z,y)
described by feature vector F' (z,y) to belong to class C;. The
optimal T'h value is discussed in Section V-B.

(23)

D. Postprocessing

Classifier performance is enhanced by the inclusion of a two-
step postprocessing stage: the first step is aimed at filling pixel
gaps in detected blood vessels, while the second step is aimed
at removing falsely detected isolated vessel pixels.

From visual inspection of the NN output, vessels may have
a few gaps (i.e., pixels completely surrounded by vessel points,
but not labeled as vessel pixels). To overcome this problem, an
iterative filling operation is performed by considering that pixels
with at least six neighbors classified as vessel points must also
be vessel pixels. Besides, small isolated regions misclassified as
blood vessel pixels are also observed. In order to remove these
artifacts, the pixel area in each connected region is measured. In
artifact removal, each region connected to an area below 25 is
reclassified as nonvessel. An example of the final vessel seg-
mented image after this further processing stage is shown in
Fig. 4(d).

V. EXPERIMENTAL RESULTS

A. Performance Measures

In order to quantify the algorithmic performance of the pro-
posed method on a fundus image, the resulting segmentation is
compared to its corresponding gold-standard image. This image
is obtained by manual creation of a vessel mask in which all
vessel pixels are set to one and all nonvessel pixels are set to
zero. Thus, automated vessel segmentation performance can be
assessed.



TABLE III

CONTINGENCY VESSEL CLASSIFICATION

Vessel present

Vessel absent

Vessel detected
Vessel not detected

True Positive (TP)
False Negative (FN)

False Positive (FP)
True Negative (TN)
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In this paper, our algorithm was evaluated in terms of sen-
sitivity (Se), specificity (Sp), positive predictive value (Ppv),
negative predictive value (Npv), and accuracy (Acc). Taking
Table III into account, these metrics are defined as

TP
Se=Th1 FN 24
5p = TNTJJFV FP (25)
Ppv TPI:I—PFP (26)
Npov TNTJiV FN @7)
Ace = TP+§JI\)7T-§%+FP' (28)

Se and Sp metrics are the ratio of well-classified vessel and
nonvessel pixels, respectively. Ppuv is the ratio of pixels classi-
fied as vessel pixel that are correctly classified. Npv is the ratio
of pixels classified as background pixel that are correctly classi-
fied. Finally, Acc is a global measure providing the ratio of total
well-classified pixels.

In addition, algorithm performance was also measured with
receiver operating characteristic (ROC) curves. A ROC curve is
a plot of true positive fractions (Se) versus false positive frac-
tions (1 — Sp) by varying the threshold on the probability map.
The closer a curve approaches the top left corner, the better the
performance of the system. The area under the curve (AUC),
which is 1 for a perfect system, is a single measure to quantify
this behavior.

B. Proposed Method Evaluation

This method was evaluated on DRIVE and STARE database
images with available gold-standard images. Since the images’
dark background outside the FOV is easily detected, Se, Sp,
Ppv, Npv and Acc values were computed for each image con-
sidering FOV pixels only. Since FOV masks are not provided
for STARE images, they were generated with an approximate
diameter of 650 x 550. The results are listed in Tables IV and

