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Abstract—Optical coherence tomography (OCT) is widely used 

in the assessment of retinal nerve fibre layer thickness (RNFLT) 
in glaucoma. Images are typically acquired with a circular scan 
around the optic nerve head. Accurate registration of OCT scans 
is essential for measurement reproducibility and longitudinal 
examination. This study developed and evaluated a special image 
registration algorithm to align the location of the OCT scan 
circles to the vessel features in the retina using probabilistic 
modelling that was optimised by an expectation-maximization 
algorithm. Evaluation of the method on 18 patients undergoing 
large numbers of scans indicated improved data acquisition and 
better reproducibility of measured RNFLT when scanning circles 
were closely matched. The proposed method enables clinicians to 
consider the RNFLT measurement and its scan circle location on 
the retina in tandem, reducing RNFLT measurement variability 
and assisting detection of real change of RNFLT in the 
longitudinal assessment of glaucoma. 
 

Index Terms—image registration, probabilistic modelling, 
expectation-maximization, optical coherence tomography, scan 
circle alignment 
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I. INTRODUCTION 
LAUCOMA is a leading cause of irreversible visual 
impairment, being a progressive optic neuropathy 

resulting in the loss or damage of retinal ganglion cells 
(RGCs) and their axons. In human eyes, light rays are focused 
and sensed on the retina, which is the tissue layer at the back 
of the eye. Simply put, the top ‘layer’ of the retina consists of 
retinal ganglion cells and their axons (nerve fibres) with 
photoreceptors (rods and cones) underneath. The retinal nerve 
fibres converge to form the optic nerve head (ONH) where 
they exit the eye to enter the brain. The retinal nerve fibres 
carry the signals from across the retina into the brain so the 
damage or ‘thinning’ of RGCs and their axons caused by 
glaucoma results in the irreversible visual impairment. 

Estimates of RGC axon loss can be made by the surrogate 
measurement of retinal nerve fibre layer (RNFL) thickness 
using modern imaging techniques such as optical coherence 
tomography (OCT) [1, 2]. Similar to ultrasound technique, 
OCT detects the backscattered light from the retina and 
produces high resolution, cross-sectional images. This 
technique has formed time-domain OCT (TD-OCT) systems 
such as the StratusOCT (Carl Zeiss Meditec, Inc., Dublin, CA) 
that has been successfully used in the clinic as a clinical 
standard for measuring the RNFL thickness (RNFLT) in 
glaucoma in recent years [3-7]. In the StratusOCT system 
measurement of the retinal layers is acquired by an axial-scan 
in depth (A-scan) and a cross-sectional scan (B-scan). The 
A-scans are sampled under a scan circle (typical diameter of 
3.4 mm) which is manually centred on the optic nerve head 
(ONH; Figure 1(I)) as guided by a ‘live’ image of the fundus 
but the location of the scan circle is unknown during the image 
acquisition. The RNFLT is then analysed by segmentation 
algorithms provided by the software. One difficulty during 
image acquisition is the displacement of the circular scan due 
to the operator’s subjective placement of the scan circle or the 
eye movement after the manual adjustment. This displacement 
means that the RNFLT is not necessarily sampled at the same 
location and this contributes to the variability and error in the 
measurement [8-10], restricting the use of the technique 
especially in determining the deterioration of the RNFLT in 
the longitudinal assessment or follow-up of glaucoma. 
Moreover, the problem of RNFLT reproducibility due to 
image acquisition difficulties was also recently identified as a 
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limiting factor for this technology in the diagnosis or 
management of multiple sclerosis [11]. Therefore, a method 
for identifying and aligning the location of the scan circle 
would be clinically useful as it may offer better tracking of the 
same area of RNFLT over time. 

