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Reconstruction of Large, Irregularly Sampled
Multidimensional Images. A Tensor-Based Approach
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Abstract—Many practical applications require the recon-
struction of images from irregularly sampled data. The spline
formalism offers an attractive framework for solving this problem;
the currently available methods, however, are hard to deploy for
large-scale interpolation problems in dimensions greater than
two (3-D, 3-D+time) because of an exponential increase of their
computational cost (curse of dimensionality). Here, we revisit
the standard regularized least-squares formulation of the inter-
polation problem, and propose to perform the reconstruction in
a uniform tensor-product B-spline basis as an alternative to the
classical solution involving radial basis functions. Our analysis
reveals that the underlying multilinear system of equations admits
a tensor decomposition with an extreme sparsity of its one dimen-
sional components. We exploit this property for implementing
a parallel, memory-efficient system solver. We show that the
computational complexity of the proposed algorithm is essentially
linear in the number of measurements and that its dependency
on the number of dimensions is significantly less than that of the
original sparse matrix-based implementation. The net benefit is
a substantial reduction in memory requirement and operation
count when compared to standard matrix-based algorithms, so
that even 4-D problems with millions of samples become com-
putationally feasible on desktop PCs in reasonable time. After
validating the proposed algorithm in 3-D and 4-D, we apply it to
a concrete imaging problem: the reconstruction of medical ultra-
sound images (3-D+time) from a large set of irregularly sampled
measurements, acquired by a fast rotating ultrasound transducer.

Index Terms—B-spline, CANDECOMP, reconstruction from ir-
regular samples, tensor, tensor decomposition, variational recon-
struction, 4-D ultrasound reconstruction.

I. INTRODUCTION

T HE problem of data reconstruction from irregularly
sampled measurements is frequently encountered in

the context of biomedical imaging. For instance, the use of
acquisition schemes with nonuniform, non-Cartesian spa-
tial sampling requires a reformatting of data samples to an
evenly-spaced Cartesian grid, for further analysis on a com-
puter (e.g., ultrasound scanline-conversion). Such images are
sampled sequentially along a series of scan-lines, which are
nonuniformly distributed in space and in addition, do not

Manuscript received June 25, 2010; revised August 28, 2010; accepted
September 08, 2010. Date of publication September 27, 2010; date of current
version February 02, 2011. Asterisk indicates corresponding author.

*O. V. Morozov is with the University Hospital of Basel, Physics in Medicine
Group, CH-4031 Basel, Switzerland (e-mail: morozova@uhbs.ch).

P. Hunziker is with the University Hospital of Basel, Physics in Medicine
Group, CH-4031 Basel, Switzerland (e-mail: hunzikerp@uhbs.ch).

M. Unser is with the Ecole Polytechnique Federale de Lausanne, Biomed-
ical Imaging Group, Swiss Federal Institute of Technology Lausanne (EPFL),
CH-1015 Lausanne, Switzerland (e-mail: michael.unser@epfl.ch).

Digital Object Identifier 10.1109/TMI.2010.2078832

coincide in time, further complicating the reconstruction. Sim-
ilar problems of nonuniform sampling in space and/or time
typically occur in many macroscopic (CT, MRI, SPECT) as
well as in microscopic imaging (confocal microscopy, raster
microscopy). Motion of the imaged object and time-dependent
changes of image intensity also contribute to the complexity of
the reconstruction problem.

Nonuniform sampling can introduce an oversampling at some
locations relative to the Cartesian target grid, making an op-
timal smoothing method in these oversampled areas desirable,
whereas in other locations of the same image, severe undersam-
pling may occur, requiring robust interpolation. In conventional
approaches, this combination of smoothing, interpolation, and
time-sequential acquisition—even of a single image—are typi-
cally handled separately, facilitating implementation, but intro-
ducing multiple error sources.

