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Abstract
Efficient segmentation of globally optimal surfaces in volumetric images is a central problem in
many medical image analysis applications. Intraclass variance has been successfully utilized for
object segmentation, for instance, in the Chan–Vese model, especially for images without
prominent edges. In this paper, we study the optimization problem of detecting a region (volume)
between two coupled smooth surfaces by minimizing the intraclass variance using an efficient
polynomial-time algorithm. Our algorithm is based on the shape probing technique in
computational geometry and computes a sequence of minimum-cost closed sets in a derived
parametric graph. The method has been validated on computer-synthetic volumetric images and in
X-ray CT-scanned datasets of plexiglas tubes of known sizes. Its applicability to clinical data sets
was also demonstrated. In all cases, the approach yielded highly accurate results. We believe that
the developed technique is of interest on its own. We expect that it can shed some light on solving
other important optimization problems arising in medical imaging. Furthermore, we report an
approximation algorithm which runs much faster than the exact algorithm while yielding highly
comparable segmentation accuracy.
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I. Introduction
Efficient segmentation of globally optimal surfaces in volumetric images is a central
problem in many medical image analysis applications. While edges defined by image
gradients are commonly used for segmentation, many object boundaries in medical image
data may lack strong edges. For example, multiple adjacent objects with similar intensity
profiles may be locally noisy and may not exhibit distinct edge properties. Image
segmentation having the capability of handling weak edges is crucially important in medical
image analysis. Intraclass variance has been successfully used in the Chan–Vese active
contour model without using image gradient [1], which is based on a piecewise constant
minimal variance criterion of the Mumford-Shah functional [2]. The following formula
captures the intraclass variance, which is the data-driven term of the energy function used by
Chan and Vese:

(1)

where u0 is the image,  is a variable closed boundary surface, and the constants c1 and c2,
depending on , are the average intensity of u0 inside and outside , respectively. This
energy function (intraclass variance) was proven capable of producing promising results [1].
However, Chan and Vese’s method lacks the ability of finding the global optimality. Chan
and Vese also considered two regularization terms in their energy function, which regularize
the length of the boundary and the area of the region. The regularization terms tend to
smooth the boundary of the target object.

We report a novel algorithm for finding a globally optimal solution to segmentation by
minimizing the intraclass variance. Our approach detects an optimal region between two
coupled terrain-like surfaces in a volumetric image in a low-order polynomial time. Instead
of adding the smoothness regularization term to the objective function as in the Chan–Vese
model, we explicitly enforce the smoothness of the target surfaces with geometric
constraints between neighboring voxels on the surfaces (see details in Section III). The
proposed method is limited to handling those target objects that can be “unfolded” into two
coupled terrain-like surfaces, which may seem to highly limit the application scope of the
method. However, as we will demonstrate, the guarantee of global optimality and the
freedom to design problem-specific cost functions allow the method to be applied to various
medical image segmentation problems. Examples include the delineation of inner and outer
airway wall surfaces in pulmonary CT images and the detection of endocardial and
epicardial boundaries of the left ventricle from cardiac MR, both of which are difficult to
solve by previous techniques. We show that the optimal solution can be obtained via the
construction of the convex hull for a set of O(n) unknown 2-D points using the shape
probing technique [3], [4] in computational geometry, where n is the size of the input image.
The probing oracles are implemented by computing a minimum s-t cut in a weighted
directed graph. The intraclass variance can then be minimized by a sequence of calls to the
minimum s-t cut algorithm. The shape probing technique has been used for image
segmentation in the past [5], [6]. We also believe that the developed technique is of interest
on its own. We expect that it can help solving other important optimization problems in
medical imaging. We further develop an approximation method which runs much faster than
the exact algorithm while yielding highly comparable segmentation accuracy. Part of the
preliminary results related to this research has been presented in a conference paper [7].
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II. Previous Work
A. Chan–Vese Related Optimization Methods

Several methods have been published for globally optimizing the Chan–Vese functional.
Chan et al. [8] developed global minimizers to the Rudin–Osher–Fatemi model for
denoising and extended the idea to the Mumford–Shah and Chan–Vese models. Based on
that research, Bresson et al. [9] defined new variational models (including the Chan–Vese
functional) unifying the classical snake and the geodesic active contour models. They
developed global minimizers to their segmentation variational models based on a dual
formulation of the total variational (TV) norm. In their approach, the mean intensities of the
target object and the background are fixed in each iteration and updated occasionally,
aiming at converging to the actual values of the average intensities. Li et al. [10] developed
a graph searching based approach for globally optimal detection of multiple surfaces, which
only utilizes the image gradient information. As a by-product, they derived an
approximation method for optimizing the Chan–Vese cost functional by estimating the mean
intensity. This approach, however, does not guarantee a globally optimal solution.
Furthermore, the previously presented method for the Chan–Vese functional works only for
the detection of a target object bounded by a single surface.

Global optimization for other variational segmentation methods has recently attracted
intensive research. For example, Cohen and Kimmel [11] and Appleton and Talbot [12]
developed methods to compute globally optimal solutions to the active contour and the
geodesic active contour models, respectively. Appleton and Talbot further extended their
approach in [13] to compute minimal surfaces using continuous maximal flows. Ardon et al.
[14] generalized globally minimal paths for curve segmentation in 2-D to surface
segmentation in 3-D. Their approach exploits the solution to the Eikonal equation and
generates a function whose zero level set contains all the globally minimal paths between
two user-supplied curves through a linear partial differential equation. However, all those
variational methods inherently rely on approximating numerical schemes which must be
very carefully designed to ensure robustness and convergence.

B. Graph Search and Graph Cut Methods
Many graph-based methods have been developed for optimal segmentation of medical
image data. Methods using the graph-searching principle [15]–[19] have become important
medical image segmentation tools in 2-D. But it was not until recently that the graph-search
method was extended to d-D (d ≥ 3). Wu and Chen [20] first developed a graph-search
based method for single surface detection and then Li et al. [10] extended the work for
detecting multiple interacting surfaces. Generalized version of this method is dubbed
LOGISMOS, which stands for layered optimal graph-based image segmentation of multiple
objects and surfaces. Note that the LOGISMOS approach has been developed independently
of and in parallel to the well-known approach of Boykov and Jolly [21]. The basic idea of
the LOGISMOS framework is to formulate the tasks as a minimum-cost closed set problem
in graph theory, which can be solved by a minimum s-t cut algorithm. The two approaches,
despite sharing the same underlying s-t cut graph optimization, are substantially different in
the way how image surface segmentation problem is represented and especially in the ability
to simultaneously deal with multiple objects and multiple surfaces.