TABLE 1V
PERFORMANCE RESULTS ON DRIVE DATABASE IMAGES
[ Tmage [[ Se [ Sp [ Ppv | Npv [ Acc |

1 0.7778 | 09734 | 0.8149 | 0.9667 | 0.9477
2 0.7665 | 0.9793 | 0.8671 0.9597 | 0.9474
3 0.7225 | 09711 | 0.8099 | 0.9535 | 0.9349
4 0.7032 | 0.9855 | 0.8818 | 0.9557 | 0.9479
5 0.6815 | 0.9872 | 0.8931 | 0.9518 | 0.9457
6 0.6296 | 0.9893 | 0.9060 | 0.9420 | 0.9385
7 0.6780 | 0.9861 0.8817 | 0.9525 | 0.9453
8 0.5704 | 0.9917 | 0.9083 | 0.9414 | 0.9388
9 0.6530 | 0.9882 | 0.8809 | 0.9554 | 0.9489
10 0.6967 | 0.9846 | 0.8599 | 0.9599 | 0.9502
11 0.7164 | 09745 | 0.8068 | 0.9585 | 0.9410
12 0.7399 | 0.9785 | 0.8312 | 0.9634 | 0.9486
13 0.6522 | 0.9866 | 0.8896 | 0.9450 | 0.9392
14 0.7773 | 0.9702 | 0.7769 | 0.9702 | 0.9474
15 0.8139 | 0.9444 | 0.6290 | 09777 | 0.9308
16 0.7327 | 09816 | 0.8573 | 0.9606 | 0.9491
17 0.6629 | 0.9851 | 0.8623 | 0.9541 0.9454
18 0.7106 | 0.9781 | 0.8078 | 0.9630 | 0.9473
19 0.8058 | 0.9813 | 0.8552 | 0.9736 | 0.9602
20 0.6436 | 0.9861 | 0.8463 | 0.9586 | 0.9495
Average 0.7067 | 0.9801 | 0.8433 | 0.9582 | 0.9452

V2. The last row of the tables shows average Se, Sp, Ppv, Npv,
and Acc values (denoted as Acc for future references), for the
20 images in each database.

The performance results shown in Tables IV and V were ob-
tained considering the same T'h threshold value for all the im-
ages in the same database (0.63 and 0.91 for DRIVE and STARE
images, respectively). These values were set to provide max-
imum average accuracy (MM ax) in each database in the fol-
lowing way. For a given T'h value, one Acc value is obtained for
each of the 20 images selected for testing on a given database.
These 20 Acc values are then averaged to obtain a single perfor-
mance measure, Acc, linked to the selected Th value. Several
Acc values are obtained at certain thresholds applying these op-
erations for different T'h values. The final 7'h threshold value
selected for a given database is that providing the maximum Acc
value, Accyiax. Fig. 5 shows the Acc values calculated for Th
values from O to 1 (step of 0.02). The results for both DRIVE
and STARE databases are shown. The Accyrax values and their
corresponding 7'h values are marked for every database in this
figure. It is worth mentioning that Acc variation shows no sig-
nificant dependence on T'h. As it can be observed in Fig. 5, al-
though different optimum 7'h values are reached depending on
the database on which performance is computed, a wide range of
Th values provides ‘Acc values very close to ‘Accyiax. There-
fore, 1'h values can be concluded not to be a critical method
to assess performance in terms of Acc, since it slowly varies ac-
cording to it. This influence of T'h on system performance is also
visible in the ROC curves for the two databases shown in Fig. 6.
These curves were produced by calculating the true and the
false positive fraction on all test images through 7"h-threshold
variations. The AUC measured for both curves was 0.9588 and
0.9769 for the DRIVE and STARE databases, respectively.

On the other hand, the spacial distribution of the classification
errors produced by the segmentation algorithm, F'N and FP,
was studied. The following four situations were considered: F'IN
produced in thin and non-thin vessel pixels, and F'P produced