Newer spectral-domain OCT (SD-OCT) [12, 13] operates 
with faster scans [14] giving improved signal-to-noise ratio in 
the measurements [15, 16] compared to TD-OCT. Although 
some commercially available SD-OCT (e.g. Cirrus, Carl Zeiss 
Meditec, CA, USA) scan protocols extract the circular scan 
from 3D volume scan, most other SD-OCT systems (e.g. 
RTVue-100, Optovue, Fremont, CA, USA) still provide 
circular scan as one of the scan protocols or include circular 
scans in more complex protocols (e.g. RTVue-100 NHM4 
protocol consisting of 6 circle and 12 line scans) so they may 
still be affected by displacement between scans [8, 17]. 
Therefore, improvements in this image acquisition protocol, or 
at least knowing the area of RNFLT that has been acquired, 
will still be beneficial for SD-OCT devices with such scan 
acquisition protocols. Moreover, TD-OCT has been used to 
follow up the progression of glaucoma long before the 
emergence of the SD-OCT, and it is still widely used by 
glaucoma services where clinicians (or research study 
co-ordinators) are reluctant to abandon series of data collected 
with TD-OCT over time since this provides important 
information about the longitudinal characteristic of glaucoma. 
The method proposed in this study may facilitate migration 
from TD-OCT to SD-OCT, for instance, by aligning TD-OCT 
scan circles on the volumetric images acquired by SD-OCT, 
so that longitudinal series are not wasted. 

The effect of scan circle location on the RNFLT 
measurement has been previously investigated by simulating 
different scan circle locations on a volumetric image around 
the ONH taken by ultrahigh-resolution OCT [8]. The circular 
scans were simulated by sampling the A-scans under a scan 
circle (3.4 mm diameter) shifted with known displacements 
horizontally (x-shift), vertically (y-shift) and diagonally from 
the centre of the ONH. This method allowed for systematic 
investigation of the variable circle placement effect. The 
results from this study clearly demonstrated that location of 
the OCT scan circle adds substantial variability to the RNFLT 
measurements. Since registration of OCT scans is imperative 
for measurement reproducibility and longitudinal examination 
it would be very useful to have a method that could estimate 
the location of the scan circle on the retina. Kim et al. [18] 
proposed a method to align the circular scan image to a 
volumetric image around the ONH acquired by SD-OCT by 
using simulated cross-sectional images under scan circles at 
various locations sampled from the volumetric image. The 
circular scan was then aligned to the most similar sampled 
SD-OCT scans where the similarity was assessed by cross 
correlation between retinal structures in the A-scans from two 
images. One limitation is that the technique uses retinal 
structures that typically change during the worsening of 
glaucoma, giving it limited appeal in following up RNFLT 
changes if the circular scan and volumetric scans are acquired 
in different periods of time. This approach might help bridge 

the gap in RNFLT measurements between the TD-OCT 

circular scan and SD-OCT volumetric scan, providing 
longitudinal comparability. However this approach is only 
useful when both TD-OCT and SD-OCT are available and it 
will not be helpful in a common situation where a clinic might 
be following patients with TD-OCT technology alone for 
years. 

This study proposes a new OCT scan circle alignment 
algorithm using blood vessel features which are considered to 
be relatively stable landmarks when considering longitudinal 
images in glaucoma. The algorithm can align multiple OCT 
circular scans to a retinal fundus image that is generally 
available in the glaucoma clinics from various imaging 
techniques, such as scanning laser polarimetry (SLP), 
scanning laser ophthalmoscope or even a fundus camera. The 
algorithm has been developed to have general applicability to 
any type of fundus and OCT images but is demonstrated in 
this study on StratusOCT images using fundus images 
acquired with SLP (GDxVCC; Carl Zeiss Meditec, Inc., 
Dublin, CA, USA). It has been successfully used in a recent 
study that assessed the axonal birefringence of RNFL by 
aligning the OCT scan circle onto the SLP image [19]. 

