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Abstract—A common approach to model-based segmentation
is to assume a top-down modelling strategy. However, this
is not feasible for complex 3D+time structures such as the
cardiac left ventricle due to increased training requirements,
aligning difficulties and local minima in resulting models. As our
main contribution, we present an alternate bottom-up modelling
approach. By combining the variation captured in multiple
dimensionally-targeted models at segmentation-time we create
a scalable segmentation framework that does not suffer from
the ’curse of dimensionality’. Our second contribution involves a
flexible contour coupling technique that allows our segmentation
method to adapt to unseen contour configurations outside the
training set. This is used to identify the endo- and epi-cardium
contours of the left ventricle by coupling them at segmentation-
time, instead of at model-time. We apply our approach to
33 3D+time MRI cardiac datasets and perform comprehensive
evaluation against several state-of-the-art works. Quantitative
evaluation illustrates that our method requires significantly
less training than state-of-the-art model-based methods, while
maintaining or improving segmentation accuracy.

Index Terms—active shape model (ASM), spatio-temporal left
ventricle dynamics, contour coupling, ASM optimisation.

I. INTRODUCTION

CARDIOVASCULAR disease (CVD) is a major cause of
death in the Western World. CVD is responsible for

nearly half of all deaths in Europe [1], and approximately a
third of all deaths in the USA [2]. Magnetic Resonance Imag-
ing (MRI) is a popular minimally-invasive imaging modality
used to diagnose CVD. The clinical MRI imaging modality
produces 3D and 3D+time images of the heart. To diagnose
CVD, doctors commonly assess the functionality of the left
ventricle (LV) over the cardiac cycle. Quantitative indicators
such as ejection fraction and cardiac output are used to assist
in the assessment of CVD pathologies [3]. To derive these
metrics, the two boundaries describing the LV (the endo-
and epicardium) need to be extracted from a patient scan.
Classically, this is done manually by doctors - however manual
analysis is no longer feasible due to the quantity of data
in 3D and 3D+time images. Moreover, manual annotation
is prone to inter/intra observer variability which can affect
the reliability and repeatability of CVD diagnosis. Therefore,
an automatic segmentation solution is needed to address this
clinical problem.

The challenges associated with cardiac LV segmentation
arise from both the image domain and the physical structure
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of the heart. MRI images can suffer from significant intensity
variation, as well as poor contrast in areas, most notable
between the epicardium and the surrounding thoracic region.
Motion artefacts caused, for example, by patient breathing
during image acquisition degrades image quality and creates
irregular shifts between anatomical structures in adjacent slices
of the volumetric data. The spatial and temporal resolution of
MRI images can be coarse relative to the physical size of the
LV and Computer Aided Diagnosis (CAD) tools require either
data interpolation or the development of flexible segmentation
techniques.

The combination of these difficulties preclude any purely
data-driven segmentation method from being a feasible choice
for 3D+time LV segmentation. It is widely recognised that
maximising the use of a priori knowledge of LV deformation
is a pre-requisite for robust segmentation methods. However,
capturing the complex spatio-temporal dynamics is made
difficult by the significant anatomical variation of the cardiac
structure itself - especially when pathologies are considered.
Therefore, since model-based approaches commonly rely on
a training set of expertly pre-segmented images, the quality,
quantity and variation of these images becomes of paramount
importance.

The vast majority of recent model-based approaches in this
area have been based on a top-down modelling strategy. In this
approach, one attempts to capture all of the desired variation of
the segmentation target in one model, so the dimensionality of
the model matches that of the segmentation target. For clarity,
we refer to this as the single-model strategy, since only one
model is used to capture the desired variation. With respect to
cardiac segmentation, the work by Mitchell et al. [4] extended
the standard 2D Active Appearance Model (AAM) - first intro-
duced by Cootes et al. [5] - to a 3D implementation. Using a
similar approach Bosch et al. [6] model temporal deformation
in a 2D+time AAM-based segmentation of echocardiographic
images. Kaus et al. [7], describe a 3D deformable model for
LV myocardium segmentation. The authors present promising
results but exclude datasets exhibiting large motion artefacts
from their evaluation. This issue was later addressed by
Stegmann et al. [8], [9] who use an unsupervised motion-
correction scheme before segmentation. The authors concate-
nate the end-systolic and end-diastolic cardiac phases of the
LV into a single AAM in an attempt to include temporal
variation in their model. This technique is also used by Fritz
et al. [10] who extended it further to consider the 3D surfaces
of the left and right ventricles at both the end-systolic and
end-diastolic cardiac phases as a single shape. The authors
argue that if, for example, the right ventricle is poorly defined
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compared to the LV, then the fitting process will be guided by
the stronger image feature, thus providing a more robust over-
all segmentation. However, they do not indicate whether they
weight the landmark fitting process accordingly or if they rely
purely on the ASM approximation of the landmarks (further
discussed in Section II-A2) to correctly guide the segmentation
process. Another 3D-ASM LV segmentation technique is de-
scribed by van Assen et al. [11] - also used in [12] and later
developed in [13] - where the authors replace the standard
landmark fitting stage in the ASM formulation with a fuzzy
inference system. The authors report segmentation accuracy
comparable to the state-of-the-art implementations evaluated
in their study. In our implementation we also replace the
standard ASM fitting process, as we will demonstrate that it
is unreliable when applied to complex image environments.
Finally, to alleviate the requirement on manual annotation
of training samples, several papers have explored different
approaches for the automatic generation of landmarks and
point-correspondence [14], [15]. For a complete review of the
application of model-based segmentation approaches see the
recent work of Heimann et al. [16].