The generic signal reconstruction/nonuniform interpolation
problem consists of finding a continuous representation of
a -dimensional signal from arbitrarily-sampled, noisy point
measurements. In the absence of any constraints on the distribu-
tion of the sampled data, the problem is ill-posed and does not
have a unique solution. A natural approach for resolving this
ambiguity is to introduce some prior constraints on the solution
and to formulate the reconstruction as a variational problem.
The cost function to be minimized is typically chosen to be the
sum of two components: 1) a data term, which quantifies the
fitting error between the model and the measurements, and 2) a
continuous-domain regularization functional, which introduces
a penalty for nonsmooth, and thus, improbable solutions. When
the latter functional is quadratic, the variational problem can be
solved analytically and the optimal solution is represented as a
linear combination of radial basis functions (RBFs) [1], [2]. If
one further imposes that the reconstruction should be indepen-
dent upon any particular choice of coordinate system/spatial
units, our choice of solutions narrows down to the class of
thin-plate splines [1], [3], which are popular in applications,
especially in the context of landmark-based image registration
where the number of data points is small [4]. While thin-plate
splines have many attractive mathematical properties, they are
notoriously hard to deploy for large-scale interpolation prob-
lems. The main difficulty is that the underlying system matrix is
dense and poorly conditioned, especially as the number of sam-
ples increases. Moreover, the evaluation of the reconstructed
function at a single location is computationally expensive with
a complexity that is proportional to the number of data points.
During recent years, various solutions have been proposed to
overcome these limitations [5]–[8]. However, for cases of mil-
lions of data samples, the radial basis function (RBF) approach
still poses significant difficulties. To our knowledge, current
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RBF-based algorithms can handle up to 5 000 000 samples in
2-D and up to 250 000 samples in 3-D, running on conventional
hardware [9]. There exist other approaches to the problem,
which are either at risk to give unsatisfactory solutions or have
limited computability similarly to the RBF [10]–[12].

The work of Arigovindan et al. [13] presents a computation-
ally-efficient alternative to the RBF with much better numerical
behavior. There, the use of the tensor product of 1-D B-splines
as a basis for approximating the analytical solution of the op-
timal method was proposed. The main advantages of this ap-
proach are: the linear system arising from the formulation is
well-conditioned; the system matrix is sparse and enjoys mul-
tiresolution properties that are exploited to derive an efficient
Multigrid solver with a complexity mainly dependent upon the
size of the reconstruction grid; the cost of resampling is minimal
with a complexity per evaluated sample, where
is the degree of the applied B-spline function (for most frequent
case of cubic B-spline ), is the number of dimensions
of the reconstruction grid. The approach is extremely favorable
for 2-D problems [13], but is still facing a computational bot-
tleneck as the number of dimensions increases (curse of dimen-
sionality). The intrinsic limitation is that the computational and
storage requirements of the method, which are directly tied to
the reconstruction grid, increase exponentially with the number
of dimensions.

The authors of [14] and [15] adopted the approach in [13] and
presented an algorithm based on subdivision of the target grid
into overlapping blocks. Subproblems corresponding to each
block were independently solved using the multigrid solver. The
proposed algorithm was successfully applied to reconstruction
of relatively large 3-D datasets. Note that in cases when a signif-
icant smoothing is imposed, the proposed block-wise solution
is at risk of introducing discontinuities between neighboring
blocks. In analogy to [13], the computational and storage re-
quirements of the algorithm are still dependent linearly on the
target grid size and exponentially on the number of dimensions,
making it impractical for large-scale problems with dimensions
greater than 3.

To overcome the computational bottleneck described in above
and to be able to reconstruct large, arbitrarily-sampled, multi-
dimensional datasets, we propose to revisit the B-spline-based
variational approach. In particular, we introduce a tensor-based
formalism that reveals the intrinsic structure of the underlying
system of equations, and which suggests some efficient factor-
ization along the dimensions of the data. We then design an effi-
cient, multilinear solver that is capable of performing the recon-
struction of such data with millions of data points in any number
of dimensions using standard desktop PCs in reasonable time.
This makes our approach more advantageous than the original
approach proposed in [13] and its adoption [15]. We evaluate the
proposed algorithm on 3-D and 4-D datasets while providing
some performance metrics to document its computational ad-
vantages. Finally, we present a practical example of reconstruc-
tion of a large 4-D medical ultrasound dataset from irregularly
sampled noisy measurements.