 

II. METHODS 
The proposed method aligns an OCT scan circle on the 

retinal fundus image by a registration technique using the 
blood vessel features available in both types of images. The 
vessels in OCT images typically appear as shaded bands along 
the retinal pigment epithelium (RPE; Figure 1(II)). The RPE is 
detected as the tissue layer with the strongest intensity peaks 
in the OCT image. The ‘shaded band’ feature of vessels is 
then detected as the local minimums on the averaged pixel 
intensities around the RPE (Figure 1(II)). The vessel features 
in the retinal fundus images differ with the imaging techniques 
used, and the vessel segmentation in retinal images have been 
extensively studied previously [20-25]. In the implementation 
of vessel detection for SLP fundus image, a measure of 
‘vesselness’ serves as a pre-processing step for segmentation 
of vessels in the retinal fundus image. A technique using the 
multi-scale second order local structure of an image (Hessian) 
[26] is used for this purpose. The vessels are then analytically 
reconstructed using cubic splines (Figure 1(I)) [27]. 

A scan circle around the ONH and the detected vessels in 
the OCT (white circles superimposed on the blue scan circle) 
and fundus image (red lines) are shown in Figure 1. That the 
scan circle is displaced is indicated by the poorly aligned 
vessels. The method proposed in this work infers the scan 
circle location by aligning the vessels from both images. 

 

A. Problem formalisation 
In an acquisition of an OCT image (Figure 1), the circular 

scan starts from the mid-temporal area at 180° (blue arrow on 
scan circle in Figure 1(I) and traverses in a clock-wise 
direction to superior (90°), nasal (0°), inferior (-90°) and 
finally back to the mid-temporal area. The circular scan is then 
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‘straightened’ to a ‘line’ in two dimensions (Figure 1(II)). 
Each column in the OCT image is therefore associated with an 
angular value on the scan circle. The locations of detected 
vessels in the OCT image are converted to angular values (e.g. 

Figure 1(III)) and are denoted as { } 1

N
i i=X  where N is the 

number of OCT vessels. The x- and y-coordinates of each 
vessel in the retinal fundus image are expressed as two cubic 
splines [27] respectively, each of which is essentially a 
piecewise function defined over a parameter u . The cubic 
spline has H-1 segments divided by H knots 1( ,...,  )Hu u  on u 
and the one having an intersection with the scan circle is 
assumed to be the hth segment, so the coordinate ( ),  jh jhx y  of 

this segment of the jth fundus image vessel are: 
3 2

3 2

( ) ( ) ( )
( ) ( ) ( )

jh jxh h jxh h jxh h jxh

jh jyh h jyh h jyh h jyh

x a u u b u u c u u d
y a u u b u u c u u d

⎧ = − + − + − +⎪
⎨ = − + − + − +⎪⎩

 (1) 

The location of a scan circle with radius r=3.4mm is 
defined by three parameters: centre coordinate ( ),  s t , and 
rotation θ  (in degree) around the centre. The circle rotation θ  
rotates all OCT vessels around the scan circle centre by θ  
degrees and, in the ‘straightened’ two dimensions image 
(Figure 1(II)), it shifts the OCT vessels (and the whole image) 
on horizontal by θ  degrees. Given the parameters of a scan 
circle, the intersection between a vessel defined by Equation 
(1) and the scan circle can be calculated by solving the 
following polynomial equation with respect to u: 

23 2

23 2 2

( ) ( ) ( )

( ) ( ) ( )

jxh h jxh h jxh h jxh

jyh h jyh h jyh h jyh

a u u b u u c u u d s

a u u b u u c u u d t r

⎡ ⎤− + − + − + −⎣ ⎦

⎡ ⎤+ − + − + − + − =⎣ ⎦

  
(2) 

with the constraint 1h hu u u +≤ <  and inserting the root û  back 
to Equation (1) to calculate the solutions of ˆ jhx  and ˆ jhy . The 
angular value of the intersection is then calculated as: 

( )

1

1

1

ˆ
ˆtan

ˆ

ˆ
ˆ ˆ,  ,  tan 180 ,  

ˆ

ˆ
ˆ ˆtan 180 ,  

ˆ

jh
jh

jh

jh
j jh jh

jh

jh
jh jh

jh

y t
x s

x s

y t
f s t x s y t

x s

y t
x s y t

x s

θ

θ θ

θ

−

−

−

⎧ ⎛ ⎞−
+ ≥⎪ ⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠

⎪
⎛ ⎞−⎪

= + + < ≥⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪ ⎛ ⎞−⎪ + − < <⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

o

o

  
(3) 

for ( ){ }
1

,  ,  
M

j j
f s t θ

=
 where M is the number of vessels in the 

fundus image. ( ),  ,  jf s t θ  is also used to represent the 
corresponding fundus image vessel. 