2The final vessel segmented images are available online at http://www.uhu.es/
retinopathy/eng/bd.php
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TABLE V
PERFORMANCE RESULTS ON STARE DATABASE IMAGES
[ Tmage [ Se | Sp [ Ppv | Npv | Acc |
1 0.5997 | 0.9844 | 0.8245 | 0.9527 | 0.9425
2 0.5074 | 0.9931 0.8798 | 0.9527 | 0.9489
3 0.6534 | 0.9892 | 0.8422 | 0.9699 | 0.9619
4 0.4159 | 0.9953 | 0.9094 | 0.9379 | 0.9365
5 0.5884 | 0.9857 | 0.8508 | 0.9452 | 0.9372
6 0.7958 | 0.9712 | 0.7250 | 0.9803 | 0.9559
7 0.8183 | 0.9771 | 0.8142 | 0.9772 | 0.9593
8 0.8682 | 0.9673 | 0.7512 | 0.9848 | 0.9572
9 0.7729 | 0.9818 | 0.8355 | 0.9731 | 0.9595
10 0.6670 | 0.9809 | 0.8110 | 0.9601 0.9467
11 0.8109 | 0.9724 | 0.7601 | 0.9795 | 0.9567
12 0.8781 | 0.9675 | 0.7603 | 0.9854 | 0.9581
13 0.7796 | 0.9770 | 0.8246 | 0.9697 | 0.9530
14 0.7765 | 0.9787 | 0.8374 | 0.9687 | 0.9537
15 0.6910 | 0.9850 | 0.8598 | 0.9599 | 0.9504
16 0.6802 | 0.9825 | 0.8639 | 0.9497 | 0.9402
17 0.7039 | 0.9882 | 0.8926 | 0.9599 | 0.9534
18 0.5840 | 0.9961 | 0.9172 | 0.9698 | 0.9675
19 0.6776 | 0.9872 | 0.7694 | 0.9799 | 0.9689
20 0.6225 | 0.9763 | 0.7245 | 0.9628 | 0.9441
Average 0.6944 | 0.9819 | 0.8227 | 0.9659 | 0.9526
1
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Fig. 5. Acc of the segmentation algorithm as a function of the threshold pa-
rameter T h for the DRIVE and STARE databases.
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Fig. 6. ROC curves for the DRIVE and STARE databases. Measured AUC
values are given.

in pixels near to and far from vessel borders. For that, thin and
non-thin vessels were separated in each gold standard image [as

an example, see Fig. 7(b)]. A vessel was considered thin if its
width is lower than 50% of the width of the widest optic disc
vessel. Otherwise the vessel is considered non-thin. On the other
hand, a F'P is considered to be far from a vessel border if the
distance from its nearest vessel border pixel in the gold-standard
is over two pixels. Otherwise, the F'P is considered to be near.
Table VI summarizes the results of this study. This table shows
the average ratio of F'N and F'P provided by the segmenta-
tion algorithm for the 20 test images in the DRIVE and STARE
databases. The average percent of F'N and F'P corresponding
to the different spacial locations considered are also shown. For
both databases, the percent of "N produced in non-thin vessel
pixels was higher than that in thin vessel pixels. However, taking
into account that thin vessels are composed by a considerably
lower number of pixels than non-thin ones, the value obtained
for thin vessels bears a more negative impact. This can be ob-
served in Fig. 4(d), and Fig. 7(d). While £'N in non-thin vessels
involve no degradation in the segmented structure, F'N in thin
vessels produce disconnections in some of them. Regarding F'P
distribution, I'Ps tend to be near vessel borders. As it can be
checked in Fig. 7(e), this means that most F'Ps produced by the
segmentation algorithm tend to slightly enlarge the vessels and
not to introduce meaningless isolated noise.

C. Comparison to Other Methods

In order to compare our approach to other retinal vessel seg-
mentation algorithms, Acc and AUC were used as measures
of method performance. Since these measurements were per-
formed by other authors, this choice facilities comparing our
results to theirs. Tables VII and VIII show performance com-
parison results in terms of Acc and AUC, respectively, with the
following published methods: Chaudhuri ef al. [37], Hoover et
al. [38], Jiang and Mojon [43], Niemeijer et al. [50], Staal et al.
[51], Mendonga et al. [36], Soares et al. [52], Martinez-Perez et
al. [46], Ricci and Perfetti, [53], and Cinsdikici and Aydin, [42].
All these supervised or rule-based methods have been briefly
commented in Section II. The values shown in both tables are
presented for each database as reported by their authors. If they
are not available for a specific database or were not calculated
for the 20 images selected for testing, they were not included
in the tables, thus appearing as gaps. The values in the last
column of each table indicate the overall Acc and AUC when
both databases are taken into account.

