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Abstract

Coronary MRI is a non-invasive imaging modality for diagnosis of coronary artery disease. One of 

the limitations of coronary MRI is its long acquisition time due to the need of imaging with high 

spatial resolution and constraints on respiratory and cardiac motions. Compressed sensing (CS) 

has been recently utilized to accelerate image acquisition in MRI. In this paper, we develop an 

improved CS reconstruction method, Bayesian Least Squares – Gaussian Scale Mixture (BLS-

GSM), that uses dependencies of wavelet domain coefficients to reduce the observed blurring and 

reconstruction artifacts in coronary MRI using traditional ℓ1 regularization. Images of left and 

right coronary MRI was acquired in 7 healthy subjects with fully-sampled k-space data. The data 

was retrospectively undersampled using acceleration rates of 2, 4, 6 and 8 and reconstructed using 

ℓ1 thresholding, ℓ1 minimization and BLS-GSM thresholding. Reconstructed right and left 

coronary images were compared with fully-sampled reconstructions in vessel sharpness and 

subjective image quality (1–4 for poor-excellent). Mean square error (MSE) was also calculated 

for each reconstruction. There were no significant differences between the fully sampled image 

score vs. rate 2, 4 or 6 for BLS-GSM for both right and left coronaries (p = N.S.). However, for ℓ1 

thresholding significant differences (p < 0.05) were observed for rates higher than 2 and 4 for right 

and left coronaries respectively. ℓ1 minimization also yields images with lower scores compared to 

the reference for rates higher than 4 for both coronaries. These results were consistent with the 

quantitative vessel sharpness readings. BLS-GSM allows acceleration of coronary MRI with 

acceleration rates beyond what can be achieved with ℓ1 regularization.
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I. INTRODUCTION

Coronary artery disease (CAD) caused approximately 1 of every 6 deaths in the United 

States in 2006 [26]. In 2010, an estimated 785,000 Americans will have a new coronary 

attack, and approximately 470,000 will have a recurrent attack. Catheter based, diagnostic 

invasive x-ray coronary angiography remains the clinical “gold standard” for the diagnosis 

of significant (> 50% diameter stenosis) CAD with over a million catheter based x-ray 

coronary angiograms performed annually in the United States. Although numerous non-

invasive tests are available to help discriminate among those with and without significant 

angiographic disease, up to 35% of patients referred for their initial elective catheter based 

x-ray coronary angiography are found to have no significant stenosis. Therefore, a non-

invasive imaging alternative to diagnostic x-ray angiography is desirable.

Alternatives for non-invasive coronary artery imaging include multidetector computed 

tomography (MDCT) and magnetic resonance imaging (MRI). Advantages of coronary 

MDCT include rapid image acquisition as well as superior isotropic spatial resolution. 

Advantages of coronary MRI include the lack of ionizing radiation or need for iodinated 

contrast (thereby facilitating repeated or follow-up scanning) and smaller artifacts related to 

epicardial calcium. Despite considerable advances in the past decade in coronary MRI, long 

data acquisition time of coronary MRI has been one of the main limitations of this 

technique. Several approaches such as partial Fourier, non-Cartesian sampling [29], [30], 

parallel imaging [20], [31], [32], [35], [40], use of exogenous contrast with efficient 

sampling [3], [4] have been used to accelerate image acquisition in coronary MRI. With all 

these efforts, the acquisition time for coronary MRI still remains long (5–10 min). 

Therefore, developments of methods to reduce data acquisition time in coronary MRI are 

appealing.

Compressed (or compressive) sensing (CS) is a novel approach that allows reconstruction of 

an image from a partially sampled k-space data [5], [27]. CS exploits the sparsity (or more 

generally the compressibility) of the image in a transform domain to reduce the required 

minimal data for reconstruction of an artifact-free image. CS reconstruction aims to 

minimize the sparsity of the reconstructed image in a transform domain subject to data 

consistency constraints comparing the estimate to the acquired k-space data. Minimization 

of the number of non-zero coefficients, which is a direct measure of sparsity, is NP-hard in 

general. Thus alternative measures, such as the ℓ1 norm of the transform domain coefficients 

have been used instead [7], [14].