Recently, the graph-cut based segmentation method of Boykov et al. (e.g., [22]), which
represents an option for optimally performing segmentation tasks in 3D, has attracted a lot
of attention. The cost function employed in their work follows the “Gibbs model,” which is
general enough to include both the region and boundary properties of the target objects.
Their approach, which is topologically flexible and shares some elegance with the level set
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methods, has been quite successful. Though desirable for segmenting objects of unknown
structures in many applications, topology flexibility in medical image segmentation may
sometimes be considered a liability rather than an advantage since many medical structures
have known topologies. Furthermore, Boykov et al.’s method is non-trivial to be extended to
simultaneous detection of coupled surfaces. Delong and Boykov’s work [23] is one step
towards that goal. More recently, Grady [24] presented a method for minimal surface
computation based on the minimum-cost circulation network flow algorithm, which is an
extension of the shortest path segmentation method to 3D.

C. Coupled Surface Segmentation
Due to the imperfections of medical imaging techniques, insufficient image-derived
information may be available for defining an object boundary or surface. This insufficiency
can be remedied by using clues from other mutually related boundaries or surfaces. Co-
optimization of coupled surfaces thus frequently yields superior results compared to the
traditional single-surface detection approaches. Several methods for handling coupled
surfaces have been proposed in recent years (e.g., [25]–[28]). They all demonstrate good
performance in a wide variety of medical image segmentation problems. None of them,
however, guarantees a globally optimal solution. The method in [28] is essentially 2-D and
the performance depends on the initial model. It is based on coupled parametric deformable
models with self-intersection avoidance, which requires a complex objective function and is
computationally expensive. The methods in [26], [27] utilize level-set formulations that can
take advantage of efficient time-implicit numerical schemes [29]. They are not topology-
preserving [25]. Further, the local boundary-based formulation in [26] can be trapped in a
local minimum that is arbitrarily far away from the global optimum. While the introduction
of a weighted balloon-force term may alleviate this difficulty [27], it exposes the method to
a “leaking” problem.

III. Problem Modeling
Let I be a given 3-D volumetric image of n = X × Y × Z voxels, where X, Y, and Z denote
the image sizes in x, y, and z directions, respectively. The intensity level of every voxel (x,
y, z) (1 ≤ x ≤ X, 1 ≤ y ≤ Y, and 1 ≤ z ≤ Z) is denoted by I(x, y, z). We consider the desired
region (target object) R that is bounded by two coupled terrain-like surfaces, Sl and Su, and
oriented as shown in Fig. 1. Each of the bounding surfaces intersects with exactly one voxel
of every column parallel to the z-axis. We look for an optimal region by minimizing the
intraclass variance among all feasible regions that can be defined in the 3-D volumetric
image I. Let μ0(respectively, μ1) be the average intensity of the desired region R
(respectively, the background R̄ = I − R), that is μ0 = 1/|R|Σ(x,y,z)∈R I(x, y, z), and μ1 = 1/|R̄|
Σ(x,y,z)∈R̄ I(x, y, z). The intraclass variance is

(2)

The feasibility of a region in I is constrained by two sets of application-specific parameters:
1) surface smoothness parameters, Δx and Δy, and 2) surface separation parameters, δl and
δu. The surface smoothness parameters guarantee the continuity of the bounding surfaces of
R. More precisely, if (x, y, z) and (x + 1, y, z′) (respectively, (x, y + 1, z′)) are two voxels
on a feasible bounding surface, then |z − z′| ≤ Δx (respectively, |z − z′| ≤ Δy). The surface
separation parameters ensure that the two bounding surfaces, Sl and Su, of the desired region
R are at a certain distance range apart, that is, for every pair (x, y), 0 < δ1 ≤ Su(x, y) − Sl(x,
y) ≤ δu, where S(x, y) denotes the z-coordinate of the intersection voxel of the surface S
with the column (x, y) of I. Comparing to the regularizing terms used in Chan and Vese’s
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method [1], our geometric constraints not only regulate the smoothness of the bounding
surfaces, they also incorporate essential shape information: the guarantee of mono-tonicity
and topological constraints.

IV. The Algorithm
Although minimizing the intraclass variance for general object shapes is computationally
intractable, we are able to optimally detect the region bounded by two coupled terrain-like
surfaces (or those regions that can be “unfolded” into two coupled terrain-like surfaces) in
low-order polynomial time using the techniques of parametric search [30], hand probing [3],
[4] in computational geometry, and 3-D graph-searching [10], [20], [31].

Let μ = 1/n Σ(x,y,z) ∈ I I(x, y, z) be the average intensity of the entire image I. It is known
that minimizing the intraclass variance (R) is equivalent to the maximization of the
following objective function [32]

which is actually the interclass variance of R and R̄.

The equivalency of the two objective functions can be shown, as follows:

(3)

and

(4)

Noticing that both Σ(x,y,z) ∈I I(x, y, z)2 and (Σ(x,y,z) ∈I I(x, y, z))2/n are constants for a given
image, the two objective functions differ by a constant, and thus minimizing (R) is
equivalent to maximizing  (R).

Note that the objective function  (R) is invariant if we replace I(x, y, z) by Ĩ(x, y, z) =
I(x, y, z) − μ for every voxel (x, y, z) in I. We thus, without loss of generality (WLOG),
assume that μ = 0 and, accordingly

(5)

where U(R) =Σ(x,y,z) ∈ R I(x, y, z). Note that U(R) could be negative. If U(R) < 0 for an
optimal region R, then we can define a new image such that the intensity of each of its voxel
(x, y, z) is −I(x, y, z). It is not difficult to see that an optimal region in this new image is also
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an optimal one in the original image. Hence, WLOG, we can assume U(R) ≥ 0, and thus
minimizing (R) is equivalent to maximizing

(6)

Let us further demonstrate how to find an optimal region R while maximizing Ψ(R), where
R is bounded by two coupled terrain-like surfaces.

A. Overview of the Algorithm
To maximize Ψ(R), the following straightforward observation holds: for each k = 0, 1, …, n,
if an optimal region  of size k can be computed so that it maximizes the total sum of
intensity of all voxels in the region [denoted by ], the problem is solved.
Unfortunately, finding a region maximizing the sum of intensity for a given size is not an
easy task at all. However, viewing the problem in this way provides a basis for further
exploitation of the intrinsic geometric structure of the problem.