While largely successful as the research community transi-
tioned from 2D to 3D segmentation, the single-model strategy
is not easily generalisable to higher dimensional problems.
This is reflected both by the notable lack of single-model
3D+time research and the criticisms recently expressed in a
number of separate works [17]–[20]. The central issue is that
as the dimensionality of the modelling problem rises there is
a consequent rise in: the degrees of freedom, the size of the
required training set, the aligning difficulties and the occur-
rence of multiple local minima in the resulting model. This
is generally referred to as the ’curse of dimensionality’ [17]
(CoD). The reliance on training and the limited availability of
large pre-annotated image databases undermines the practical-
ity of single-model 3D+time segmentation methods. In fact,
the only notable single-model 3D+time work presented in the
literature, by Lorenzo-Valdés et al. [21], is heavily reliant on
pre-segmented data. The authors’ technique requires not only
the left and right ventricles but also the background structures
to be pre-segmented to build their 3D+time atlas. Naturally,
their training data exhibits insufficient variation and Gaussian
blurring was used to artificially enlarge model variation. Tolli
et al. [22] also present a method for artificial enlargement
of the variation in small training sets for construction of a 3D
ASM of the four chambers of the heart. It should be noted that
the authors also needed to greatly increase the allowed defor-
mations of the ASM from the standard ±3

√
λi to ±5

√
λi (this

issue is explained in detail in Section II-A1). More recently,
Zhang et al. [23] argue against the artificial enlargement of the
training set to maintain structural consistency in the resulting
models. The authors extend the work of Mitchell et al. [24]
using a hybrid ASM/AAM implementation, training both a 3D
and a 3D+time model. The authors concede that they do not
have enough training images to capture sufficient temporal
variation in their 3D+time model, and so their 3D model
must be used for a phase-by-phase final segmentation stage in
order to avoid the over-constrained temporal variation in the
3D+time model. These works [21], [23] show the limitations,

most notably with respect to training requirements, in the
single-model approach for 3D+time segmentation.

However, a recent trend in the literature [17], [19], [20]
has gone some way in reassessing the approach to higher
dimensional modelling and segmentation problems. Instead of
creating a single model, subsections of the overall variation
are captured in separate models which are then combined
at segmentation-time. In this way, the full variation of the
LV is still captured, but the dimensionality of each model is
lower than an equivalent single-model approach and therefore
has less training requirements, simpler aligning and is better
able to encapsulate the statistical variation of the training set.
Zambal et al. [19] describe a 3D left ventricle segmentation
scheme, where the LV is modelled using a set of 2D Active
Appearance Models (AAMs), each capturing a specific section
of the ventricle. These models are interconnected with a
separate 3D shape model that controls the global positioning
and scale during segmentation. The authors report that their
technique outperforms a standard 3D AAM by 11% in terms
of segmentation accuracy. More importantly, the authors show
that their method inherently copes with irregular translation
between slices since each AAM can move freely in its own
slice, while structural consistency is maintained using a sepa-
rate 3D model. This is a benefit in cardiac segmentation where
adjacent slices are often misaligned and this negates the need
for a pre-aligning phase as required by the approach proposed
by Stegmann et al. [8]. Previous work by our group, Lynch
et al. [25], [26], describes a more sophisticated approach
whereby a non-rigid model is used to encode a priori temporal
deformations into a level-set formulation, with promising
results presented. Andreopoulos et al. [17] recently presented
a 3D+time cardiac segmentation method, which relies on two
components. The first captures 3D shape variation of the
left ventricle in a 3D AAM. The second part encompasses
the temporal variation of the ventricle in a 2D+time ASM.
The 2D+time ASM is used to refine the initial 3D AAM
segmentation. Like Zambal et al. [19], the authors argue
strongly against creating single 3D+time models due to the
issues relating to the CoD. While their work does decompose
the 3D+time problem into spatial and temporal models the
authors still build a single-model 3D shape AAM. Therefore
they are still faced with significant training requirements (and
related issues) albeit to a lesser degree than Lorenzo-Valdés et
al. [21]. To address this the authors extend the wavelet-based
hierarchical ASM presented by Davatzikos et al. [27] to a 3D
implementation, a method shown to perform well with limited
training samples.