The scan circle alignment can be decomposed into two 
tasks: vessel matching and displacement parameter inference. 
The vessel matching links an OCT vessel iX  and a fundus 
image vessel ( ),  ,  jf s t θ  if they belong to a same vessel. The 

displacement parameter inference infers the parameters ( ),  s t  
and θ  to minimise the distances between the matched vessels 
in two images. These two steps are both non-trivial and affect 
each other in a complex way. For instance, the OCT and 
fundus image vessels in Figure 1 cannot be matched without 
knowing the location parameters. An OCT vessel cannot be 
simply matched to the nearest fundus image vessel. In the 
example in Figure 1, the nearest-matching criterion (Figure 
1(III)) results in obvious erroneous vessel pairs (c-C, f-J, i-M 
and j-N in Figure 1(I)). On the other hand, the displacement 
parameters cannot be inferred without knowing how the 
vessels in two images are matched. Because of the 
complicated interaction between vessel matching and 
parameter inference, treating them independently would result 
in suboptimal solutions. 

 
Figure 1. A retinal fundus image and OCT circular scan for the same eye. The detected vessels are modelled and delineated by cubic splines, shown here as red 
curves superimposed on the fundus image (I) and labelled with letters in uppercase (A to N). The image acquisition begins with a circle placed in an arbitrary 
position around the ONH, e.g. the blue line in (I). The scan starts from the mid-temporal area at 180° (blue arrow on scan circle) and traverses in a clock-wise 
direction to superior (90°), nasal (0°), inferior (-90°) and finally back to the mid-temporal area. The circular scan is ‘straightened’ to a line (in 2D) as shown in 
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(II). The results of the OCT vessel detection technique are indicated in (II) as crosses and are superimposed as white circles in the fundus image (I). The OCT 
vessels are numbered by letters in lowercase (a to j). The angular values of the indicated position of the OCT vessels and the intersections between the scan circle 
and fundus image vessels are plotted in (III). The lines in (III) link each OCT vessel to the nearest fundus image vessel.  
   

B. Probabilistic modelling  
The complex relationship between the vessel matching and 

scan circle displacement parameter inference is modelled with 
a probabilistic model with unobserved variable. The task of 
vessel matching can be divided into two processes. First, 
whether the OCT vessel iX  can be matched to a fundus image 
vessel is examined. If this can be done accurately then an 
inference about what M vessels in the fundus image it needs to 
be matched to. Two groups of unobserved variables are 
introduced to model these two processes. The binary vector 

( ){ }0 1 1
,  

N
i i i i=
=Y Y Y  is encoded with 1-out-of-2 notation in 

which only one of the two elements can be equal to 1 in iY : 

1 1i =Y  if the ith OCT vessel iX  can be accurately aligned to a 
fundus image vessel, otherwise 0 1i =Y . A prior probability 
over iY  is introduced such that ( )1ik kP = =Y u  for 0 or 1k =  
so: 

( ) ( )
1

0

ik

i k
k

P
=

=∏ YY u  (4) 

It is also required that probability values satisfy 
1

0
1k

k=
=∑u . 

Another binary vector ( ){ }1 1
,...,  

N
i i iM i=
=Z Z Z  adopts 

1-out-of-M notation so that only one of the M elements in iZ  
can be equal to 1, and 1ij =Z indicates that the ith OCT vessel 
is matched to the jth fundus image vessel. Similarly, a prior 
probability over iZ  is set as ( )1ij jP = =Z π  for 1 to k M=  

so: 

( ) ( )
1

ij
M

i j
j

P
=

=∏ Z
Z π  (5) 

where { }
1

M

j j=
π  are probability values satisfying 

1
1

M

j
j=

=∑π . 