For each k = 0, 1, …, n, the pair (k, ) defines a point on the 2-D plane, on which the x-
axis represents the number of voxels of a desired region R and the y-axis represents U(R),
thus forming a set  of n + 1 points. A key observation here is that it may not be necessary
to compute all points in . A classical concept in computational geometry [33], called
convex hulls, plays an important role. The convex hull CH( ) of a point set  is the unique
convex polygon which contains  and all vertices of which are points from . Using similar
techniques in [5], [6], we can prove the following lemma.

Lemma 1—The point (|R*|, U(R*)) defined by an optimal region R* in I (i.e., Ψ (R*) =
maxR Ψ(R)), must be a vertex of the convex hull CH( ).

Proof: Let . Consider the curve ξ:  in the 2-

D plane (see Fig. 2). Since , the point (|R*|, U(R*)) is on the curve

ξ. Notice that . Thus, for any region R bounded by two

coupled terrain-like surfaces, we have , i.e., every point
 lies below or on the curve ξ. Furthermore, due to the

concavity of the curve ξ: , all points in  lie below or on the tangent line l to
ξ at the point (|R*|, U(R*)). Hence, (|R*|, U(R*)) is a vertex of the upper chain of the
convex hull CH( ) of .

Thus, finding the optimum can be simplified to examining all convex hull vertices. Inspired
by the shape probing method [3], [4] which can be viewed as recognizing a convex polygon
by “touching with lines,” we use the following probing oracle to construct CH( ) when the
coordinates of the points in  are unknown. The probing oracle is:

Given a slope θ, report the tangent line with slope θ to CH( ) and the tangent point.

Using this probing oracle, the convex hull CH( ) can be constructed as follows. Start with
slopes +∞ and −∞ to find the two endpoints of  (left-most and right-most points, which
are always (0, 0) and (n, 0) in this problem). Note that the convex hull CH( ) is always an
upper portion (or upper convex chain). Now suppose that two vertices u and v were
computed on the hull and that so far there is no vertex of CH( ) between u and v. Let θ be
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the slope of the line through u and v. Then, employ a probing oracle with respect to θ (see
Fig. 3). Consequently, we either find a new vertex on CH( ) between u and v or conclude
that uv is an edge of CH( ). Thus, employing a probing oracle results in either a new vertex
or a new edge of CH( ). Hence, the convex hull CH( ) with k vertices can be computed in
O(k) probing oracle application steps.

A major challenge is to implement this oracle for a given slope θ. The parametric search
[30] in computational geometry is utilized. For a given real-valued parameter θ, we define a
parametric image Iθ with Iθ(x, y, z) = I(x, y, z) − θ for every (x, y, z) tuple. The parametric
intensity sum of a region R, denoted by Uθ(R), equals to the total sum of the intensities of
all voxels in R minus θ|R| (i.e., Uθ(R) = U(R) − θ|R|). We show in Lemma 2 that, the
tangent point of the tangent line with slope θ to CH( ) is defined by the optimal feasible
region with a maximized intensity sum in the parametric image Iθ. This last step of finding
the optimal region in Iθ can be solved using the graph-based segmentation method [10].

The key shape probing procedure can therefore be summarized as follows.

ShapeProbe (I, kleft, Uleft, kright, Uright)

1. θ ← (Uright − Uleft)/(kright − kleft)

2. Find the region R*(θ) such that Uθ(R*(θ)) = maxRUθ(R).

3. if |R*(θ)| ≠ kleft then do

4. ShapeProbe (I, kleft, Uleft, |R*(θ)|, U(R*(θ)))

5. ShapeProbe (I, |R*(θ), U(R*(θ)), kright, Uright)

The input to the subroutine ShapeProbe includes two known hull vertices u(kleft, Uleft) and
v(kright, Uright), with no known hull vertices in between so far. The subroutine finds all hull
vertices of CH( ) between u and v. Line 1 calculates the slope θ of the probing line. Line 2
computes an optimal region R*(θ) whose parametric intensity sum is maximized to
implement the probing oracle. Then, if a new hull vertex (|R*(θ)|, U(R*(θ))) between u and
v is found, as shown in Line 3, the procedure recursively computes all hull vertices on both
left and right convex hull chains divided by (|R*(θ)|, U(R*(θ))). Thus, the convex hull
CH( ) is computed. Based on Lemma 1, we can examine every vertex of CH( ) to find the
optimum. We next show the efficient implementation of the probing oracle.

B. Implementation of the Probing Oracle
Given a real-valued parameter θ, we show in this section that the probing oracle can be
implemented by computing in I an optimal region R*(θ) whose parametric intensity sum
Uθ(R*(θ)) is maximized. We call R*(θ) an optimal parametric region associated with the
parameter θ. Recall that  denotes an optimal region in I whose total intensity sum  is
maximized and the size of the region is exactly k.

Lemma 2—There exists a tangent line to CH( ) at the point (k̄, ) with a slope θ if

and only if |R*(θ)| = k̄ and .

Proof: The proof of this lemma is similar to that in [5], [6].

“⇒” Suppose that l: y = θx + b is a tangent line to CH( ) at the point (k̄, ). This

implies that . Note that CH( ) is actually the upper chain of the
convex hull. Thus, for any k ≠ k̄, the point (k, kθ + b) on l is on or above CH( ).
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Alternatively, , that is  for any k ≠ k (see Fig. 4).

Hence, the region  achieves . Note that

. Thus, .

“⇐” The fact that |R* (θ) | = k̄ indicates that, for any feasible region R(θ) bounded by two
coupled terrain-like surfaces, if |R(θ)| ≠ k̄, then U(R(θ)) − |R(θ)| · θ ≤ Uθ(R*(θ)). Thus, for

any k ≠ k̄, . Based on the assumption that  and |R*(θ)|

= k̄, we have  for any k ≠ k̄.Consider the line l: y−θx = b with

. Obviously, the point (k̄, ) is on Line l and any other point (k, )
with k ≠ k̄ is on or below Line l (see Fig. 4). Hence, Line l is a tangent line to CH( ) at the

point (k, ) with a slope θ.

This proves Lemma 2.