There have been recent investigations of feasibility of CS in improving the imaging contrast 

in non-contrast enhanced steady-state free precession (SSFP) angiography [11], accelerating 

image acquisition in dynamic MRI [19] and first-pass cardiac perfusion MRI [33], and 

three-dimensional imaging of upper airways [23]. In all these studies, the reconstruction 
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method has been based on minimizing an ℓ1 objective function. This objective function 

results in blurring of the vessel boundaries that could limit its use in high resolution 

coronary imaging.

In this study, we sought to develop and investigate an improved CS reconstruction method 

that uses the dependencies of the wavelet domain coefficients and demonstrate its utility in 

accelerating coronary MRI data acquisition.

II. THEORY

A. Compressed Sensing via ℓp regularization

Let m be the imaging data of size n1 × n2 × n3 and F be the Fourier transform. Let FΩ denote 

the undersampling operator that keeps a subset Ω of the k-space and rearranges it to a vector, 

where |Ω| < n1 · n2 · n3. When the k-space is undersampled using the sampling pattern Ω, the 

measurement in the jth coil is given by

where Cj is the coil sensitivity map of the jth coil and nj is an additive noise vector.

Conventional CS reconstruction solves a minimization problem based on an objective 

function:

(1)

where the first term is a fidelity measure of image consistency (i.e. the difference between 

the measured k-space data and the undersampled k-space of the estimated image) and the 

second term is a sparsity regularizer Φ with weight τ. Typically Φ is chosen as the (pth 

power of) ℓp (p ≤ 1) norm of transform domain coefficients (e.g. wavelet or finite 

differences), which captures the sparsity of the image in a transform domain Ψ [5], [9], [27], 

[43]. From a Bayesian perspective, this regularization can be expressed as a maximum a 

posteriori (MAP) estimation:

(2)

In the presence of Gaussian measurement noise, the first term, log p(S|m) corresponds to the 

data fidelity term in Equation (1). The second term, log p(m) corresponds to the weighted 

sparsity regularizer in Equation (1), and after appropriate scaling (with the noise variance) it 

can be shown to correspond to using p(m) ∝ exp(− τ Φ (Ψm)) as the probability density 

function of the Ψ-transform coefficients [17]. Thus, regularizers based on ℓp norms 

correspond to independent and identically distributed (i.i.d.) transform domain coefficients.

B. Modeling Wavelet Domain Sparsity and Dependencies

ℓp norm regularizers in CS reconstruction treat wavelet domain coefficients as independent 

variables without considering additional information from the neighboring coefficients. 
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However, there is correlation between the wavelet coefficients of a given neighborhood that 

includes surrounding coefficients from the same subband, as well as neighboring 

coefficients from nearby scales [34]. There is also dependency between parent and child 

wavelet coefficients [2], [38]. Figure 1a shows the Haar wavelet coefficients of a 2D slice of 

a coronary image, which shows that a large wavelet coefficient in a given subband is likely 

to have large wavelet coefficients surrounding it. If a random permutation is applied to these 

wavelet coefficients, this structure is lost, yet the ℓp norm is preserved. This suggests that an 

independent coefficient model for the wavelet transform may not be capturing optimal 

information about the MR images. In this study, we investigate if additional information 

about the dependencies of the wavelet coefficients can improve image reconstruction for 

coronary MRI. Therefore, we will use a Gaussian scale mixture (GSM) model that can 

simultaneously capture the correlation and the sparseness of the wavelet transform [34] for 

reconstruction of coronary MRI.

The wavelet transform (Ψ) of an image m consists of coefficients  where o, s and l 

specify the orientation of the subband, its scale and the location of the coefficient within the 

subband respectively. In the GSM model, the neighborhood of the wavelet transform 

coefficients (x) surrounding  can be expressed as a zero-mean Gaussian vector θ 

weighted by a scalar random variable z with Jeffrey’s prior (pz(z) = 1/z) [1], [34]:

where the sparsity is modeled by z, as discussed in Appendix A, and the correlation between 

the neighboring coefficients is modeled using the local covariance of the subband at scale s 

and orientation o,  [34].

C. CS Image Reconstruction

Figure 2 shows the proposed coronary MRI reconstruction algorithm, which is based on the 

iterative soft thresholding (IST) algorithm [10], [12], [17]. It alternates between enforcing k-

space data consistency and de-aliasing, as follows: The current image estimate (m(t)) is 

weighted by coil sensitivity map (Ck) of each individual coil elements. This B1 weighted 

imaging data sets are then transformed to the Fourier space and in a data consistency step, 

the estimated k-space lines corresponding to the ones that were acquired during acquisition 

are replaced with the acquired k-space lines. The k-space data is then transformed into the 

image space using inverse Fourier transform and weighted by the conjugate of each 

individual coil maps and combined into a single image (v(t)). In the dealiasing stage, the 

estimated image (v(t)) is thresholded using the proposed Bayesian Least Squares (BLS)-

GSM method [34] depicted in Figure 3.