An overview of the segmentation results on DRIVE images
shows our proposed method reaches better performance than
most of the other methods, being comparable to or approx-
imating the performance of other detection techniques. The
Acc value achieved with our algorithm is outperformed only
by Soares et al. [52], Mendonga et al. [36], and Ricci and
Perfetti [53]. Regarding the approaches by Soares et al. [52]
and Mendonga et al. [36], it is important to point out that our
method clearly outperforms the Acc these authors reported on
STARE images. Therefore, our approach renders better overall
Acc for both databases than theirs. The same conclusions are
drawn when these methods are compared in terms of AUC.
On DRIVE database images, the AUC value provided by our
proposal is only lower than those reported by Soares et al. [52]
and Ricci and Perfetti [53] (Mendonga et al. [36] did not report
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(e

Fig. 7. Illustration of the spacial location of classification errors on a segmentation of a STARE image. (a) Green channel of the original image. (b) Thin and
non-thin blood vessels extracted from the manual segmentation in white and dark-gray colors, respectively. (c) Segmentation of (a) generated by the presented
algorithm. (d) F NV and TP obtained by the proposed algorithm represented in white and dark-gray colors, respectively. () F'P and 7')N obtained by the proposed

algorithm represented in white and dark-gray colors, respectively.

TABLE VI
STUDY OF FFN AND F'P SPACIAL LOCATION ON THE
DRIVE AND STARE DATABASES

| I N I FP |

[Database]| FN average rate 1 FP average rate |
DRIVE 0.2933 0.3056
STARE 0.0199 0.0181

[ [[Thin Vessels|Non-thin Vessels|[Near to Vessels[Far from Vessels|
DRIVE 46.08% 53.92% 86.25% 13.75%
STARE 34.60% 65.40% 83.55% 16.45%

TABLE VII
PERFORMANCE RESULTS COMPARED TO OTHER METHODS ON THE STARE
AND DRIVE DATABASES IN TERMS OF AVERAGE ACCURACY

DRIVE +
Method Type Method ‘ DRIVE ‘ STARE STARE ‘
Staal et al. [51] 0.9441 - -
Niemeijer et al. [50] 0.9417 - -
Supervised Soares et al. [52] 0.9466 | 0.9480 | 0.9473
Ricci and Perfetti [53] | 0.9595 | 0.9646 | 0.9621
Marin et al. (this work) | 0.9452 | 0.9526 0.9489
Chaudhuri et al. [37] 0.8773 - -
Hoover et al. [38] - 0.9275 -
Ruled-Based Jiang and Mojon [43] 0.8911 | 0.9009 0.8960
Mendonga et al. [36] 0.9463 | 0.9479 0.9471
Martinez-Perez et al. [46]| 0.9344 | 0.9410 | 0.9377
Cinsdikici and Aydin [42]| 0.9293 - -

TABLE VIII
PERFORMANCE RESULTS COMPARED TO OTHER METHODS ON THE STARE
AND DRIVE DATABASES IN TERMS OF AREA UNDER ROC CURVE

DRIVE +
Method Type “ Method |DRIVE l STARE STARE
Staal et al. [51] 0.9520 - -
Niemeijer et al. [50] 0.9294 - -
Supervised Soares et al. [52] 0.9614 | 0.9671 | 0.9642
Ricci and Perfetti [53] | 0.9633 | 0.9680 | 0.9656
Marin et al. (this work) | 0.9588 | 0.9769 0.9678
Chaudhuri et al. [37] 0.7878 - -
Hoover et al. [38] - 0.7590 -
Ruled-Based Jiang and Mojon [43] 0.9327 | 0.9298 | 0.9312
Mendonga et al. [36] - - -
Martinez-Perez et al. [46] - - -
Cinsdikici and Aydin [42]| 0.9407 - -

AUC values). However, due to the excellent AUC result on
the STARE database, our approach reaches the highest average
AUC when both databases are considered.