Consequently, for a given slope θ, we need to compute an optimal parametric region R*(θ)
bounded by two coupled terrain-like surfaces in I. If the size of R* (θ) is k̄, based on Lemma
2, the line l: y = θx + (U(R*(θ)) − k̄ · θ) is a tangent line to CH( ) at the point (k̄,
U(R*(θ))) with slope θ. Let . We thus recognize a hull vertex on CH( ). Next, we
develop an efficient algorithm for computing such an optimal parametric region R*(θ) in I.

C. Computing an Optimal Parametric Region
Given a parameter θ, we reduce the problem of computing an optimal parametric region
R*(θ) in I to the problem of finding two coupled terrain-like 3-D surfaces on the
transformed images while minimizing the total sum of the cost on both surfaces. The
detection of two coupled terrain-like surfaces can be formulated as a surface segmentation
problem [10].

First, we perform the following transformations on the image I:

(7)

and

(8)

Hence, for any feasible region R(θ) bounded by two coupled terrain-like surfaces, Sl and Su
with Su above Sl, we have

(9)

Note that both bounding surfaces Sl and Su satisfy the smoothness constraint and the surface
separation constraint.

In this way, we convert the optimal parametric region problem to a surface segmentation
problem, which can be solved optimally using Li et al.’s method [10].
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The basic idea of Li et al.’s surface segmentation method is to transform the problem into
computing a minimum s-t cut in a derived arc-weighted directed graph with O(n) nodes and
O(n) arcs. For a directed graph with O(n′) nodes and O(m′) arcs, a minimum s-t cut can be
computed in O(m′n′ log n′2/m′) time using Goldberg and Tarjan’s algorithm [34].

Lemma 3—For a given θ, an optimal parametric region R*(θ) in I can be computed in
O(n2 log n) time.

In summary, it suffices to compute the convex hull CH( ) to detect in I an optimal region
while minimizing the intraclass variance by Lemma 1. Based on Lemma 2, we can perform
O(n) probing oracles to obtain all vertices on CH( ). Each probing oracle can be
implemented in O(n2 log n) time by Lemma 3. Thus, the total running time of our algorithm
for minimizing the intraclass variance is O(n3 log n). However, in our experimentation, the
number of the employed probing oracles was much less than n.

V. Approximating Minimum Intraclass Variance
Although our exact algorithm for minimizing the intraclass variance in Section IV is
efficient for the moderate size of input images, the large image size may prevent the method
from being computationally practical. In this section, we develop an approximation method
that improves the running time while still producing close-to-optimal solutions.

Our method is based on the property of interclass variance explored by Asano et al. [5].
They utilized the property to obtain a (1 − ε) -approximation algorithm for computing an
optimal connected rectilinear region with maximum interclass variance in 2-D. We
characterize a similar property for a region bounded by two coupled terrain-like surface in 3-
D, as stated in Lemma 4. The proof of the lemma is similar to that in [5].

Lemma 4
Let θ○ denote the optimal parameter value with which the optimal parametric region R*
(θ○) maximizes Ψ (R). If θ○ ≠ 0, then an optimal parametric region R*((1 + ε)θ○) gives
an (1 − ε) -approximate solution to the problem of maximizing Ψ (R), that is, for any 0 < ε
< 1, Ψ (R*((1 + ε) θ○)) ≥ (1 − ε) Ψ (R*(θ○)).

We assume that the cost I (x, y, z) of each voxel in the input image I is an integer, and  is
the total sum of the absolute values of the voxel costs in I. Due to the integrality of I (x, y,
z), it is not difficult to see that 1/n ≤ |θ○| ≤ . Our idea is to partition the θ-space [−  ·· − 1/
n] ∪ [1/n ·· ] into intervals [θi ·· θi+1] such that either θi/θi+1 = 1 + ε or θi+1/θi = 1 + ε.
Note that Lemma 4 actually indicates that for any θ in between (l + ε) θ○ and θ○, an
optimal parametric region R* (θ○) gives an (1 − ε)-approximate solution to the problem of
maximizing Ψ (R). Thus, if θ○ ∈ [θi · · · θi+1], then either R*(θ○i) or R*(θ○i+1) is an (1 −
ε)-approximate solution. Hence, we partition the θ-space into the following intervals:

Considering the sequence {− θi, θi} of parameters for θ, with θi = 1/n (1 + ε)i (i = 0, 1, …, ⌊
log 1+ε n  ⌋), we compute an optimal parametric region R*(θi) for each θi. Among those
optimal parametric regions, the one that maximizes Ψ (R) is chosen as the approximation
solution. It is clear that such a solution is an (1 − ε)-approximation solution. The number of
parameters that we search is O(log1+ε n ) = O(ε−1 log n ). Note that an optimal
parametric region R* (θ) for a given parameter θ can be computed in n2 log n time using
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Goldberg and Tarjan’s minimum s-t cut algorithm. Thus, the running time of this
approximation algorithm is O (log n /εn2 log n).

Lemma 5
A (1 − ε) -approximation solution to the problem of maximizing Ψ (R) can be computed in
O (log n /εn2 log n) time.

We then output the (1 − ε) -approximation solution to the problem of maximizing Ψ (R) as
our approximate solution to the problem of minimizing the intraclass variance  (R).
Although we have not yet proven a tight bound of the approximation ratio of this
approximation algorithm for minimizing the intraclass variance, our implementation
demonstrated its high segmentation accuracy with much less execution times for all data we
tested for our exact algorithm.

VI. Experimental Methods
The experiments were performed on computer phantoms, physical phantoms and 3-D CT
and MR medical images. Both regions bounded by terrain-like surfaces and by tubular
surfaces are used.

A. Data
1) Computer Phantoms—To validate the correctness of the modeling techniques, we
tested our method on a set of computer-generated phantoms, with sizes of 256 × 256 × 3
voxels, containing differently textured regions or shapes (Fig. 5). For the evaluation of the
execution times, a second set of computer phantoms was produced that contained a region
bounded by two coupled terrain-like surfaces with various shapes and mutual positions. Two
sets of different patterns were used to differentiate the target region from the background.
The sizes of the phantom images range from 30 × 30 × 40 to 100 × 100 × 50. To test the
performance of our algorithm in noisy images, we added Gaussian noise of σ = 0.5, 2.0, 3.0,
respectively, to this set of computer phantoms. In addition, we generated a third set of 160
computer phantoms, each sized 100 × 100 × 10, to evaluate the performance of the
approximation algorithm. Each phantom image includes a region bounded by two coupled
terrain-like surfaces with specific positions, distances, and smoothness randomly generated.