The posterior probability of iX  given 1ij =Z is defined as a 
mixture of two Gaussian distributions centred on the same 
mean of ( ),  ,  jf s t θ  but with different variance 2

kδ  that is 

decided by the value of iY :  

( )( )( )
1

2

0

( | ,  1) | ,  ,  ,  ik

i i ij i j k
k

P f s t θ δ
=

= =∏
Y

X Y Z XN  (6) 

where the parameters { }12

0k k
δ

=
 are set to satisfy 2 2

1 0δ δ<< . 

This can be interpreted as if the OCT vessel iX  can be 
accurately aligned to the fundus image vessel ( ),  ,  jf s t θ  

( 1 1i =Y ), then iX  needs to be close to ( ),  ,  jf s t θ  in order to 
‘score’ a high probability, otherwise a small divergence 
(defined by small 1δ  such as 2°) from ( ),  ,  jf s t θ  would 
result in a probability near to zero. On the other hand, if the 

OCT vessel iX  cannot be accurately aligned to a fundus 
image vessel ( 0 1i =Y ), iX  distributes more ‘uniformly’ 
(defined by large 0δ  such as 45°) with a small probability 
value, so the divergence from ( ),  ,  jf s t θ  has minimal effect 
on the probability. 

From Equation (6), the posterior probability ( )| ,  i i iP X Y Z  
can be defined as:  

( ) ( )( )
1

2

1 0

| ,  | ,  ,  ,  
ij

ik
M

i i i i j k
j k

P f s t θ δ
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∏
Z

Y
X Y Z XN  (7) 

from which the joint probability ( ),  ,  i i iP X Y Z  can be 
calculated as the multiplication of Equation (4), (5) and (7):  

( ) ( )( )( )
1

2

1 0

,  ,  | ,  ,  ,  
ij

ik
M

i i i j k i j k
j k

P f s t θ δ
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∏
Z

Y
X Y Z π u XN  (8) 

The joint probability ( ),  ,  i i iP X Y Z  defines a mixture of 
Gaussian mixture. This ‘mixture of mixture’ model structure 
was previously used for classification problems [28] and in 
other applications where the model was named after 
‘compound mixture model’ [29]. 

Because { } 1

N
i i=Y  and { } 1

N
i i=Z  are all unobserved variables as 

opposed to directly observed variables, the likelihood  can be 
calculated by marginalising the joint probability over these 

unobserved variables and assuming that { } 1

N
i i=X  are 

independent and identically distributed: 

( ) ( )( )( )

( )( )

1
2

1 1 0, 

1
2

1 01

| ,  ,  ,  

| ,  ,  ,  

ij
ik

i i

N M

j k i j k
i j k

N M

j k i j k
j ki

P f s t

f s t

θ δ

θ δ

= = =

= ==

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∏ ∏ ∏∑

∑ ∑∏

Z
Y

Y Z

X π u X

π u X

N

N

 
(9) 

Because only one element in vectors iY  and iZ  can be equal 

to ‘1’ respectively, the summation 
,  i i

∑
Y Z

and multiplication 

over j and k in the first step of Equation (9) represent the 
exhaustive summation of all possible 

( )( )2| ,  ,  ,  j k i j kf s t θ δπ u XN  over j and k. Therefore, in the 

second step, 
,  i i

∑
Y Z

and the multiplication over j and k were 

substituted with summation over j and k. 
 

C. Expectation-maximization algorithm 
An expectation-maximization (EM) algorithm [30] is used 

for finding maximum likelihood estimates of the parameters in 
Equation (9). In the expectation (E) step, the posterior 
probability of the unobserved variables ( ),  |i i iP Y Z X  is 
calculated as: 
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( ) ( )
( )

( )( )( )
( )( )

1
2

1 0
1

2

1 0

,  ,  
,  |

| ,  ,  ,  

| ,  ,  ,  

ij
ik

i i i
i i i

i

M

j k i j k
j k

M

j k i j k
j k

P
P

P

f s t

f s t

θ δ

θ δ

= =

= =

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

∏ ∏

∑ ∑

Z
Y

X Y Z
Y Z X

X

π u X

π u X

N

N

 
 