The aim of this paper is to further analyse the multi-model
approach and bring the concept to its logical conclusion.
As our first contribution, we decompose the 3D+time LV
modelling problem into its component parts - i.e. shape, spatial
and temporal variation. The models are then combined in a
dimensionally scalable segmentation framework that unifies
the variation in the separate models. In our second contribu-
tion, we further divide the shape variation into separate endo-
and epicardium component models. Many recent studies [9],
[13], [17] consider the endo- and epicardium interfaces as a
single shape. However, this design choice further exacerbates
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the issues related to the CoD. We show that by coupling
the two contours at segmentation-time instead of model-time
we increase the flexibility of our segmentation technique to
cases outside the training set. We experimentally verify that
our approach requires significantly less training and achieves
comparable or better segmentation accuracy when compared
with state of the art implementations.

II. METHOD

A. ASM Theory

We use the Active Shape Model, first developed by Cootes
et al. [28], [29] to capture the shape, spatial and temporal
variation of the LV. The ASM is chosen instead of the AAM
as the majority of relevant 3D+time variation related to the
LV is present in the shape variation. We do not consider the
texture variation in the largely homogeneous LV blood pool
and surrounding myocardium to be sufficient to warrant the
use of an AAM.

1) ASM Construction: When building an ASM from a set
of training shapes, the segmentation target must be descretised
into N landmarks. A shape vector, s, containing N landmarks
is described as:

s = [l0, l1, . . . , li, . . . , lN ] (1)

where li is the ith landmark of the shape. It follows that the
training set, S, containing M training shapes is defined as:

S = [s0, s1, . . . sM] (2)

The set of training shapes must then be aligned into a common
coordinate system. As stated earlier, the complexity of this
step is proportional to the dimensionality of the target shape.
Since we use a bottom-up modelling strategy, we build a 2D
shape model that is only trained on the basal-most slice of the
end-diastolic volume. Therefore, to align our training samples
we only need to remove translation between the shapes as we
capture the scale variation in the ASM. Point-correspondence
is established with an arc-length re-sampling method. After
our training set (S) has been aligned (S′) we apply Principal
Component Analysis (PCA) to extract the eigenvectors, φ,
and eigenvalues, λ, describing the shape variation. According
to the ASM formulation these are truncated to capture 95%
of the training set variation. The truncated eigenvectors (Φ)
are combined with the mean-shape of the training set (s) to
generate the equation that governs ASM shape synthesis:

s ≈ s + Φβ (3)

Shape synthesis using (3) is constrained using the vector
βlimit, where the ith component of βlimit is given by
±3
√
λi [30]. Therefore, all shapes synthesized by the ASM

are subject to: |β| ≤ βlimit.
2) Standard ASM Fitting: The ASM is fitted to an unseen

image according to an iterative two-stage process. First, each
landmark updates it’s location individually, using only local
image information and has no interaction with surrounding
landmarks or the ASM itself. This new set of landmarks (L′)
is then approximated by the ASM which keeps the shape

within the learned range of variation. This process repeats until
convergence is reached.

There are, however, numerous flaws with this approach
when applied to complex segmentation tasks, such as the
segmentation of the LV. First, in noisy images, where contours
are poorly-defined, individual landmarks can fit to spurious
image areas. This will negatively influence the resulting ASM
approximation and can affect the overall convergence. Second,
since the landmarks are updated locally, L′ can, and usually
does, assume irregular shapes that are outside the learned vari-
ation of the ASM. In effect this creates a disconnect between
the constrained nature of the ASM and the unconstrained na-
ture of the landmark update process. This severely undermines
the reliability of the ASM in noisy images. This shortcoming
in the original ASM formulation has been previously dealt
with in several works in the literature [10], [31]–[34]. To
address this problem, we propose to replace the standard fitting
process with a global ASM optimisation technique. This will
be addressed in the next section of the paper.