A. Summary of Notation

Scalars are denoted by lower-case Latin and Greek symbols,
such as and . Euclidean space of dimensionality is denoted

by . A vector in is denoted by a lower case bold symbol,
such as . Upper-case symbols with calligraphic font are
used for designation of tensors, such as .

II. B-SPLINE FORMULATION OF THE PROBLEM

Our task is to reconstruct an unknown, continuously-defined
signal , given a set of
noisy sample values at irregularly-spaced sampling locations .
We will do so by fitting a function, which is represented as a
linear combination of basis functions, to the data according to
some regularized least-squares criterion. We choose to repre-
sent our signal in a B-spline basis which combines a number of
advantages: continuous representation, finite support, good ap-
proximation properties, and fast computation, as described in
[16].

In contrast to the common way of RBF-based scattered data
interpolation where the centers of the basis functions
coincide with the sampling locations , the proposed uniform
B-spline reconstruction is based on representing the unknown
solution as a weighted sum of B-spline basis functions located
at the nodes of a uniform grid, covering the domain of definition
of the signal. Thus, a continuous representation of the solution
in dimensions is given by the following expansion:

(1)

where is the step size of the grid which controls the quality of
the discretization; is the B-spline of degree .

The cost function to be minimized combines a usual least-
squares data fitting term with a continuous-domain regulariza-
tion functional that penalizes nonsmooth solutions; i.e.,

(2)

where is a tradeoff parameter chosen for a compromise be-
tween the quality of data fit and a non-oscillating behavior of
the solution; is Duchon’s semi-norm of order which
has the important property of being scale- and rotation-invariant
[1], [3]. The general -dimensional form of this regularization
functional is

(3)

It involves the sum of distinct quadratic terms
corresponding to all partial derivatives of order . We recall that
the global, unconstrained minimization of (2) together with (3)
defines the classical thin-plate spline solution [1], [3]. The main
difference here is that we are searching for a solution of the
form (1) which results in a discretized version of the problem
in a uniform B-spline basis. The problem therefore boils down
to finding the B-spline coefficients that minimize (2)
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and therefore uniquely specify the continuous-domain recon-
struction . Note that the discrepancy with the theoretical
thin-plate spline solution can be made arbitrarily small via the
adjustment of the step size —indeed, the discretization error is
guaranteed to decay like where is the degree of the
B-spline basis in (1) with the constraint that .

III. TENSOR CHARACTERISTICS OF THE PROBLEM

We will now reformulate the approximation problem making
extensive use of a tensor formalism (cf. Appendix A). The latter
allows a convenient and natural description of multilinear al-
gebra problems and offers advantages over alternative notations
[17]. For the sake of simplicity, we focus on the case ,
keeping in mind that the reasoning and formulaes are readily
transposable to any number of dimensions. To each direction
of the reconstruction grid with extents , we as-
sign a vector space with corresponding dimensionality

. In conjunction to this ordered
space sequence, we define the measurement vector space

. The weighting coefficients in the expansion (1) are repre-
sented as a tensor in with com-
ponents . The evaluation of (1) at the location of the th
measurement can be represented as a component of a vector in

(4)

with the convention that and represent
the B-spline coefficients in (1). The remaining ten-
sors , which are the factors of , are obtained
from the respective evaluation of the B-spline functions

, at the
sampling locations . Note that these vectors are sparse due
to the finite support of the B-spline basis with at most
nonzero values.

The first quadratic term in (2) is then expressed as

(5)

where is the th entry of the measurement vector .
It can be shown that the regularization functional in terms of

the B-spline expansion coefficients reduces to a quadratic form
which has a convolutional structure [13]. In our tensor notation,
it is represented by

(6)

where is a vector with all components equal
to one. In 3-D with , . The set of tensors

represent -tuples of discrete separable
convolution transforms along corresponding directions of the
reconstruction grid [13].