In the first step of the BLS-GSM thresholding, the current aliased image estimate v(t) is 

transformed to wavelet domain using a full steerable pyramids [34], [39] for complex data. 

The wavelet domain neighborhood h surrounding  in the current aliased estimate is 

defined as a 3 × 3 neighborhood of  in the same subband, and the parent wavelet 

coefficient from the adjacent subband. h is modeled as  by the 
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corresponding neighborhood x from the original unaliased image perturbed by a noise term 

w that only depends on the measurement noise n [17]. Each  undergoes a thresholding 

step that results in a new estimate  according to:

(3)

where  is the expectation operator. This new estimate, , can be calculated 

numerically as described below.

As described in Section II-B, the wavelet dependencies are exhibited for neighboring 

coefficients in the same subband, and for parent-children wavelet coefficients, hence each 

subband is handled separately. First, the sample covariance  for each subband of the 

wavelet transform of the current image estimate v(t) is calculated, followed by the 

computation of noise covariance  for the power spectral density corresponding to white 

Gaussian noise with mean 0 and variance 1 [34]. The neighborhood covariance  is also 

estimated using the noise-compensated sample covariance matrix from the aliased data as 

, where only the positive semi-definite part is preserved. For a given z, the 

first term in the integration can then be expressed as:

which is the Wiener estimate, where the expectation is over the Gaussian noise w. For a 

given value of z, p(h|z) is a Gaussian probability density function with mean 0 and 

covariance matrix . Hence, using the distribution of pz(z), p(z|h) can be 

calculated via Bayes’ rule numerically, for all z in the integration range [34]. The new 

thresholded estimate,  can then be calculated using the coordinate corresponding to 

the neighborhood center in the Wiener estimate vector (i.e.  and p(z|h) by 

numerical integration over z.

The  which are calculated for each neighborhood h are then replaced and a new 

image estimate is obtained using an inverse wavelet transform. The new estimated image is 

then used as an input to the CS data consistency algorithm outlined in Figure 2. The 

reconstruction method was iterated for 30 to 100 times based on acceleration rates, although 

empirical convergence of ║m(t) − m(t−1)║2/║m(t−1)║2 was typically observed sooner.

III. MATERIALS AND METHODS

The proposed method was implemented in MATLAB (MathWorks, Natick, MA) for off-line 

reconstruction on a workstation (Lenovo, Beijing, China) with a 2.66-GHz central 

processing unit and 8-GB random-access memory.

Written informed consent was obtained from all subjects and the imaging protocol was 

approved by our Institutional Review Board. All subjects were scanned using a 1.5 T 

Achieva magnet (Philips Healthcare, Best, NL) with a 5 channel phased-array coil.
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A. In Vivo Imaging

Our imaging study was performed for both the left anterior descending (LAD) and the right 

coronary artery (RCA). Coronary images for right and left coronary MRI was acquired in 

two different subject cohorts. For each anatomy, 7 healthy adult subject (4 men, 24.4 ± 10.6 

years for the RCA; 2 men, 34.7 ± 21.7 years for the LAD) without contraindications to MR 

imaging were included. Scout images were acquired with a SSFP sequence with 3.12 × 3.12 

mm2 inplane resolution and 10 mm slice thickness. A reference image set was acquired by 

using the body and phased array coils so that each individual coil sensitivity map could be 

calculated. This coil map was used only for cine acquisition and was not used in CS 

reconstruction. This was followed by an image set acquired with an axial breath-hold cine 

SSFP sequence (TR/TE = 3.7 ms/1.85 ms; temporal resolution, 48 ms; spatial resolution, 1.2 