 
 
(10) 

by using Equation (8) and the ith component in Equation (9). 
The expectations of ijZ  and ij ikZ Y  w.r.t. the distribution 

( ),  |i i iP Y Z X  are then calculated in the E-step and will be 
used in the following maximization (M) step, which computes 
parameters maximising the expected log likelihood found in 
the E step: 

( ) ( )
( )( )
( )( )

, |

1
2

0
1

2

1 0

( 1 | )

| ,  ,  ,  
   

| ,  ,  ,  

i i iij ij ij iP

j k i j k
k

M

j k i j k
j k

P

f s t

f s t

θ δ

θ δ
=

= =

= = =

∑
=
∑ ∑

Y Z Xα Z Z X

π u X

π u X

N

N

E

  
(11) 

and 

( ) ( )
( )( )

( )( )

, |

2

1
2

1 0

( 1,  1| )

| ,  ,  ,  

| ,  ,  ,  

i i i

k
ij ij ik ik ij iP

j k i j k
M

j k i j k
j k

P

f s t

f s t

θ δ

θ δ
= =

= = = =

=
∑ ∑

Y Z Xβ Z Y Y Z X

π u X

π u X

N

N

E

  
(12) 

In the M-step, the expectation of the complete likelihood 

( )( )log ,  ,  P X Y Z  under the distribution of ( ),  |P Y Z X  is 

calculated and maximised w.r.t. the parameters ( ),  s t , θ , 

{ }1 0k k=u  and { }
1

M

j j=
π :  

( ) ( )( )( )
( ) ( )

( ) ( )( )( )

( )( )

,  |

1

1 1 1 1 0

1
2

1 1 0

1

1 1 1 1 0

2
1

2
1 1 0

log ,  ,  

log( ) log( )

log | ,  ,  ,  

log( ) log( )

,  ,  1
2

P

N M N M

ij j ij ik k
i j i j k

N M

ij ik i j k
i j k

N M N M
k

ij j ij k
i j i j k

kN M
ij i j

i j k k

P

f s t

f s t

θ δ

θ
δ

= = = = =

= = =

= = = = =

= = =

= +

+

= +

−
−

∑∑ ∑∑∑

∑∑∑

∑∑ ∑∑∑

∑∑

Y Z X X Y Z

Z π Z Y u

Z Y X

α π β u

β X

E

E E

E N

const+∑

 

 
 
 
 
 
 
 
 
(13) 

where Equation (11) and (12) have been used. This target 
function is divided into three components each of which 
contains a group of the parameters. Note that the components 
of this function that do not include any parameters were 
grouped into a constant term as they are irrelevant to the 
maximisation of the objective function. 
 Similar to the mixture of Gaussian mixture model [28] and 
compound mixture model [29], the Equation (13) is 
maximized w.r.t. parameters { }

1

M

j j=
π  under the constraint of 

1
1

M

j
j=

=∑π  by adding a Lagrange multiplier 
1

1
M

j
j

λ
=

⎛ ⎞∑ −⎜ ⎟⎝ ⎠π π  into 

Equation (13) and setting the derivative of the objective 

function w.r.t. jπ  to 0: 

1

N

ij
i

j N
==
∑α

π  (14) 

Similarly, { }1 0k k=u  are found by using the Lagrange multiplier 
1

0
1j

k
λ

=

⎛ ⎞∑ −⎜ ⎟⎝ ⎠u u : 

1 1

N M
k
ij

i j
k N

= ==
∑∑β

u  (15) 

The optimization of Equation (13) w.r.t. parameters ( ),  s t , 
and θ  is more complex because setting the derivative of 
Equation (13) w.r.t. these parameters to zero does not give a 
closed solution for these parameters. Therefore, the iterative 
Quasi-Newton optimization algorithm [31] is used to find the 
maxima of the third component in Equation (13) 