Similarly to the case of matrices and vectors, we may com-
pute the derivatives of the cost function with respect to the com-
ponents of the B-spline tensor [17]. After setting these
derivatives to zero, we end up with the following linear system
of equations:

(7)

with the further tensor factorization

(8)

Note that the latter expression, which corresponds to the least-
squares part of the cost function, involves a sum of outer prod-
ucts of first-order tensors. This type of decomposition is known
in the field of multilinear algebra as CANonical DECOMPosi-
tion (CANDECOMP) [18], [19].

IV. OPTIMIZED SOLVER

At that point, we could, in principle, rely on the computational
strategy proposed in [13], adapting it to the present tensor for-
malism for . Specifically, we might solve (7) by applying
a tensor multigrid solver [17] which exploits the inherent mul-
tiresolution properties of the B-spline basis for the specification
of appropriate restriction and prolongation operators [13], [16].
This allows to compute the solution with nearly linear com-
plexity with respect to the number of grid nodes.

However, the approach proposed in [13] as well as the ap-
proach presented in [15] requires explicit computation of ma-
trix coefficients. This may create a problem due to the fact that
despite the extreme sparsity of the system tensor, the number
of nonzero coefficients in higher dimensions can be so large
as to exceed the storage capacities of ordinary desktop com-
puters. For example, in four dimensions with a moderate re-
construction grid size of (33 554 432
unknown B-spline coefficients), the total number of nonzero en-
tries is 69 080 710 400 which is about 257 GB in single precision
format. By taking advantage of symmetries, the storage require-
ment for the system matrix can be reduced to about 30 GB, in the
best case, while requiring 287 GB memory transfers, which
still remains demanding.

For this reason we propose an alternative approach, based on
computational tensor algebra as described in [17]. The idea is to
fully exploit the tensor structure of (7) and (8). This approach
overcomes the storage problem by efficiently recomputing the
required tensor components on the fly.

Specifically, we propose to solve (7) by using a Tensor Krylov
Solver (Appendix B), which is based on the iterative computa-
tion of the tensor product

(9)

where is the current estimate of the B-spline coefficients
with index . The crucial point in our implementation
is to compute the above tensor product, which actually repre-
sents the gradient of criterion (2) with respect to , as effi-
ciently as possible. First, we observe that the “regularization
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term” is completely specified by a set of
1-D FIR filters, with impulse responses of length
(typ., for cubic splines). The cost of the regularization fil-
tering in the time-domain is therefore , taking
advantage of separability, where is the total number of the
grid nodes (for 3-D: ). Note that, depending on
the degree of the used B-spline basis, the number of filters and
the size of the grid, it can be more efficient to implement the
regularization filtering in the frequency domain using the fast
Fourier transform (FFT). In 3-D and 4-D with the use of cubic
B-splines the time-domain filtering offers a higher performance
than FFT-based filtering, which is exploited in the current work.

To evaluate the second, “least-squares” part
, we make use of (8) and rewrite the tensor product as

(10)

For each , a nonzero block of products
represents a separable transformation applied

to the corresponding dimension of a small hypercube in .
The width of the -dimensional hypercube is and its
bounds are dependent upon the spatial location of the given
data sample. Thus, for computing (10), we successively loop
through the available samples, loading the corresponding

th hypercube from , applying to it the set of 1-D separable
transforms, and finally incrementing the respective hypercube
in the resulting tensor.

Thanks to the decomposability of (10), we can avoid storing
the system coefficients altogether. The components of tensor
factors in the decomposition can be recomputed in
each iteration with a moderate cost. For a cubic B-spline model
this cost is about 10 dK per iteration.