B. ASM Optimisation

According to (3), shapes are synthesised by varying β within
learned constraints (βlimit). We fit the ASM to an unseen
image by direct manipulation of the β vector. This allows us to
perform a global contour fit by creating an objective function
that minimises the energy of the whole contour, thereby vastly
improving the robustness of the fitting processes. As we train
the endo- and epicardium separately (this issue will be further
discussed in Section II-C) we require an objective function for
each contour. To describe the objective functions for endo-
and epicardium minimisation we first need to define some
descriptive notation. A β vector generates a shape, sβ , (i.e.
sβ = s+ Φβ) and delineates a corresponding region, Ωβ . The
objective function operates on the image information around
the contour: defined as Ω+

β and Ω−β for the outer and inner
regions, respectively. The function I(Ω) returns a vector of
grey-scale values inside the image region Ω. It follows that
I(Ω) and Iσ(Ω) return the mean and standard deviation,
respectively, of the greyscale information in the region Ω.

Using this notation, we create an objective function (f )
for minimising the endo- and epicardium in our 2D example
(fendo and fepi, respectively). The endocardium objective
function fendo is defined as:

fendo (β, T ) =
∣∣∣I (T (Ω+

β

))
− I

(
T
(

Ω−β
))∣∣∣ (4)

where T denotes a translation transformation, defined as: T =
[tx, ty]. This objective function calculates the contrast between
the inner and outer region of Ωβ . To fit the endocardium to
an unseen image, fendo is minimised according to:

min
|β|≤βlimit

fendo (β, T ) (5)

Equation (5) states that the endocardium’s energy is minimised
when there is a maximum contrast between the inner and outer
regions of Ωβ . This is expected since there is high contrast
between the left ventricular blood pool and the surrounding
darker myocardium. By operating on image regions instead
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of individual 1D landmark profiles our minimisation method
is not susceptible to outliers [35] negatively influencing ASM
convergence.

The epicardium is minimised similarly to the endocardium,
however the difference between the standard deviations of the
inner and outer region also needs to be maximised since we
know that the area defined by the myocardium is relatively
homogeneous compared to the region immediately outside
the myocardium wall. Specifically, outside the myocardium
there is significant intensity variation between the bright right
ventricular blood pool and the very dark surrounding thoracic
region. The addition of this extra term is required as the
epicardium border is usually poorly defined in MRI images,
therefore extra robustness is required at this segmentation
stage. The epicardium objective function is formulated as
follows:

fepi (β, T ) =
[∣∣∣I (T (Ω−β

))
− I

(
T
(

Ω+
β

))∣∣∣
+

∣∣∣Iσ (T (Ω−β
))
− Iσ

(
T
(

Ω+
β

))∣∣∣] (6)

Similarly to (5), the epicardium objective function is min-
imised by:

min
|β|≤βlimit

fepi (β, T ) (7)

Since each β parameter is associated with an eigenvector and
since the eigenvectors Φ are ordered in terms of the percentage
of variation they capture, we implement a coarse-to-fine op-
timisation scheme. Specifically, we use Brent’s method [36]
to minimise the ASM fitting errors for each β parameter
sequentially, from largest eigenvector to smallest. We iterate
this minimisation process until β converges, or until the
difference between two successive iterations is below a small
threshold. Notice that in (5) and (7) we can elegantly maintain
the structural integrity of the ASM, whereby all synthesised
shapes during fitting are within the learned variation, βlimit.

To highlight the difference in fitting accuracy we present
a qualitative comparison between the standard Cootes ASM
fitting formulation [29] and our segmentation method in Fig. 1.
The Cootes fitting method illustrates the disconnect between
the point search phase (points shown in red) and the corre-
sponding ASM approximation (contour shown in green). In
this image the influence of the papillary muscle negatively
affects the quality of the ASM fit. This is a prime example of
the weakness of the Cootes approach when applied to complex
segmentation tasks. By contrast, our optimisation method is
not influenced by the papillary muscle as it is treated as a
local feature in our ASM minimisation process. Instead, our
technique correctly optimises the ASM contour since the best
global fit is found on the true endocardium border.

C. Contour Coupling

When learning the shape variation of the LV contours
we construct separate endo- and epicardium shape models.
Traditionally both contours are regarded as a single shape [9],
[13], [17]), however this approach has several drawbacks.

Fig. 1. On the left is the standard Cootes ASM fitting formulation. On
the right is our ASM optimisation technique applied to the same image. All
images in this paper are best viewed in colour.