( )( )2
1

2
1 1 0

,  ,  1E
2

kN M
ij i j

i j k k

f s t θ
δ= = =

−
= − ∑∑∑

β X
 (16) 

w.r.t. ( ),  s t , and θ  in every M-step. Quasi-Newton algorithm 
is based on Newton's method [32, 33] that uses the first and 
second derivatives (gradient vector and Hessian matrix) to 
find the local maximum. Instead of explicitly calculating the 
Hessian matrix, which is computationally expensive, 
Quasi-Newton avoids the exact computation of the second 
derivatives and updates the Hessian matrix by analysing 
successive gradient vectors [31, 33]. This allows the 
Quasi-Newton algorithm to be implemented with 
computational efficiency and consequently forms an efficient 
M-step in the EM algorithm. The Quasi-Newton algorithm 
makes use of the gradient of the Equation (16) w.r.t. ( ),  s t , 
and θ , which can be simply derived from Equation (1),  (2) 
and (3) by using the chain rule of the derivative. 
Quasi-Newton algorithm stops when the following parameter 
convergence criteria are met: 1) the absolute difference 
between the values of ( ),  s t  between two successive 
iterations is less than 10-5µm; and 2) the absolute difference 
between the values of θ  between two successive iterations is 
less than 10-5 degrees. 

In all, the EM algorithm starts with initial values of the 

parameters ( ),  s t , θ , { }1 0k k=u  and { }
1

M

j j=
π  and iterates 

between the E-step and M-step. The whole process of the 
algorithm is summarized in Figure 2. The parameter ( ),  s t , 

θ , { }1 0k k=u  and { }
1

M

j j=
π are initialised at the beginning of the 

algorithm. More details about initialisation will be given in the 
next section. In the E-step, ijα  and k

ijβ  in Equation (11) and 
(12) are calculated using the current parameter values: 
initialized parameters in the first iteration or the parameters 
formed by the M-step in the previous iteration afterwards. In 
the M-step, ijα  and k

ijβ  calculated in the E-step are used and 
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the expected complete log likelihood in Equation (13) is 
maximized using Equation (14), (15) and Quasi-Newton 
optimization to form the new estimate of parameters 
( ),  new news t and 

newθ  that will be used in the next E-step. The 

iteration terminates if the scan circle falls outside of the 
borders of the fundus image or when the following  parameter 
convergence criteria are met: 1) the absolute difference 
between the values of ( ),  s t  between two successive EM 
iterations is less than 10-5µm; 2) the absolute difference 
between the values of θ  between two successive EM 
iterations is less than 10-5 degrees; 3) the absolute difference 

between the values of { }1 0k k=u  and { }
1

M

j j=
π between two 

successive EM iterations is less than 10-6. 
 

 
Figure 2. A summary of the EM algorithm. 
 

D. Evaluation and parameter initialisation 
The algorithm was evaluated using the mean absolute 

angular difference (MAAD) between the matched vessels in 
the OCT and fundus images. The vessel matching is 
determined by the probability ( )|i iP Y X  and ( )|i iP Z X , 

which can be calculated from ( ),  |i i iP Y Z X  in Equation (10) 
by marginalization after the termination of the algorithm. The 
ith OCT vessel is aligned to the jth fundus image vessel if 

( ) ( )1 01| 1|i i i iP P= > =Y X Y X  and ( )1|ij iP =Z X  is the 

largest among ( )' |ij iP Z X  for ' 1 to j M= . In the unlikely 

case that multiple OCT vessels are so close that they are 
matched to the same fundus image vessel, only the OCT 
vessel closest to the fundus image vessel is matched. The 
vessel matching guarantees that the same number of vessels is 

matched in both OCT and fundus images so those matched 
vessels in two types of images form vessel pairs. The MAAD 
is then calculated as the mean of the absolute angular 
difference between these vessel pairs. 