The advantages of the proposed, matrix-free computational
scheme are the following. First, its complexity in terms of
both memory transfers and arithmetic computations is lin-
early dependent upon the number of measurements (K), while
the penalty incurred by the increase of the number of di-
mensions remains manageable (a factor instead of

in the sparse matrix-based approach [13],
where are the extents of the grid). Second, the processing
of dense multidimensional sub-blocks provides good data
locality that fits well the requirements of current hardware
with cache-based architecture. Third, computations can be
efficiently parallelized by distributing signal measurements
between multiple computational units.

Fig. 1 compares the efficiency of our method to that of an
explicit implementation using sparse matrix multiplication.
The quantities of interest are the memory transfers and number
of operations required for the evaluation of the gradient (9).
Note that in dimensions higher than three, the benefit of the
tensor method is significant even for a quite large amount of
signal measurements; this is due to the weaker exponential
dependency on the number of dimensions. This property of the
proposed method can allow efficient reconstruction of large
3-D/3-D+time and higher dimensional data (e.g. multidimen-
sional spectral data, physical tensor fields) encountered in
recent developments in sensing technologies.

Fig. 1. Relative requirements of decomposed tensor versus sparse matrix com-
putation of the product (9) in single precision for memory transfers (a) and arith-
metic computations (b). Reference numbers in GByte and GFLOP correspond
to the sparse matrix case and do not depend on the number of data samples.
Reconstruction grid has 64 nodes in all dimensions. Note that the higher the
number of dimensions, the more advantageous is the use of the tensor product
decomposition.

We did observe some degradation of the speed of con-
vergence of the Krylov iterator when significant amounts of
smoothing are required, even though the underlying linear
system remains well conditioned. A typical example is shown
in Fig. 2, which presents a result of the reconstruction of a
3-D CT data from 20% of samples with highest Laplacian
values. The tradeoff factor in this experiment is 0.0034. In this
particular case, we used the tensor conjugate gradient iterator
(TCG) (see Appendix B), which was run for 20 iterations,
until the relative residual norm reached . Fig. 2(b)
documents the convergence rate. In this case, the solver failed
to compensate for the missing data in the regions with the
lowest spatial variance, which is manifested by the presence
of black spots in the reconstructed image. To overcome these
difficulties, we propose to initialize the solver by providing
it low frequency components of the solution. To this end,
we employ a simple multiscale-based initialization. First, we
obtain an approximation of the solution on the coarsest scale.
Then, we interpolate the approximation to the next finer scale
by means of the two scale relation filtering [16]. By successive
transfer from coarse to the fine, we finally obtain the signal
approximation that is used as initial condition for the fine-scale
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Fig. 2. Reconstruction of a 3-D data set from 20% of samples with highest
Laplacian by applying non-preconditioned TCG iterator. (a) 2-D slice taken
from the reconstructed image . (b) Convergence his-
tory of the solver. Note the presence of black spots in the reconstructed image
which are located in the regions with lowest spatial variance.

solver. Note that, in contrast to [13], our multiscale approach
does not require explicit computation and storing of the system
coefficients. Instead, we use on the fly downsampling of the
sparse factors in the decompositions (8) and (6), which allows
us to avoid extra storage by an additional relatively small
computational cost. Our practical experience showed that
the presented initialization scheme is very effective. Fig. 3
presents a result of the multiscale-based initialized iteration
for the same data set presented above. In this case, we used 3
coarser scales for initialization: 2 iterations on the third scale,
2 iterations on the second scale and 5 iterations on the first
scale. Using this initial solution, the TCG solver was run for 6
iteration until the relative residual norm reached
value. The resulting solution has a root mean square error

, where is the
original image, is the reconstructed image. Visually, the
result of reconstruction is nearly indistinguishable from the
original data.

Note that the presented multiscale initialization scheme can
be used as a preconditioner for the TCG iterator. However, our
practical experiments showed that this algorithm even used
alone already offers good quality solutions.

Fig. 3. Reconstruction of a 3-D data set from 20% of samples with highest
Laplacian by applying TCG iterator with multiscale-based initialization. (a)
Original image. (b) Reconstructed image .