2) Physical Phantoms—To quantitatively assess the performance of our method, a
physical phantom was imaged by multidetector CT and analyzed. The phantom contained
six plexi-glas tubes, numbered 1–6, with nominal inner diameters of 1.98, 3.25, 6.40, 6.50,
9.50, and 19.25 mm, respectively. The corresponding outer diameters were 4.45, 6.30, 9.70,
12.60, 15.60, and 25.50 mm, respectively. The phantom was scanned using Philips Mx8000
4-slice CT scanner with three different scan settings (low dose, regular dose, and high dose).
Under each setting, the scans were taken at four distinct angles of 0°, 5°, 30°, and 90°,
rotated in the coronal plane, resulting in a total of 12 datasets for use in the validation. The
regular dose scanning was intentionally repeated, yielding additional four datasets used for
initial calibration of the cost functions. In all cases, a resolution of 0.39×0.39×0.6 mm3 was
used, images consisted of 200–250 slices, 512 × 512 pixels each.

3) CT Images of Pulmonary Airways—To demonstrate the utility of our method in
quantitative analysis of medical images, the method was applied to human pulmonary CT
images to concurrently segment the inner and outer wall surfaces of intrathoracic airways
imaged by the multidetector CT. Twenty airway wall segments extracted from 12 in vivo CT
scans of six human objects were used for the experiments. The airway wall segments had a
resolution of 0.7 × 0.7 × 0.6 mm3 and consisted of 30–50 slices, 50 × 50 pixels each.
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The inner and outer surfaces needed to be unfolded for our method to be employed. The
centerlines of the airways were manually identified for this unfolding process, which utilized
B-spline interpolation. Segmentation was performed only on the trunks of the airway tree
between bifurcations since our method can not handle topological changes at this point. The
inner and outer walls were segmented simultaneously.

4) MR Images of Cardiac Ventricular Walls—To show the applicability of the method
to a broader range of medical image segmentation applications, we have utilized our method
for segmenting MRI images of left human cardiac ventricles. 20 MRI scans of normal
human hearts and 10 MRI scans of patient hearts were segmented. The images had an in-
plane resolution of approximately 2.0 × 2.0 mm2 but a large slice thickness of about 6–8
mm. To get better image quality we performed image fusion on the raw datasets as proposed
in [35]. After the image fusion, the images had a resolution of approximately 2.0 × 2.0 × 2.0
mm. Each dataset consisted of 30–40 mid-papillary slices and each slice had an average size
of 40 × 40 pixels. To facilitate the unfolding process of the tubular shape of ventricular
walls, the centerlines (long axes) of the cardiac ventricle were manually determined.

5) MR Images of Cardiac Ventricular Walls From Miccai 2009 Cardiac MR Left
Ventricle Segmentation Challenge—To compare the performance of our method with
other contemporary segmentation methods, our method was applied to MRI images of the
left human cardiac ventricle from the Cardiac MR Left Ventricle Segmentation Challenge
images (MICCAI 2009 Workshop). 15 MRI scans of preworkshop cardiac left ventricle
datasets were segmented. Each dataset consisted of around 6–12 slices per phase and 20
phases over the heart cycle and each slice had an average size of 256 × 256 pixels. The
centerlines (long axes) of the cardiac ventricle were manually determined and only a 101 ×
101-pixel region surrounding the centerline were used in the segmentation. Refer to [36] for
details.

B. Cost Functions
Cost function design is very important in graph-based segmentation. Since our method
minimizes the intraclass variance, a cost function reflecting the homogeneity was used. For
the experiments, image intensity or its linear transformation was utilized as voxel-related
cost. For the texture-related phantom images, the cost function also included orientation and/
or curvature information [1]. For the clinical data, our algorithm was run on the original
images to get the estimated positions of the bounding surfaces and then this estimated
position was combined with the voxel intensities to form the cost function.

C. Execution Time
All experiments were conducted on a Pentium-D 2.4 GHz PC with 3.5 GB of memory. The
execution time included the graph initialization time and the actual computation time. The
execution times varied across the test cases even with the same image size. We thus
averaged the running times over 20 test cases for each image size. The execution time for
each test case was measured three times and the results were averaged. In our
implementation, Boykov and Kolmogorov’s algorithm [37] was used to compute the
minimum s-t cut.

D. Performance Indices
Besides visual inspection, which was carried out on computer phantom images, we used the
following quantitative indices to measure the performance of our method.
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1) Diameter Calculation for Physical Phantom—For the physical phantoms, the
average diameter of the segmentation result of each slice was calculated using the circle
fitting method to minimize the mean-squared error, and then the diameter was compared
with the known tube diameter. The diameter errors are reported as mean ± standard
deviation in absolute measurements and as percentages of the diameter.

2) Positioning Error Measure for Clinical Test Cases—Surface detection accuracy
was determined in clinical test cases in comparison with the independent standard. The
mean surface positioning errors were computed. Corresponding points were defined as pairs
of points, the first point being from a computer detected border and the second point from
the reference standard border that was closest to each other using the Euclidean distance
metric. The positioning errors were calculated both signed and unsigned, where signed
errors were calculated by adding a sign to each pair-wise unsigned errors, and the sign was
positive while the point from a computer detected border was outside the reference standard
contour, and negative otherwise. These errors were reported as mean ± standard deviation.

3) Dice Similarity Coefficient for Left Ventricle Segmentation of the Datasets
From Miccai 2009 Challenge—The Dice similarity coefficient is used for the
verification of left ventricular segmentation and measures the similarity between the
automated segmentation volume VA and the expert-traced volume VGT with s(VA, VGT) =
2||VA ∩ VGT||/(||VA|| + ||VGT||), where ||X|| denotes the cardinality of X.

4) Optimizing Intraclass Variance With Iterations—Since our reported approach and
the Chan–Vese original method [1] both optimize the intraclass variance, it is of interest to
compare their performance. Considering that the regularization terms and constraints are
different, a fair comparison is very difficult. We thus compared our approach with a
modified Chan–Vese method, which keeps the iteration-based principle of the Chan–Vese
method to optimize the intraclass variance while incorporating the geometric constraints of
our method. We refer to this approach as to an iterative intraclass variance (briefly, an
iterative ICV) method.

The basic idea of the Chan–Vese method [1] is to first find an initial region and calculate the
average intensities of the initial region and the background as  and . These two
parameters are used as constants in the next iteration to find an optimal region optimizing
the objective function

(10)

where Tregularization is a regularization term. The new average intensities  and  of the
newly computed region and the background are calculated. This process iterates until both

 and  converge.