× 1.2 mm2; acceleration rate, two) to visually identify the quiescent period of the RCA and 

the LAD. The corresponding trigger delay was used for coronary acquisition. A low-

resolution coronary survey three-dimensional (3D) volume was then acquired for 

localization and assignment of the appropriate imaging slab orientation. A free-breathing 3D 

electrocardiographically (ECG) gated SSFP sequence (TE/TR = 2.1 ms/4.3 ms; field of 

view, 270×270×30 mm3; flip angle, 90°; spatial resolution, 1 × 1 × 3 mm3) was used to 

image the RCA and the LAD. A spectrally-selective fat saturation and a T2 magnetization 

preparation [6] was used to improve the contrast. A two-dimensional spiral navigator echo, 

positioned on the right hemi-diaphragm [42], was used for respiratory motion gating with a 

gating window of 5 mm. The raw k-space data were recorded for all acquisitions. The 

nominal scan times computed by the scanner for our acquisition parameters and a heart rate 

of 60 beats per minute are 3 minutes 57 seconds and 3 minutes 43 seconds for the RCA and 

LAD scans respectively. The actual scan times are higher based on the respiratory gating 

efficiency, which is usually in the range of 30–50 %.

The k-space data was exported and transferred to a standalone workstation to allow 

retrospective undersampling by factors of 2, 4, 6, and 8. The central 10 to 16 phase encode 

lines in the central slices were kept. The edges of the k-space were randomly discarded 

based on a Gaussian distribution [11], [27]. The choice for the size of central k-space was 

done experimentally, with a reduced size for higher rates to guarantee enough edge 

information is included. The relative B1 coil maps were reconstructed from the fully-

sampled data by dividing each individual coil data to the root sum square of all the coil data 

[21]. As a comparison with the proposed BLS-GSM CS reconstruction, images were also 

reconstructed using ℓ1 soft thresholding in IST [17], as well as ℓ1 minimization via basis 

pursuit using the SPGL1 [44].

B. Image Analysis

Both subjective and objective image analysis were performed to evaluate the three CS 

reconstruction at different rates. For each patient, thirteen imaging datasets were 

reconstructed from the original raw k-space data, which consisted of one from a fully-

sampled k-space, 4 datasets reconstructed using BLS-GSM CS for different rates of 2, 4, 6, 

and 8, 4 datasets using ℓ1 thresholded CS reconstruction for the same rates, and finally 4 

datasets using ℓ1 minimization for these rates.
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The SoapBubble [16] tool was used to quantitatively evaluate the vessel definition utilizing 

a Deriche algorithm [13] on the RCA. Vessel sharpness scores were calculated for both sides 

of the vessel. Final normalized sharpness was defined as the average score of both sides 

normalized by the center of vessel intensity. A sharpness score closer to 1 represents a 

sharper vessel border.

The mean square error (MSE) of each reconstruction was calculated as

where only the magnitude of the reconstructed images were used for comparison to the root-

sum-squares reference image. The normalized MSE was then calculated by dividing each 

individual MSE to the squared ℓ2 norm of the reference image.

Qualitative assessment of coronary artery image quality was performed by two experienced 

independent blinded readers with > 10 years coronary MRI experience using a four-point 

scale system [22]: 1, indicating poor or uninterpretable (coronary artery visible, with 

markedly blurred borders or edges); 2, good (coronary artery visible, with moderately 

blurred borders or edges); 3, very good (coronary artery visible, with mildly blurred borders 

or edges); or 4, excellent (coronary artery visible, with sharply defined borders or edges). 

For each image, separate scores were given for the proximal, mid and distal segments of 

RCA for the right coronary scans, and left main, proximal, mid LAD and left circumflex 

artery (LCX) for the left coronary scans. These scores were combined for the right and left 

systems respectively for statistical analysis.

C. Statistical Analysis

All measurements are presented as mean ± one standard deviation. Due to the small sample 

size, and the statistical significance of the Shapiro-Wilk test for normality of the paired 

differences of the scores (person-specific difference between each technique and the 

reference which is a fully sampled k-space acquisition), the nonparametric signed rank test 

was used to test for the null hypothesis that the central tendency of the difference was zero at 

different acceleration rates. Bonferroni correction was performed to account for multiple 

comparisons. All statistical analyses were performed using SAS (v9.2, SAS Institute Inc., 

Cary, NC). A Bonferroni-corrected type-I error of 0.004 (0.05 divided by 12 comparisons) 

was used to consider for statistical significance.