First, training both shapes as one entity generates an ASM
model that captures three different sources of variation si-
multaneously - i.e. the shape variation of the endocardium
and epicardium as well as the spatial relationship between
them. Second, as a result of embedding the spatial relationship
between the contours inside the model, each endocardium
sample is learned only in the presence of a corresponding
epicardium sample, and vice versa. This limits the overall
adaptability of the model since varying β, in this case, will
vary both contours simultaneously. This issue is especially
relevant in cases where there is only a small training set
available to model the complex anatomical variation of the
LV.

In our approach, we train separate endo- and epicardium
models and derive their spatial relationship at segmentation
time. In other words, we decouple the contours at model con-
struction time - instead coupling them at segmentation time.
Now that the endo- and epicardium shape models are trained
independently, we can use a flexible data-driven coupling
technique that adapts to unseen contour configurations outside
the training set. This is an extremely useful property for LV
segmentation as there is a substantial range of anatomical
variation in both healthy and pathological patients, that cannot,
practically, be modelled exclusively using training set samples.

We formulate the contour coupling technique as a multi-
stage process. First, we segment the endocardium in the image.
We use the endocardium region, Ωendo, to drive the epicardium
segmentation as it is the stronger feature of the two. We
perform a radial search, starting from the centre of the shape,

C = 1
N+1

N∑
i=0

li (where li is the ith landmark in the shape),

by collating gradient information along a 1D profile of length
L (Fig. 2). The result of the process used to construct the
cumulated gradient profile is illustrated in Fig. 4. Using Ωendo,
we can derive a probability density function with parameters
µendo and σendo describing the mean distance and standard
deviation, respectively, between the endocardium contour and
C. As we know that the epicardium is approximately con-
centric with the endocardium, we can estimate the probable
distance of the epicardium from C, µ′epi, as the next peak in
the 1D gradient profile after µendo (Fig. 4). To take account
for irregularities in the shape of the epicardium and to allow
for error in the estimate of the epicardium we define the
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region Ωµ′
epi

+3σendo
as the outer limit of the region of interest,

in which, we allow the epicardium ASM to minimise (see
Fig. 3). We have shown experimentally that 3σendo is a robust
indicator of the variation in the epicardium, highlighting the
close relationship between the contours. Therefore we define
the region of interest as:

Ωroi = Ωµ′
epi

+ 3σendo
\ Ωendo (8)

Fig. 2. Radial search for gradient data, after endocardium segmentation.

Fig. 3. Using the estimated mean epicardium location µ′
epi to derive the

outer limit of the region of interest, Ωµ′
epi

+ 3σendo
.

In this way, Ωroi enforces structural consistency between the
endo- and epicardium. The fact that the spatial relationship
between the contours is enforced only at segmentation time
(through Ωroi) allows many more potential unseen contour
configurations, outside the training set variation, to be suc-
cessfully segmented. Overall, this improves the flexibility of
our segmentation technique in comparison with methods that
consider both contours as a single shape. Returning to the
endo- and epicardium objective functions, (4) and (6), the
contour coupling constraint is applied so that Equation (7)
is subject to the extra constraint:

sβepi
⊆ Ωroi
⊆ Ωµ′

epi
+ 3σendo

\ Ωendo (9)

Fig. 5 illustrates the benefit of our coupling approach in
contrast with an ASM that considers the endo- and epicardium
as a single shape. The single endo/epi model tries to find the
best trade-off between fitting the two contours simultaneously,
resulting in a poor global fit. By contrast, since we train
separate shape models and maintain structural consistency

Fig. 4. Representation of epicardium estimation, derived from known
endocardium border.

between them, our technique is more adaptable to the intrinsic
properties of the endo- and epicardium contours in cardiac
data.

Fig. 5. On the left is an example of an ASM trained considering the endo-
and epicardium as single shape. On the right is our coupling method applied
to the same image.

D. Spatial and Temporal Modelling

As indicated earlier, our bottom-up strategy captures the
spatial and temporal variation in separate models. Our hy-
pothesis is that if we learn the temporal variation only from
the basal-most slices and the spatial variation only from the
end-diastolic volume we can combine the information from
both models to segment any other slice in an unseen 3D+time
dataset. As a result, we require only a fraction of a 3D+time
dataset to be annotated for training compared with the single-
model approach. For example, if a dataset has spatial and tem-
poral dimensions z and t, respectively - our method requires
z+t−1 slices to be annotated as opposed to z×t in the single-
model approach. This has significant practical implications,
since a standard 3D+time dataset requires between 6-8 hours
for two cardiologists to annotate [23].

To capture the temporal variation we begin with the basal-
most slice of shape annotations across the temporal axis, as
in (10), where Yi is the ith training sample in the training set
Y.