The iterative ICV method “simulates” the Chan–Vese method to find an optimal region
bounded by two coupled terrain-like surfaces while minimizing the intraclass variance of the
region. With given average intensities  and  of the initial region and the background, the
graph searching method of Li et al. [10] was employed to find the desired region with the
same geometric constraints as used in the presented method. The ICV method shares the
same geometric constraints and objective function with our method. Comparison between
these two methods can demonstrate the improvement from global optimality.
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We performed the following transformations on image I

(11)

and

(12)

Hence, for any feasible region R bounded by two coupled terrain-like surfaces, Sl and Su
with Su above Sl, we have

(13)

Note that both bounding surfaces Sl and Su satisfy the surface smoothness and separation
constraints. Using Li et al.’s method [10], the optimal surfaces  and  are simultaneously
detected in I′ and I″, respectively. From (13), the region R* bounded by  and  is the
desired region in I. This process iterates until both  and  converge, as in the Chan–Vese
method.

5) Paired T-Test—Our method is compared with Chan–Vese method and iterative ICV
method. In these cases, paired t-test is performed to show that our method performs better.
When doing experiments on left ventricle segmentation of the datasets from MICCAI 2009
challenge, our method is compared with two other methods [38], [39]. Again paired t-test is
performed but in this case to show our method can achieve comparable results.

VII. Results
A. Computer Phantoms

The general capability of our approach is demonstrated in Fig. 5, in which the object and
background differ only in texture with no obvious edge-based inter-object boundary
information. The regional properties (texture pattern description) were represented in the
cost function using curvature and edge orientation. As can be seen from comparison of the
middle and right panels of Fig. 5, our method and the true Chan–Vese method with the same
cost images yielded very similar results.

B. Accuracy Assessment in CT-Imaged Physical Phantoms
By comparing achieved segmentation results with the known truth about phantom tube
diameters, the signed errors of the inner and outer wall diameter were 0.03 ± 0.07 mm and
0.04 ± 0.09 mm, respectively, with the voxel sizes of 0.39 × 0.39 × 0.60 mm3. The
corresponding unsigned errors were 0.06 ± 0.06 mm and 0.08 ± 0.07 mm. The signed
percent errors of the computer-determined diameters are presented in Fig. 6, where mean
errors ± standard deviations are shown as a function of the true phantom tube diameter.

Using the Chan–Vese method (using the same cost image as used in our method), we
obtained the segmentation results with signed errors of 0.31 ± 0.09 mm and 0.10 ± 0.06 mm,
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and unsigned errors of 0.41 ± 0.09 mm and 0.36 ± 0.06 mm for the inner- and outer-
diameters, respectively. Comparing with the Chan–Vese method, our approach was
significantly more accurate (p < 0.0048 in all cases). Fig. 7 shows example segmentation
results using the Chan–Vese method and our approach obtained in the 3-D CT-imaged
physical phantom.

C. Airway Wall Segmentation—Human in vivo 3-D CT
While the inner airway wall surfaces are well visible in in vivo CT images, the outer airway
wall surfaces are very difficult to segment due to their blurred and discontinuous
appearance. The results showed subvoxel accuracy and 3-D consistency of our method (see
Figs. 8 and 9). Compared with the available manual tracings, our method yielded signed
border positioning errors of 0.42 ± 0.38 and −0.13 ± 0.46 voxel for the inner and outer wall
surfaces, respectively. The corresponding unsigned errors were 0.66 ± 0.15 and 0.57 ± 0.03
voxel, respectively. We attempted to perform the Chan–Vese method on these data, but
without enforcing the separation constraints, the Chan–Vese method failed to produce
meaningful segmentations on these data sets.

D. Cardiac Ventricular Wall Segmentation—Human in vivo 3-D MR
Our 3-D method for cardiac ventricular wall segmentation demonstrated low surface
positioning errors as well as robust performance when compared with the expert-traced
results, although the simultaneous inner- and outer-wall segmentation is challenging due to
image blurriness and discontinuity of the boundaries in the cardiac ventricular images.
Detailed results are given in Table I(a).

E. Cardiac Ventricular Wall Segmentation Using DatasetsFrom Miccai 2009 Challenge
Fig. 10 shows examples of our segmentation compared with expert-traced results. Tables II
and III show comparisons of average positioning errors and Dice similarity coefficients
between our method and the top two methods reported in the segmentation contest of the
MICCAI 2009 Challenge [38], [39]. The p-values between our method and the method in
[38] are 0.373 and 0.922 for endo- and epi-cardial walls. The p-values between our method
and the method in [39] are 0.750 and 0.133 for endo- and epi-cardial walls. All show that
our method can produce comparable results with the two methods.

F. Comparison With Iterative ICV Method
Results presented in this section show that our method outperformed the iterative ICV
method (Section VI-D-IV) when detecting a region bounded by two coupled terrain-like
surfaces. The experiments were conducted on both phantoms and 3-D MR cardiac
ventricular datasets.

Fig. 11 shows an example of the segmentation results produced by the iterative ICV method
and by our method.

For the 3-D MR left ventricular datasets, our method outperformed the iterative ICV method
by a factor of about 9% on average in terms of the surface positioning errors. For the
fairness of the comparison, the cost functions and geometric constraints used for the iterative
ICV method were the same as those used in our method.

Table I(b) shows the signed and unsigned positioning errors of results obtained by the
iterative ICV method.
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G. Execution Time
The execution time of our method mainly depends on the number of shape probings
performed (i.e., the number of hull vertices of the constructed convex hull) and the time
needed for employing each probing oracle. The average execution times for employing each
probing oracle are shown in Table IV. The minimum s-t cut was computed using Boykov
and Kolmogorov’s maximum flow algorithm [37] with a “forward-star” graph
representation.

For the airway wall segmentation, the numbers of the hull vertices of CH( ) ranged from
1.50% to 2.86% of the image size; while for the 3-D ventricular datasets, the percentages
ranged between 1.64% and 2.89%. The average total execution times of our algorithm are
shown in Fig. 12.

For the computer phantoms with no Gaussian noise added (σ = 0.0), the number of hull
vertices of CH( ) was ranging from 1.32% to 1.61% of the image size. Our experiments
showed that the added Gaussian noise affected the performance of our algorithm
substantially. The average execution times on the computer phantoms with different levels
of Gaussian noise are shown in Fig. 13.