V. RESULTS

The proposed tensor-based algorithm was implemented in
MathOberon, a programming language offering multidimen-
sional abstractions for readable, compact and efficient parallel
implementations [20]. The code was tested on a PC with Intel
Core 2 Quad Q9400 2.67 GHz CPU equipped with 2 GB of
DDR2 800 MHz memory.

A. Evaluation in 3-D

We evaluated the quality of reconstruction and computational
performance of the proposed algorithm implementation on stan-
dard uniform 3-D datasets which are available online The data
were sampled by taking 20% of samples with the highest values
of the Laplacian, similarly to the protocol in [15]. Table I sum-
marizes the results of the evaluation.

In these experiments, in addition to , we used two error
measures and

where is the total number of samples, is the gradient
field computed from the original data, is the gradient field
computed from the reconstructed data, and are the
values of the corresponding fields evaluated at the th point
of the grid. All error measures are computed using all the
original uniform data samples. is used to compare our
results with those presented in [15] (values in brackets); to our
knowledge, this latter algorithm is the most efficient published
approach for reconstructing irregular scalar data in 3-D. We
used the proposed multiscale initialization scheme with 8
TCG iterations on each coarser scale, which was sufficient to
get a good initialization for the finest scale iteration. For all
datasets in the tests, the minimal dimension extent for coarser
scales was 16 nodes, which resulted in 3–4 scales. On the
finest scale the TCG solver was run for 10 iterations. A further
increase of the number of iterations did not lead to significant
improvement of the error values. As the regularizer functional
we used Duchon’s semi-norm of order . The values of
the regularization tradeoff were chosen by minimizing a
3-fold cross validation cost individually for each dataset. Fig. 4
displays the behavior of the cross validation cost in an interval
around the optimum for the Tooth dataset. In the performed

1Available online at http://www.volvis.org
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TABLE I
RESULTS OF THE VALIDATION OF THE PROPOSED ALGORITHM ON STANDARD 3-D DATASETS SAMPLED USING 20% OF HIGHEST LAPLACIAN SAMPLES

Fig. 4. Three-fold cross validation cost and evaluated for the Tooth
dataset sampled using 20% of highest Laplacian samples.

Fig. 5. Evaluation of and the gradient-based error measure
for the Tooth dataset sampled using 20% of highest Laplacian samples.

experiments the optimum of the cross validation cost for all
datasets in the tests was rather close to the optimum of the true
error. For finding the location of the optimum, we used the
golden section search technique; 6–15 evaluations of the cost
function were sufficient to identify the minimum.

Fig. 5 presents a comparison of the behavior of and
the gradient-based error measure with the change of
the tradeoff parameter for the Tooth dataset. In this particular
case, the optimum locations of these functions almost coincide.

Fig. 6. Evaluation of for full Duchon’s semi-norm and the regularizer
(11) used for the reconstruction of the Tooth dataset.

Additionally, we performed tests using a regularizer of the
form

(11)
which is Duchon’s semi-norm of order without mixed
derivative terms. In contrast to the results reported in [15], our
experiments showed that the reconstruction error using (11) was
larger or in the best case comparable to the error obtained with
full Duchon’s semi-norm. Fig. 6 presents a comparison of the re-
construction error for full Duchon’s semi-norm versus the error
for regularizer (11) both evaluated for the Tooth dataset.

The results of our 3-D evaluation indicate that our imple-
mentation is at least as good or better in terms of reconstruc-
tion quality as the block-wise Multigrid-based implementation
from [14] when using a single CPU core and a comparable time
budget to do a fair comparison. The execution speed of our im-
plementation was increased by 2 with the use of two cores. A
further increase of the number of cores did not yield an addi-
tional performance improvement; this was due to the low speed
of the memory bus on our hardware. With the use of a faster
memory/bus architecture, a better scalability and thus higher
performance is probably achievable with the same CPU.