Yi =
[[
l00, l

0
1, . . . , l

0
N

]
, . . . ,

[
lM0 , lM1 , . . . , lMN

]]
(10)

Y ′i = [s0, s1, . . . , sM ] (11)
Y ′′i = [β0, β1, . . . , βM ] (12)
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where N is the number of landmarks in a shape, and M is
the number of shapes in a single training sample. Since we
are operating with a set of 2D shapes, alignment of each
training sample is achieved by removing translation (Y ′i ).
Point correspondence is again enforced with arc-length re-
sampling for each shape in the set. Now, we can restate (10)
by considering each set of landmarks as a shape, as in (11).
Using Equation (3) we can map each shape into an equivalent
β vector. This creates a compact and abstract slice description
in β space that simplifies the description of each training
sample (12). The abstract description of the temporal slice
is now focused on the macro-variations of the shapes, instead
of relearning the micro-variation of each landmark which has
already been captured in the 2D ASM (3). PCA can now be
applied to the aligned training set (Y′′). This creates a new
ASM modelling strategy that is described in Equation (13),
where the α parameter controls the variation of LV shapes in
the temporal axis - thus controlling the temporal profile of the
model. We use a similar process to construct a spatial ASM
(14) where the ξ parameters controls the spatial profile of the
spatial model.

t ≈ t + Ψα (13)
z ≈ z + Υ ξ (14)

We construct αlimit and ξlimit so that they are constrained
according to their corresponding eigenvalues, in a method
similar to that detailed in Section II-A1. Each element of t and
z (tk and zk) is itself a β vector and directly maps into shapes
denoted by, αk and ξk, respectively. The objective functions
of t and z (g and h, respectively) can therefore be defined as
a summation of the corresponding 2D endo- and epicardium
objective functions, as follows:

gendo (α,T) =
P∑
k=0

∣∣I (T k (Ω+
αk

))
− I

(
T k
(
Ω−
αk

))∣∣
=

P∑
k=0

fendo
(
αk, T k

)
(15)

gepi (α,T) =
P∑
k=0

[∣∣I (T k (Ω−
αk

))
− I

(
T k
(
Ω+
αk

))∣∣
+

∣∣Iσ (T k (Ω−
αk

))
− Iσ

(
T k
(
Ω+
αk

))∣∣]
=

P∑
k=0

fepi
(
αk, T k

)
(16)

hendo (ξ,T) =
Q∑
k=0

∣∣∣I (T k (Ω+
ξk

))
− I

(
T k
(

Ω−
ξk

))∣∣∣
=

Q∑
k=0

fendo
(
ξk, T k

)
(17)

hepi (ξ,T) =
Q∑
k=0

[∣∣∣I (T k (Ω−
ξk

))
− I

(
T k
(

Ω+
ξk

))∣∣∣
+

∣∣∣Iσ (T k (Ω−
ξk

))
− Iσ

(
T k
(

Ω+
ξk

))∣∣∣]
=

Q∑
k=0

fepi
(
ξk, T k

)
(18)

where P and Q refer to the number of temporal volumes
and spatial slices in the dataset, respectively. The objective
functions for g and h are minimised according to:

min
|α|≤αlimit

gendo (α,T) (19)

min
|α|≤αlimit

gepi (α,T) (20)

min
|ξ|≤ξlimit

hendo (ξ,T) (21)

min
|ξ|≤ξlimit

hepi (ξ,T) (22)

where Equations (20) and (22) are subject to the coupling
constraints similar to (9) so that: sαepi

⊆ Ωgroi and sξepi
⊆

Ωhroi, respectively.
Fig. 6 illustrates the limits of the temporal model with

respect to the scale variation in our evaluation datasets (further
details can be found in Section III-A). The shaded area
between the model limits (shown as the upper and lower
lines) represent the scale variation in all datasets from basal
to apex regions. As shown in Fig. 6, we can note that with
a reduction in the training level the temporal model still
maintains sufficient variation to capture the full range of LV
variation in the datasets. The spatial model exhibits similar
characteristics.

III. RESULTS

A. Data description

The datasets used for evaluation have been kindly made
public by Andreopoulos et al. [17]. The database consists of
33 3D+time child MRI datasets - with ages ranging from 2
to 17 years old. All datasets were acquired using the FIESTA
protocol and exhibit pathologies though not all related to the
LV, and we can note that this data shows a considerable range
of anatomical variation. Dataset resolution is 256×256 pixels
in the XY plane, between 8 and 15 spatial slices and 20
temporal volumes. Pixel spacing ranges between 0.93 and 1.64
mm. All datasets have clinically validated annotations of the
endo- and epicardium. For further details on the data used,
please refer to Andreopoulos et al. [17].