H. Performance of the Approximation Method
The performance of our developed approximation method was tested on computer
phantoms, physical phantoms, 3-D CT images of pulmonary airway walls, and 3-D MR
images of cardiac ventricular walls, and was compared to that of our exact algorithm. Our
experiments demonstrated that the approximation method ran much faster than the exact
algorithm while the segmentation accuracy was highly comparable to that of the exact
algorithm.

We chose ε = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 to test the approximation method with respect to
segmentation accuracy. In addition to the surface positioning errors, the so-called approx-opt
ratio, which is the ratio of the objective function value produced by the approximation
algorithm over that yielded by the exact algorithm, was also used to measure the
segmentation performance. Interestingly, while ε ≤ 0.05, the approximation method always
computed the optimal solutions to the problem of minimizing intraclass variance (R) for
all the datasets we tested. For the six physical phantoms, even while we took ε = 0.1,0.2,
0.5, we were still able to obtain the optimal solutions by using the approximation method.
Table V presents, for the different ε values, the average approx-opt ratios, the maximum
approx-opt ratios, and the percentage of the test cases that the approximation algorithm did
not produce the optimal solution. Tables VI and VII show the average approx-opt ratio and
the average surface positioning errors with different ε values for the airway wall images and
the ventricular wall images, respectively. Note that for ε = 0.05 in both tables, the objective
function values were optimal and the average surface positioning errors were the same as
those obtained by the exact algorithm. Thus, our experiments showed that the approximation
method was able to produce highly comparable segmentation results as those produced by
the exact algorithm even for relatively large ε values.

The running times of the approximation method were evaluated on computer phantoms and
clinical data. Our experiments demonstrated great improvement of running time over the
exact algorithm. Fig. 14 shows the comparison of the execution times of the approximation
algorithm with different ε’s on the computer phantom images against the exact algorithm.
We did not explicitly add Gaussian noise to those phantoms. Our further experiments on
those phantom images with added Gaussian noise (σ = 0.5, 2.0, 3.0) revealed that the
efficiency of the approximation method did not decrease with the presence of noise. In
contrast, the performance of the exact algorithm on running time deteriorated significantly
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for noisy images. The dramatic improvement on the execution times of the approximation
algorithm over the exact algorithm are shown in Figs. 15 and 16, respectively, for 3-D
airway CT images and 3-D ventricular MR images, which show less intensity homogeneity.

In addition, we conducted experiments on the 20 MR images of cardiac ventricular walls of
normal human hearts to compare the iterative ICV method against the approximation
algorithm. Table VIII shows the surface positioning errors of the iterative ICV method and
the approximation algorithm as well as those of the exact algorithm. The results
demonstrated that the approximation algorithm outperformed the iterative ICV method, even
with a large approximation error parameter ε = 0.5.

VIII. Discussion
In the following discussion, we focus on several important issues potentially influencing the
utility of the presented method as well as outline their possible solutions.

A. Global Optimality
One of the accomplishment we achieved is the global optimality of the method. In fact, our
method produces a more “optimal” solution than the iterative ICV method (Section VI-D-IV
does. Although the iterative ICV method has always converged, it frequently could not find
the globally optimal solution with respect to the intraclass variance objective function.

For the physical phantom images tested, our method outperformed the iterative ICV method
by a factor of 0.23% in terms of the intraclass variance (i.e., the value of the objective
function) obtained with p-value of 0.0094. For the test case in Fig. 11, our method gave a
segmentation with an intraclass variance of 9.6071 × 106, compared with 9.5909 × 106

achieved by the iterative ICV method. Although these are not big improvement, it
demonstrates that iterative ICV method does not guarantee global optimality. The global
optimality of our method is theoretically proved.

B. Limitations
One obvious limitation of the presented method is that it only allows optimal detection of a
single object (region). This may prevent the method from being used for a wider range of
medical applications, in which multiple mutually interacting objects are present. The
extension of our method for dealing with simultaneous multiple object segmentation is an
interesting and challenging future work. The second limitation is that the method can only
detect those surfaces that can be unfolded to be terrain-like, including cylindrical or tubular
surfaces. Unfolding techniques have been developed for objects of relatively complex
shapes, such as liver [40], knee bone and cartilage [41], [42], heart [43], and pulmonary
airway and vascular trees [44]. However, one may experience difficulty to unfold more
complex objects into terrain-like surfaces. Thus, another challenge is to make the method
topologically adaptive.

The approximation algorithm was demonstrated as having much faster running times while
still producing highly comparable segmentation results as the exact algorithm.
Unfortunately, we have not yet proven a tight bound of the approximation ratio, although the
experiments indicated that the bound was pretty small in all tested cases. We plan to further
study the approximation ratio of our approximation algorithm.

C. Improving Efficiency
We view the first contribution of this work as a theoretical advance for optimizing the
intraclass variance of a target object (which is the data-driven term of the Chan–Vese cost
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funtional) bounded by two terrain-like surfaces. To the best of our knowledge, this is the
first polynominal time combinatorial algorithm solving this problem that guarantees globally
optimal solutions.

The current implementation (on a Pentium-D 2.4 GHz PC with 3.5 GB of memory) of the
exact algorithm though requires a relatively long computing time for large-size datasets.
However, achieving polynominal-time solvability is practically important. It indicates that
with the advance of the computing technology, the execution time required for solving the
problem will be substantially shortened. For instance, with the application of the multicore
computing technology, we believe that the execution time of our algorithm for minimizing
the intraclass variance can be substantially reduced—our algorithm is highly parallelizable.
The algorithm recursively calls the probing oracle to recognize a vertex on the convex hull
of a set of O (n) unknown points on the 2-D plane. Each probing oracle can be implemented
by computing a minimum s-t cut in a derived graph. In the worst case, it may take O (n) runs
of the minimum s-t cut algorithm. Those O (n) runs form the nodes of the recursion tree with
each node requiring a minimum s-t cut solution. The height of such a tree is O (log n). It is
not difficult to observe that all the nodes on the same level of the recursion tree can attempt
to solve the minimum s-t cut problem in parallel. Theoretically, if we have O (n) processing
units, the running time of our algorithm is O (log n) runs of the minimum s-t cut algorithm,
substantially reducing the running time of our algorithm that is now running in sequence. In
practice, we can take advantage of the emerging GPU-based technology, to make sure that
all the nodes on the same level of the recursion tree run in parallel as much as possible, thus
significantly improving performance of our algorithm.