B. Evaluation in 4-D

One of the main advantages of our algorithm over existing
approaches is the possibility of efficient reconstruction of
large datasets in dimensions higher than three even when the
computational resources are limited. We tested our algorithm
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Fig. 7. Example of reconstruction of a 4-D MRI dataset from 30% of randomly
selected samples. Presented images represent a maximum intensity projection at
a single time point. (a) Original data. (b) Reconstructed data ( ,

).

implementation on a 4-D (space-time) MRI dataset kindly pro-
vided by the authors of [21]. We performed an evaluation with
sampling the original data by taking 30% of random samples
which for the grid size corresponds to
more than 5 million data points. In this experiment, we used
tensor B-spline basis functions in (1) together with Duchon’s
semi-norm of order and as regularization func-
tional. The tradeoff value was chosen in the same way as in
3-D tests by optimizing a three-fold cross validation cost and
was set to . We used the proposed multiscale initial-
ization scheme with 4 coarser scales and 8 TCG iterations on
each scale. The fine-scale TCG iterator was run for 20 iterations.
The reconstruction time with two CPU cores was about 5.2 min.
Fig. 7 presents a 3-D visualization of a single time frame from
the obtained 4-D reconstruction. Fig. 8 shows RMSE computed
at each time point of the data. Space-time visualization with a
comparison of the obtained reconstruction with the original data
is available online.

2Available online at http://www.computational.ch/downloads/mrirec4d.avi

Fig. 8. RMSE computed at each time point of the reconstructed 4-D MRI data.

Fig. 9. Distribution of the azimuth versus cardiac cycle for a data set acquired
by a fast continuously rotating ultrasound transducer.

C. Application to 4-D Medical Ultrasound

We applied the proposed algorithm to a concrete imaging
problem: the reconstruction of 4-D (space-time) ultrasound
data acquired using a fast continuously-rotating ultrasound
transducer [22], [23]. The transducer, which is based on a
conventional linear array with harmonic capabilities, samples
3-D volume, while continuously rotating at the high speed of
8 rotations per second, which allows temporal resolution of
about 16 volumes per second [22]. A cone-shaped volume is
scanned over several seconds. Since there is no synchronization
between the heart rate and the continuous rotation, the acquired
data is irregularly distributed over cardiac phase and angle, as
schematically shown on Fig. 9. Note that in this case when the
data is sampled irregularly in both space and time, the ability of
the reconstruction method to account for the data coherence in
all dimensions is an important prerequisite for achieving good
quality reconstructions. Such ability of the proposed method
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Fig. 10. Three-dimensional visualization of a single time frame from the re-
construction of a 4-D arbitrarily sampled data acquired by a fast continuously
rotating ultrasound transducer.

distinguishes it from the conventional way of frame-by-frame
reconstruction.

Our algorithm implementation was applied to a dataset kindly
provided by the authors of [23]. This particular dataset repre-
sents the motion of the left ventricle of the heart. It consisted
of more than 12 million ultrasound samples. The chosen recon-
struction grid size is , with 16 nodes over
the time axis corresponding to one cardiac cycle. The spacing
of the reconstruction grid was chosen according to the sampling
characteristics of the used 2-D rotating transducer. In this case,
the spatial grid corresponds to a pixel size of
about 1 mm, which is a typical axial resolution in conventional
cardiac ultrasound imaging. As 4-D regularization functional,
we used Duchon’s semi-norm of order . The tradeoff
value was chosen by optimizing a 3-fold cross validation cost
and was set to . For multiscale initialization, we used
4 coarser scales with 8 TCG iterations on each. On the finest
scale, the TCG solver was stopped at the 30th iteration at a rel-
ative residual norm . With the use of 2 CPU cores,
the total reconstruction time was about 15 min. Fig. 10 shows
a 3-D visualization of a single time frame taken from the ob-
tained reconstruction. The reconstructed data was visually as-
sessed by experienced doctors and approved to be of a good
quality. Space-time visualization of the reconstructed left ven-
tricle dataset is available online.