The proposed method proves especially useful for vessel de-
tection in STARE images. Its application to this database re-
sulted in the second highest accuracy score among all experi-
ments (only behind Ricci and Perfetti’s approach [53]) and the
first when AUC is the reference measurement. This result gains

more importance by the fact that our classifier was trained only
on DRIVE images, unlike the other supervised approaches pre-
sented in Tables VII and VIII. For instance, since there are no
available labeled training images for STARE images, Soares
et al. [52] performed leave-one-out tests on this database (i.e.,
every image is classified by using samples from the other 19 im-
ages), while Ricci and Perfetti [53] built its classifier by using
a training set comprising samples randomly extracted from test
images. In our case, with the purpose of using one and the same
trained classifier for testing the method on the 20 STARE images
and including no sample belonging to the test set in the training,
we opted for forming the training set by collecting pixels from
DRIVE training images. Thus, the method’s suitability for being
applied on any fundus image can be checked in a more realistic
way. We should also mention that these good results with re-
spect to other existing approaches were obtained on images con-
taining pathological artifacts. The STARE database contains ten
images with pathologies, while the test of DRIVE only contains
four. Moreover, abnormal regions are wider in STARE.

Regarding performance comparison in terms of Acc when
results are jointly analyzed for DRIVE and STARE images
(Table VII, last column), our algorithm renders greater accuracy
than others authors’ algorithms, being outperformed only by
Ricci and Perfetti’s proposal [53]. However, this method proved
very dependent on the training set. Ricci and Pefetti [53], to
research the dependence of their classification method on the
dataset, carried out an experiment based on, firstly, training the
classifier on each of the DRIVE and STARE databases, and
then, testing it on the other. Their maximum accuracy values
are shown in Table IX. It can be observed that performance
is worse now, since Acc strongly decreases from 0.9595 to
0.9266 on DRIVE and 0.9646 to 0.9452 on STARE database
images. Therefore, as assumed by these authors, classifier
retraining is necessary before applying their methodology on a
new database. To verify our method dependence on the training
set, the same experiment was completed. Thus, performance
was computed on the DRIVE database, training the classifier
with STARE images (as previously mentioned, our accuracy on
STARE was already obtained by training on DRIVE images).
The resulting Acc values are shown in Table IX to facilitate
comparisons between both methods under identical conditions.
In this case, it is clearly observed that our estimated perfor-
mance in terms of method accuracy is higher, thus proving
higher training set robustness.
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TABLE IX
PERFORMANCE RESULTS COMPARED TO RICCI AND PERFETTI’S METHOD
WITH CROSS TRAINNING IN TERMS OF AVERAGE ACCURACY

STARE (training

Method H DRIVE (training

on STARE) on DRIVE)
Ricci and Perfetti [53] 0.9266 0.9452
Marin et al. (this work) 0.9448 0.9526
TABLE X

AVERAGE ACCURACY ON THE DRIVE AND STARE DATABASES USING ONE
TYPE OF FEATURE: GRAY-LEVEL (G-L) OR MOMENT INVARIANTS-BASED
FEATURES (M-I)

[ Feature Vector Composition [[ DRIVE | STARE |

G-L. 0.9407 0.9514
M-I 0.9398 0.9410

VI. DISCUSSION AND CONCLUSION

Previous methods for blood vessel detection in retinal images
can be classified into rule-based and supervised methods. This
study proposes a method within the latter category. This method
is based on a NN scheme for pixel classification, being the fea-
ture vector representing each pixel composed of gray-level and
moment invariants-based features. To the best of our knowledge,
although moment invariants have been widely used over the
years as features for pattern recognition in many areas of image
analysis (typical examples include optical character recognition
and shape identification), they have never been applied within
this framework.

The experiments aimed at evaluating the efficiency of the ap-
plied descriptors prove this method is capable of rendering ac-
curate results, even when these types of features are used in-
dependently. Table X shows its accuracy performance when a
feature vector composed of the five gray-level-based features,
on one hand, and the two moment invariants-based features, on
the other hand, is considered. According to these results, both
sets of descriptors are suitable for pixel classification as vessel
or nonvessel. Even when the feature vector is built as mentioned
above, our algorithm outperforms other segmentation proposals
(e.g., Jiang and Mojon [43] or Martinez-Perez et al. [46]). How-
ever, these pixel representations are not optimal by themselves.
Discriminative power increases when both sets of different fea-
ture types are jointly considered. Thus, accuracy improves up
to 0.9452 and 0.9526 for the 20 test images in the DRIVE and
STARE databases, respectively. Therefore, the method finally
adopts a 7-D feature vector composed by the five gray-level and
the two moment invariants-based features.