IV. RESULTS

The top row of Figure 4 shows a sample 2D slice from a 3D right coronary MRI data set 

reconstructed using ℓ1 norm thresholding for fully sampled k-space data, and acceleration 

rates of 4, 6 and 8. The corresponding slice reconstructed using BLS-GSM approach is 

shown in the middle row, and that for ℓ1 minimization is shown in the bottom row. RCA can 

be readily visualized in all images. At higher rates of 6 and 8 the the images reconstructed 

using ℓ1 norm thresholding and ℓ1 minimization suffer from higher level of artifacts. Thus, 

BLS-GSM allows improved visualization of the coronaries. Figure 5 shows three different 
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slices from the 3D coronary data set of a different subject reconstucted using BLS-GSM 

technique for fully sampled k-space data as well as CS acceleration rates of 4, 6 and 8. At 

acceleration rates of 4 and 6, this approach yield images with image quality comparable to 

the fully sampled images. There is a degradation of image quality at rate 8, however no 

distinct visual artifact can be seen. A reduced SNR and increased blurring may impact 

interpretation of the images even without a distinct artifact at such a high acceleration rate. 

Figure 6 depicts reformatted images of LAD, LCX and proximal RCA from a 3D left 

coronary MRI data set reconstructed using the three approaches. The visibility at higher 

rates are better compared to right coronary data sets, but the degradation at higher rates is 

still visible. Both ℓ1 norm approaches suffer from blurring at high rates, although this is 

manifested differently for each technique. BLS-GSM allows for improved visualization at 

higher rates, but also has artifacts.

Figure 7 summarizes the imaging scores and MSE of the reconstructed RCA and LAD 

images using ℓ1 thresholding, BLS-GSM thresholding, and ℓ1 minimization. Additionally, 

sharpness results are included for the RCA. For the RCA, the images reconstructed using 

BLS-GSM with acceleration rate 8 was scored significantly lower (p < .0001) than the fully 

sampled images. There was no statistically significant difference between acceleration rates 

of 2 and 6 with BLS-GSM. For ℓ1 thresholding CS reconstruction, there was significant 

degradation of image quality for rates 4 and higher, and at rates 6 and higher for ℓ1 

minimization. For the LAD, there was no statistically significant difference between 

acceleration rates of 2 and 6 with BLS-GSM. Both ℓ1 -based techniques exhibited 

significant degradation at rates higher than 4.

The mean value of MSE for BLS-GSM CS was lower than ℓ1 based techniques for rates 4 

and higher for the RCA, with ℓ1 minimization having a smaller MSE than ℓ1 thresholding. 

Similarly, BLS-GSM had the highest sharpness score among the three reconstruction 

methods. ℓ1 minimization had a slightly higher sharpness score than ℓ1 thresholding. For the 

LAD, the lowest MSE was consistently achieved by ℓ1 minimization, followed by BLS-

GSM CS, and ℓ1 thresholding.

V. DISCUSSION

We have developed a novel CS reconstruction technique based on exploiting the wavelet 

domain dependencies of coronary MR images, in addition to wavelet domain sparsity. The 

reconstruction algorithm alternates between data consistency and thresholding stages. In the 

thresholding stage, it utilizes a probabilistic model that captures both wavelet domain 

sparsity and the dependencies of the magnitudes of wavelet domain coefficients in a given 

neighborhood.

Constraints such as an assumption of deterministic model on the sparsity structure (e.g. 

assuming the data fits a wavelet-tree model) results in reduction of the the number of 

measurements required for reconstruction [2]. In our model, we impose a probabilistic 

model on the sparsity structure using the GSM model, which may allow similar gains, while 

not limiting the algorithms to a reduced search space containing only signals that fit the 

proposed model.
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There have been several recent works aimed at combining parallel imaging and CS [18], 

[25], [28]. The proposed approach can be used instead of the conventional ℓ1 thresholding in 

the implementation of the CS step of these algorithms. It may also improve image 

reconstruction in other anatomical or functional imaging, which requires further 

investigation.

We have chosen the steerable pyramids as the choice of the wavelet transform. However, the 

GSM model for neighborhoods applies to any wavelet transform. The wavelet dependencies 

are more pronounced for over-complete or oriented wavelet transforms, such as 

undecimated discrete wavelet transforms [24], the dual-tree complex wavelet transforms 

[37] or curvelets [41].