VI. CONCLUSION

We presented a tensor-based approach for the efficient
reconstruction of high-dimensional images from large sets
of arbitrarily-sampled measurements. We proposed a tensor
algebra framework to analyze the structure of the B-spline re-
construction problem which led to the identification of a series
of 1-D factorizations of the system tensor. We then used this
representation to develop an iterative solver that is computa-
tionally and memory efficient. The critical step of our algorithm
is the computation of a tensor product (update of the solution),
which, due to the inherent, sparse CANDECOMP structure
of the problem, can be evaluated with a complexity that is
proportional to the number of measurements with a dependence
on the number of physical dimensions that is significantly less

3http://www.computational.ch/downloads/echorec4d.avi

than previously published solutions (reduction of the impact of
the curse of dimensionality). The proposed algorithm can be ef-
ficiently parallelized and implemented, exploiting all currently
available computing technologies such as single instruction
multiple data (SIMD), multi core, clusters of PCs and general
purpose GPU (GPGPU). In particular, we have built an efficient
multicore implementation of the proposed algorithm.

We first tested our approach on standard 3-D images using a
nonuniformly subsampled portion of the data as input. We found
it to be competitive with the best available Multigrid-based
method [15] in the sense of providing a better or comparable
reconstruction quality for a given computational budget. The
proposed algorithm uses much less memory and allows com-
putation of relatively large problems with the use of only 2 GB
of memory available on our hardware. The implementation is
parallel and can benefit from the use of multiple CPU cores. We
also showed that the algorithm could handle more demanding
tasks, such as the reconstruction of 4-D (space-time) dynamic
MRI, and provide satisfactory results. In particular, we suc-
cessfully applied it to a concrete large-scale imaging problem:
the reconstruction of a 4-D (space-time) ultrasound signal
from a large set of noisy arbitrarily sampled data acquired by a
fast continuously rotating ultrasound transducer. Our ongoing
work is directed towards further acceleration of the method
by the use of a GPGPU platform and cloud-based distributed
computations for even faster reconstructions.

APPENDIX A
EINSTEIN’S TENSOR NOTATION

The tensor formulation of a linear approximation problem
can offer advantages over the commonly-used matrix-vector
formalism, especially when the system matrix involves outer
products. By retaining the physical coordinate structure of the
problem, it typically simplifies the analysis and specification
of solutions in dimensions greater than one. Note that the role
of the tensor indexing symbols is special for they each encode
a specific (physical) dimension of the data. In Einstein’s con-
vention, when an index variable appears twice in a single term,
once in an upper (superscript) and once in a lower (subscript)
position, it implies that we are summing over all of its possible
values. We will exemplify the notation by linking it to classical
linear algebra. For instance, let and be two -column
vector tensors with corresponding to the
vectors . Then,

with and . Similarly, given a
matrix tensor and a -column vector tensor , we

represent the matrix product as

Equivalently, we have that

which corresponds to the transposed matrix product . In
the present work, the spatial indexing is explicitly 3-D with
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(resp., ) taking the role of (resp., ) in the formulas
above.

APPENDIX B
TENSOR CONJUGATE GRADIENT SOLVER

Krylov subspace solvers are among the most effective tech-
niques for solving large linear systems of equations [24]. They
operate iteratively by evaluating the residual of the system
and then performing an update of the solution along an ap-
propriate search direction. In our case, the problem reduces
to solving the multi-linear system of (7) whose generic form
is . Since the corresponding system
tensor is positive-definite, we apply a tensor variant of the
Conjugate Gradient method—a special instance of a Krylov
subspace solver—whose pseudo code is provided for complete-
ness

Repeat loop until convergence

End of loop.
Note that the computational cost of the majority of steps

above is small; that, is linear in the number of unknowns (simple
loop/summation over the tensor indexing variable ). The
only step of the algorithm that is computer-intensive for large
scale problems is the tensor computation that yields . This
is the part that is specific to our implementation and that is
achieved according to the strategy outlined in Section IV.
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