The proposed method uses a NN for pixel classification as
vessel or non-vessel. This classifier was selected after method
accuracy assessment by means of a kNN and a SVM (used
as in [51] and [53], respectively), instead of a NN. Table XI
shows this performance comparison in terms of Acc measured
on DRIVE and STARE test images. Results before and after
the postprocessing stage application are presented. NN showed
better accuracy than kNN and SVM for all cases.

Tables VII and VIII show a performance overview on previ-
ously-published vessel segmentation methods in terms of Acc
and AUC, respectively, for test DRIVE and STARE images.
Among them, those providing best performance results include

TABLE XI
AVERAGE ACCURACY ON THE DRIVE AND STARE DATABASES OF THE
PROPOSED METHOD WHEN NN, KNN, AND SVM CLASSIFIERS ARE USED

[ [| Before postprocessing [[ After postprocessing |
[Classifier| DRIVE | STARE || DRIVE | STARE |

NN 0.9439 0.9517 0.9452 0.9526
kNN 0.9383 0.9500 0.9415 0.9524
SVM 0.9393 0.9498 0.9427 0.9519

the rule-based proposal by Mendonga et al. [36] (AUC is not
available for this method), and the supervised methods by
Soares et al. [52] and Ricci and Perfetti [53].

When the results on both databases are jointly analysed, the
approach proposed in this paper provides the highest average
AUC. Regarding Acc, the value reached in this work is slightly
higher than that obtained by Mendonga et al. [36] and Soares
et al. [52]. Although Ricci and Perfetti’s approach [53] seems
to offer more accurate behavior, the results in Table IX indi-
cate that their method shows strong performance loss when con-
fronted to an “unseen” database. These authors obtain excellent
results when both training and testing are performed on the same
database but accuracy significantly worsens when the method is
trained and tested on a different database. A possible explana-
tion to this fact is that authors avoid image preprocessing to pre-
serve vessel structure at most. However, since the different im-
ages are not homogenized, the method proves very sensitive to
the training set. This is an important disadvantage for practical
application, since a blood vessel detection tool must work on
retinal images from multiple origins and be used by different op-
erators working with different equipment. On the contrary, our
proposal proves robust regarding the dataset used: even when
trained on the DRIVE database, its application to the STARE
database results in the second highest accuracy score among all
experiments, and the first if the Ricci and Pefetti’s [53] results
are recorded under the same conditions. Therefore, the training
set robustness shown by our method allows its automated appli-
cation to images taken under different conditions. To this re-
spect, it should be pointed out that the proposed method, in
its different stages (preprocessing, feature extraction, classifica-
tion, and postprocessing), uses a set of parameters fixed to pro-
vide the best accuracy on DRIVE test images. That is, parameter
values were optimized to retinas of 540 pixels in diameter. It is
important to point out that, since the features used for pixel rep-
resentation are invariant to scale change, the method is also ap-
plicable for processing images with different resolution without
retraining. To make the method applicable for processing im-
ages of any resolution, its implementation should include either
resampling the image to fulfil the mentioned size condition, or
adapting all parameter to the new retina size.

In addition, method simplicity should also be highlighted.
Its pixel classification procedure is based on computing only
seven features for each pixel, thus needing shorter computa-
tional time. The total time required to process a single image
is less than approximately one minute and thirty seconds, run-
ning on a PC with an Intel Core2Duo CPU at 2.13 GHz and
2 GB of RAM. Since our implementation is experimental, this
performance might still be improved.



The demonstrated effectiveness and robustness, together with
its simplicity and fast implementation, make this proposed au-
tomated blood vessel segmentation method a suitable tool for
being integrated into a complete prescreening system for early
DR detection.
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