In terms of computational complexity, the data consistency stages complexity is dominated 

by an FFT and an IFFT, both of O(n1 · n2 · n3 · log(n1 · n2 · n3)), which is standard in many 

reconstruction algorithms. The thresholding stage for a fixed neighborhood size scales 

linearly in the transform domain dimensions. However, two numerical integrations are 

carried out for each wavelet domain coefficient, thus the constant overhead is quite high. On 

a standard Lenovo workstation with a 2.66-GHz central processing unit and 8-GB random-

access memory, the thresholding of a 544 × 270 × 18 volume takes about 5 minutes per 

iteration using a MATLAB-only implementation. Thus, although the scaling properties of 

the algorithm are well-behaved, the running time is longer than iterative ℓ1 methods, but still 

less than linear programming based methods [7]. Furthermore, the use of overlapping 

neighborhoods around each central coefficient implies that a given coefficient will be in 

multiple neighborhoods. Exact global inference on such a model is highly intractable [34], 

and our sparsity regularizer simply thresholds the central coefficient for each neighborhood 

separately. Thus, the thresholding no longer corresponds to a MAP estimate. Even though 

convergence is observed empirically, we do not have a proof of convergence for the IST 

algorithm with BLS-GSM thresholding.

In our study, we have used a fully sampled data to generate the coil maps, which was used 

during the reconstruction. In a prospective acquisition, fully-sampled data is not available, 

therefore a low resolution coil map should be used with proper processing. There are several 

approaches to better estimate the coil map from low resolution images for parallel imaging 

reconstruction [21], [35]. These methods could be applied to improve estimation of the coil 

map for CS reconstruction. Additionally, in coronary MRI, data is acquired only in a short 

period of cardiac cycle, therefore, a fully sampled data can be acquired with the penalty of 

potential respiratory motion artifacts in cases where the acquisition window is increased or 

acquired in different heart phases. The issue of estimating the optimal coil map was not 

studied and requires further investigation, especially in an iterative reconstruction where 

errors of estimation can easily propagate through reconstruction steps.

Our study has limitations. Only a small number of young healthy adult subjects were 

studied. Further studies are needed to study the clinical evaluation of the proposed coronary 

MRI for diagnosis of coronary artery disease. We have also not compared our method to 

total variation based methods. Additionally, all undersampling experiments were performed 

retrospectively. This study used a retrospective approach as the first step to evaluate the 
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feasibility of CS in coronary MRI. Therefore the achievable acceleration rates in a 

prospective study might be lower. Furthermore, other factors such as optimal undersampling 

pattern, eddy current due to random jumps in k-space, optimal phase ordering scheme, 

considering its impact on contrast and signal to noise ratio as well as flow, needs to be fully 

investigated prior to a prospective acquisition. The choice of neighborhood size was 

determined experimentally, and was fixed for the duration of the study. The choice of 

thresholding parameter was not automated and was selected empirically.

VI. CONCLUSION

We have developed and evaluated an improved CS reconstruction method for accelerating 

coronary MRI by exploiting the dependencies of the wavelet coefficients in addition to their 

sparsity.
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APPENDIX A: SPARSITY MODELING WITH JEFFREY’S PRIOR

Consider the sparsity model, where each transform domain coefficient is assumed to be 

i.i.d., i.e. the GSM neighborhoods are one-dimensional. Since orientation and scale are not 

important in this discussion, we will index the wavelet coefficients as {uk} for ease of 

notation, where k indexes through the whole wavelet space. With pz(z) = 1/z, the single-

wavelet-domain-voxel probability density function in the GSM model is px(x) = pu(u) ∝ 1/|

u| [36]. In the Bayesian interpretation, this corresponds to a regularizer . 

There is a one-to-one correspondence between the minimizer of Equation (1) with this 

regularizer and the sparsity regularizer based on ℓ0-norm ║u║0, since 

 and  [45]. Thus Jeffrey’s prior 

(with i.i.d. transform domain coefficients) models sparsity regularization with ℓp norm 

minimization where p → 0.

APPENDIX B: STUDY OF NOISE RESILIENCE

In order to assess the immunity of proposed method against a range of noise variance levels, 

the following study was carried out: A 2D MRI scan of a resolution phantom, with a spatial 

resolution of 1 × 1 mm2 was performed. A reference image was generated from this data 

using root-sum-squares of each coil image. The SNR of this image was measured, as the 

ratio of the signal intensity in a prescribed region-of-interest (ROI), and the signal standard 

deviation in a region of noise-only signal. This SNR was subsequently used as the baseline 

SNR. Then Gaussian noise was added to the original k-space data, and another image was 

generated. The relative SNR (rSNR) was defined as the ratio of the SNR of this image to the 
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the baseline SNR. The noisy k-space data were then undersampled at an acceleration rate of 

four, and reconstructed using the proposed technique. The normalized MSE (with respect to 

the reference) were measured for each reconstruction, as well as for the noisy image 

generated from the full noisy k-space data. The results are depicted in Figure 8.