We present a direct quantitative comparison of our method
and to the method presented in [17] in our evaluation. As stated
earlier, the authors go some way towards our approach by
separating spatial and temporal variation. However, since they
train a single-model 3D AAM it gives an ideal point of com-
parison between our approach and the single-model strategy.
Therefore, while presenting these results it should be noted
that our method requires between 83% and 89% less training
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Fig. 6. Scale variation of the evaluation datasets (shaded region) shown with
respect to the learned variation of the temporal model (upper and lower lines).
The quantity of model training reduces from 30 to 20 to 10 datasets, from
top to bottom.

than the method detailed in [17]. We will quantitatively show
that we achieve comparable or better segmentation accuracy
despite the significant difference in training requirements.

B. Testing Protocol

Our primary aim in this study is to analyse the performance
of our method with reducing training. To do this we present
a range of results with varying levels of training and testing.
Specifically, we use X datasets for training our models, while
the remaining 33−X datasets are used for segmentation. This
process is repeated 33 times for each value of X . Therefore,
as the level of training decreases the level of testing increases.
We do this to remove any bias in the choice of datasets for
modelling at each stage. In total, we evaluate the performance

of the proposed algorithm based on 2178 3D+time dataset
segmentations - i.e. 43560 volume segmentations.

To quantify segmentation accuracy we use the volumetric
error metrics as described in [17] so the methods can be
directly compared. We use mean volumetric point-to-curve
error as well as absolute volume error. We do not require a
complex manual initialisation procedure as in many single-
model papers [13], [23] where multiple 3D model parameters
need to be initialised or estimated from manual segmenta-
tions [17]. We need only a single xy seed point on the
basal-most slice of the end-diastolic cardiac phase, providing
an initial translation, T , to localise the LV blood pool in
that slice only. This stage could, of course, be automated
using a method similar to that described in [18]. As stated
in Zambal et al. [19], because there is no rigid connection
between shapes in our approach and since we minimise for
both β and translation T (see Section II-B), we can implicitly
compensate for irregular translation between adjacent slices.
As a result, we do not require any pre-registration phase before
segmentation, as in [8].

C. Quantitative Results and Discussion
The initial observation that can be drawn from Table I

and II is that our method shows excellent stability as training
is reduced. It should be remembered that the datasets being
segmented in this case exhibit significant variation. Compared
with Andreopolous et al. [17] we attain similar, or better,
mean volumetric point-to-curve errors but achieve consistently
tighter standard deviation measures. This is further reflected
with the absolute volume errors in Table I and II. We feel
this shows that our approach generates more consistent seg-
mentations and is less likely to fit in spurious image areas
than [17]. We expect the epicardium segmentation to be
slightly less accurate than the endocardium since it is the more
diffuse border of the two. Andreopolous et al. [17] appears to
perform slightly better in terms of epicardium accuracy, again
however, we show lower standard deviation in our results.
We wish to draw attention also to the comparison (albeit
indicative) against the results presented by Lorenzo-Valdés
et al. [21]. Their approach can be considered the antithesis
of our modelling philosophy. We feel our method compares
very favourable against theirs, especially considering the fact
that they test purely on a leave-one-out basis to show their
method in a best-case scenario. It should also be noted that
their models require significant Gaussian blurring to improve
model variation.

We also compute regression values for the endo- and
epicardium. Figs. 10 and 11 show the regression graphs for
the endo- and epicardium, respectively, as training reduces.
Table III shows the regression values for the full range of
testing. We also show comparison against the recent variational
approach of Ayed et al. [37] and as well as the previous work
from our group, Lynch et al. [26], in Table IV. These results
show that our method compares favourably with state of the
art techniques and it should be noted that both papers [26],
[37] aim for pixel-level segmentations, a scenario that favours
the inclusion of the papillary muscles in the analysed 3D+time
data.
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TABLE I
ENDOCARDIUM SEGMENTATION RESULTS. MEAN REFERS TO THE

AVERAGE VOLUMETRIC POINT-TO-CURVE ERROR BETWEEN OUR METHOD
AND MANUAL ANNOTATIONS. VOLUME REFERS TO THE ABSOLUTE

VOLUME DIFFERENCE BETWEEN OUR SEGMENTATION AND MANUAL
ANNOTATIONS. (NOTE: THE RESULT FOR ZHANG et al. [23] IS AN

AVERAGE OF THEIR RESULT FOR NORMAL AND PATHOLOGICAL DATASETS)