D. Incorporating Edge Information
Using only region information for segmentation may not fully utilize the available image
information. Image edges defined by image gradients, even rather weak gradients, may be
very helpful for detecting the object boundary. In fact, combining both image edges and
image regional information is becoming increasingly important in image segmentation. We
thus specify the following problem description to incorporate additional terms associated
with the image edges. In addition to the intraclass variance, edge terms may be added to the
objective function as follows:

(14)

where Sl and Su are two bounding surfaces of the region R, and cl (x, y, z) [respectively, cu
(x, y, z)] is the edge-based cost of voxel I (x, y, z) measuring the inverse likelihood that the
desired surface Sl (respectively, Su) contains the voxel. Unfortunately, it seems at least
nontrivial to extend our algorithm for solving this generalized problem.

IX. Conclusion
An algorithm to find globally optimal solution to segmentation by minimizing the intraclass
variance was reported. Our approach optimally detects a region bounded by two coupled
terrain-like surfaces in a volumetric image in a low-order polynomial time. We employ the
techniques of parametric search, shape probing in computational geometry, and 3-D graph-
searching.

The developed approximation algorithm exhibited a significantly improved running times
while still produced highly close-to-optimal solutions when compared with our optimality
guaranteeing algorithm.
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Fig. 1.
Region R enclosed by two coupled terrain-like surfaces Si and Su.
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Fig. 2.
Illustrating the proof of Lemma 1.
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Fig. 3.
Illustrating the construction of a convex hull using the shape probing technique.
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Fig. 4.
Illustrating the proof of Lemma 2.
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Fig. 5.
Computer phantoms with textures and segmentation results. (a), (b) Original images. (c), (d)
The segmentation results from our method. (e), (f) The segmentation results from the Chan–
Vese method.
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Fig. 6.
Signed percent errors of the inner- and outer-diameter measurements in the CT-imaged
physical phantom tubes.
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Fig. 7.
Segmentation result on CT-imaged physical phantom tubes. (a) An example slice from a 3-
D CT-imaged physical phantom. (b) Segmentation result achieved using Chan–Vese
method. The errors of the measured diameters of the inner and outer walls were −0.14 mm
and −0.31 mm, respectively. (c) Segmentation result obtained using our method. The errors
of the measured diameters of the inner and outer walls were 0.04 mm and 0.07 mm,
respectively. Five-point moving average is applied to both methods to smooth the results.
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Fig. 8.
Segmented inner and outer walls of human pulmonary airways imaged with multidetector
CT. (a) Transverse slice. (b) Sagittal cross-section. (c) 3-D view of segmented airway, cut-
open for visibility.
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Fig. 9.
Comparison of computer-segmented and expert-traced inner and outer airway wall borders
in in vivo human 3D CT images. (a) Original image. (b) Expert-traced borders. (c)
Segmentation obtained using our 3-D method.

Wu et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 July 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Segmentation of MR ventricular walls. Top row shows the original images. Middle row
shows expert-traced endo- and epi-cardial walls. Bottom row shows results of the reported
approach.
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Fig. 11.
Comparison of segmentation results for an example computer phantom image. (a) Original
image. (b) Segmentation produced by our method. (c) Segmentation result obtained by the
iterative ICV method.
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Fig. 12.
Execution times for 3-D airway CT images and 3-D ventricular MR images as a function of
image size.
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Fig. 13.
Execution times for computer phantoms with different levels of Gaussian noise (σ = 0.0,
0.5, 2.0, 3.0) as a function of image size.
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Fig. 14.
Comparison of execution times on computer phantoms by the approximation algorithm
against the exact algorithm.
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Fig. 15.
Comparison of execution times on 3-D airway CT image data by the approximation
algorithm against the exact algorithm.
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Fig. 16.
Comparison of execution times on 3-D ventricular MR images by the approximation
algorithm against the exact algorithm.
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TABLE I

Surface Positioning Errors of 3-D Left Ventricular Wall Segmentation: (a) Our Exact Algorithm, (b) Iterative
ICV Method

Signed Error(Pixels) Unsigned Error(Pixels)

Inner Outer Inner Outer

Normal −0.710 ± 0.538 −0.584 ± 0.437 0.778 ± 0.436 0.793 ± 0.437

Patient −0.494 ± 0.773 0.528 ± 0.589 0.784 ± 0.476 0.946 ± 0.589

(a)

Normal −0.727 ±0.591 −0.622 ± 0.447 0.806 ± 0.568 0.862 ± 0.564

Patient −0.544 ±0.769 −0.936 ±0.725 0.794 ±0.507 1.110 ±0.725

(b)
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TABLE IV

Average Execution Times of Each Shape Probing Process

Image Size Execution Time (s) Image Size Execution Time (s)

302 × 40 0.5 802 × 40 5.9

502 × 40 2.1 1002 × 40 15.7
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TABLE V

Segmentation Accuracy of the Approximation Method on Computer Phantoms

ε Average Approx-opt Ratio Max Approx-opt Ratio % of Non-Optimal Results

0.05 100.00% 100.00% 1.25%

0.1 100.03% 100.15% 7.50%

0.2 100.22% 100.80% 25%

0.5 101.02% 104.35% 51.25%
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TABLE VIII

Comparison of Surface Positioning Errors on 20 MR Images of Left Ventricular Walls of Normal Human
Hearts: (a) Our Exact Algorithm, (b) Iterative ICV Method, (c)The Proposed Approximation Algorithm

Signed Error(Pixels) Unsigned Error(Pixels)

Inner Outer Inner Outer

−0.710 ± 0.538 −0.584 ± 0.437 0.778 ± 0.436 0.793 ± 0.437

(a)

−0.727 ± 0.591 −0.622 ± 0.447 0.806 ± 0.568 0.862 ± 0.564

(b)

ε = 0.05 −0.710 ± 0.538 −0.584 ± 0.437 0.778 ± 0.436 0.793 ± 0.437

ε = 0.1 −0.709 ± 0.538 −0.586 ± 0.443 0.774 ± 0.437 0.807 ± 0.443

ε = 0.2 −0.708 ± 0.535 −0.586 ± 0.444 0.767 ± 0.440 0.821 ± 0.444

ε = 0.5 −0.720 ± 0.547 −0.587 ± 0.428 0.803 ± 0.429 0.752 ± 0.428

(c)
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