The results indicate that the MSE of BLS-GSM increases with noise. The scaling is roughly 

linear with the square of the noise magnitude (or inverse square of the rSNR), as predicted 

by the CS theory. We note that at very low rSNR, the reconstructed image has a lower MSE 

than the image generated from the fully-sampled noisy k-space, due to the thresholding 

abilities of the algorithm.
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Fig. 1. 
(a) Wavelet coefficients (Haar) of a 2D slice of a coronary image (blue = 0). (b) Random 

permutation of the same coefficients shown in (a). Both data have equivalent ℓp norm, which 

suggests ℓp norm regularizes do not take into account the clustering and correlation of 

information in the wavelet domain, as exhibited in (a). (c) shows the log marginal histogram 

of wavelet coefficients from one subband (magnitude image), and (d) shows the conditional 

histogram for two adjacent wavelet coefficients. The empirical distributions have similar 

characteristics as the Gaussian Scale Mixture model.
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Fig. 2. 
The proposed reconstruction algorithm for coronary MRI. In the data consistency stage, the 

acquired k-space lines replaces the corresponding k-space lines of the estimate. In the 

thresholding stage, we use our proposed Bayesian Least Squares – Gaussian Scale Mixture 

(BLS-GSM) thresholding, instead of conventional ℓ1 soft thresholding strategy. We note that 

the sampling pattern depicted here is a simple example for visualization purposes, and the 

actual 3D undersampling patterns are described in Section III-A.
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Fig. 3. 
The proposed BLS-GSM thresholding algorithm for coronary MRI. For each of the NS 

subbands of the wavelet transform, the sample covariance matrix of the current image 

estimate,  is calculated over neighborhoods h. Using the pre-computed sample noise 

covariance matrix of the same subband, the neighborhood covariance is calculated by 

keeping the positive semi-definite part of the noise-adjusted covariance matrix 

. Using these covariance matrices, the Wiener estimate of each 
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neighborhood of the subband is calculated by  for every z in the 

integration range. The probability density function p(z|h) for the subband is also calculated 

for the integration range of z via Bayes’ rule. The thresholded estimate for each coefficient 

in the subband is then calculated by numerical integration with respect to z of the 

corresponding coefficient of the Wiener estimate multiplied by p(z|h).
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Fig. 4. 
An example slice of a 3D right coronary MR image from fully-sampled data (reference), and 

from ℓ1 thresholded (top row), BLS-GSM thresholded (middle row) and ℓ1 minimized 

(bottom row) reconstructions for accelerated acquisition rates of 4, 6 and 8. Right coronary 

artery (RCA) can be readily visualized in all images, although more artifacts are visible at 

higher rates and for ℓ1 norm-regularized CS (AO: Aortic Root, RV: Right Ventricle, LV: 

Left Ventricle).
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Fig. 5. 
Multiple slices of a 3D coronary MR image from fully-sampled data (reference), and from 

reconstructions using the proposed BLS-GSM method for accelerated acquisition rates of 4, 

6 and 8.
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Fig. 6. 
Reformatted axial images of right coronary artery (RCA), left anterior descending artery 

(LAD) and left circumflex artery (LCX) from fully-sampled 3D left coronary MRI data 

(reference), and from ℓ1 thresholded (top row), BLS-GSM thresholded (middle row) and ℓ1 

minimized (bottom row) reconstructions for accelerated acquisition rates of 4, 6 and 8. The 

coronaries can be readily visualized in all images, although blurring is apparent at higher 

rates for ℓ1 norm-regularized CS.
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Fig. 7. 
The imaging score and associated p-value, normalized mean square error (MSE) and 

normalized sharpness for all reconstruction rates using BLS-GSM thresholding, ℓ1 

thresholding, and ℓ1 minimization.
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Fig. 8. 
The results of the artificial noise study. The MSE of BLS-GSM reconstructions increase 

with noise, but stays bounded. At lower relative SNRs, the thresholding allows for partial 

noise removal.
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