Endocardium Results

Train - Test Mean (mm) Absolute Volume (cm3)

32 - 1 1.42± 0.24 5.19± 2.65

30 - 3 1.47± 0.16 5.51± 1.79

25 - 8 1.50± 0.11 5.52± 0.77

20 - 13 1.55± 0.11 5.74± 1.02

15 - 18 1.63± 0.11 6.41± 1.10

10 - 23 1.87± 0.21 7.92± 1.68

Andreopoulous [17] 1.43± 0.49 6.10± 6.44

Indicative Results

Kaus [7] 2.28± 0.93 –
Lynch [25] 1.24± 1.33 –

Lorenzo-Valdés [21] 1.88± 2.00 –
Zhang [23] 1.69± 0.38 –

TABLE II
EPICARDIUM SEGMENTATION RESULTS. MEAN REFERS TO THE AVERAGE

VOLUMETRIC POINT-TO-CURVE ERROR BETWEEN OUR METHOD AND
MANUAL ANNOTATIONS. VOLUME REFERS TO THE ABSOLUTE VOLUME

DIFFERENCE BETWEEN OUR SEGMENTATION AND MANUAL ANNOTATIONS.
(NOTE: THE RESULT FOR ZHANG et al. [23] IS AN AVERAGE OF THEIR

RESULT FOR NORMAL AND PATHOLOGICAL DATASETS)

Epicardium Results

Train - Test Mean (mm) Absolute Volume (cm3)

32 - 1 1.78± 0.45 10.78± 6.81

30 - 3 1.80± 0.20 11.48± 4.40

25 - 8 1.72± 0.13 10.10± 2.05

20 - 13 1.82± 0.11 10.84± 1.39

15 - 18 1.84± 0.09 11.37± 1.45

10 - 23 1.98± 0.13 12.26± 1.69

Andreopoulous [17] 1.51± 0.48 9.82± 8.97

Indicative Results

Kaus [7] 2.62± 0.75 –
Lynch [25] – –

Lorenzo-Valdés [21] 2.75± 2.62 –
Zhang [23] 1.89± 0.49 –

Finally, we show several qualitative examples of segmenta-
tions using our method, from a random selection of datasets
and slices within those datasets. We show 3 collections of im-
ages for 30, 20 and 10 training samples respectively (Figs 7, 8
and 9). These images qualitatively illustrate the robustness
of our approach, with limited training, in the presence of
significant anatomical variation, as well as variation in image
quality and intensity.

IV. CONCLUSION

We have presented a new model-based technique for
3D+time cardiac segmentation. Our main contribution is a
bottom-up modelling strategy that divides shape, spatial and
temporal variation into separate models. In this paper, we have

TABLE III
CORRELATION COEFFICIENTS BETWEEN MANUAL AND AUTOMATIC

VOLUMES.

Volume Regression Results

Train - Test Endocardium Epicardium

32 - 1 0.98 0.92

30 - 3 0.98 0.95

25 - 8 0.99 0.98

20 - 13 0.98 0.98

15 - 18 0.98 0.98

10 - 23 0.97 0.98

Andreopoulous [17] 0.95 0.97

TABLE IV
CORRELATION COEFFICIENTS BETWEEN MANUAL AND AUTOMATIC

AREAS.

Area Regression Results

Train - Test Endocardium Epicardium

32 - 1 0.97 0.93

30 - 3 0.96 0.93

25 - 8 0.96 0.94

20 - 13 0.95 0.93

15 - 18 0.95 0.93

10 - 23 0.91 0.91

Indicative Results

Ayed [37] 0.94 0.96

Lynch [26] 0.82 0.89

shown that by coupling the endo- and epicardium contours at
segmentation-time instead of at model-time, our method can
adapt to unseen contour configurations outside of the training
set. Finally, we replace the standard ASM fitting formulation
with a global contour optimisation technique that is shown to
be well suited to challenging imaging environments.

Compared with the single-model strategy our approach
requires significantly less training and does not suffer from the
’curse of dimensionality’. Our technique has been thoroughly
compared against several state-of-the-art works and has shown
consistently comparable or better performance. Specifically,
our technique requires between 83% and 89% less training
than the method detailed in [17] while maintaining comparable
segmentation accuracy. In future work we wish to demonstrate
our contour coupling approach in scenarios with multiple
spatially-related contours. For example, a natural extension is
application in left and right ventricle segmentation. Moreover,
we will investigate other application domains for our mod-
elling approach to illustrate the generalisability of our overall
modelling strategy for problems exhibiting complex spatio-
temporal variation.
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Fig. 7. Sample Segmentations using 30 training datasets.
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