The criteria for a successful inference include: 1) 1 0.7≥u ; 
2) the number of matched vessels is larger than 5; 3) the 
MAAD between the matched vessels is smaller than 1δ  which 

is set at 2o  in the implementation with 0δ  set at 45o . The 
choice of 1δ  and 0δ  will be explained in next section; 4) the 
inferred scan circle is within the border of fundus image. The 
first two criteria ensure that the inferred scan circle 
displacement is ‘agreed’ by adequate number of vessels. The 
third criterion guarantees that the distance between the 
matched vessels is sufficiently small.  

Without losing generalisation, the parameters θ , { }1 0k k=u  

and { }
1

M

j j=
π  are initialised to be 0θ = o , 1 0.95=u , 0 0.05=u  

and 1
j M
=π . The choice of 1 0.95=u  results from the 

expectation that most OCT vessels can be aligned to the 
fundus image vessels. There are multiple initialisation options 
for the parameters ( ),  s t  in order to cope with the potential 
large displacement of scan circles: they are initialised to be at 
nine locations shifted by 0 and 200µm± from the centre of the 
ONH on both the x- and y-axis. The algorithm starts with 
different parameter initialisation and if the inferred values of 
parameters are different with different initialization, the 
displacement is chosen as the one with the lowest MAAD 
from a successful inference. 
 

E. Choice of 1δ  and 0δ  

The parameters 1δ  and 0δ  were set such that 1δ << 0δ . 
Quantitatively, it was defined that the two intersections 
between the two Gaussian distributions defined by 1δ  and 0δ  
in Equation (6) are 12.5δ  from the mean. Therefore, given the 
value of 1δ , 0δ  can be calculated thereafter. To find the 
optimal 1δ , various values of 1δ  are used and the mean 
MAAD and mean 1u  are examined (Figure 3). To illustrate 
the effect of 1δ , the first two criteria of successful inference 
are not used because, as it will be shown below, fewer 
( 1 0.7<u ) OCT vessels can be matched to the fundus image 
vessels with small 1δ  values.  

1δ  defines the necessary ‘closeness’ of the OCT vessel to 
the fundus image vessel in order to match the two vessels. As 
shown in Figure 3(a), small 1δ  allows for a smaller difference 
between the OCT and fundus image vessels and thus gives 
better (lower) MAAD for the matched vessels. However, 
smaller 1δ  also excludes more OCT vessels so fewer OCT 
vessels can be matched to the fundus image vessels, which is 
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quantified by lower value of 1u  (Figure 3(b)). For instance, 

although 1 0.5δ = o
 gives a low mean MAAD of 0.29°, but less 

than 70% ( 1 0.59<u ) of the OCT vessels can be matched to 
the fundus image vessels. On the other hand, large 1δ  allows 
for more OCT vessels to be matched to the fundus image 
vessels but the MAAD also increases at the same time.   

Therefore, the choice of 1δ  reflects the trade-off between 
lower MAAD and having adequate number of matched 
vessels. In this implementation, 1δ  is chosen as the value 
giving the lowest mean MAAD with mean 1 0.7≥u  as 
required by the criteria of successful inference. This value of 
1δ  was found to be 2°, and 0δ  is calculated to be 45°. 

 
Figure 3. The mean MAAD and 1u  under different values of 1δ . 
 

F. Validation experiments 
The OCT scan circle alignment algorithm was developed 

and implemented in MATLAB (version 7.9.0 R2009b, The 
MathWorks, Inc., Natick, MA). An executable version of this 
software is freely available from the authors. 

The algorithm was initially developed using Stratus OCT 
data from patients with glaucoma made available from the Eye 
Center of University of Pittsburgh Medical Centre (data not 
shown) [18, 34]. The algorithm was then validated by 
investigating the impact of scan circle displacement on the 
RNFLT measurement repeatability using a separate dataset 
acquired for the purpose from Moorfields Eye Hospital NHS 
Trust, London. Eighteen patients (mean age of 65 (range 50 to 
82) years) with a clinical diagnosis of glaucomatous optic 
neuropathy (primary open angle or normal tension glaucoma) 
with reproducible visual field defects were recruited. The 
study was approved by an ethics committee and informed 
consent, according to the tenets of the Declaration of Helsinki, 
was obtained prior to examination from each subject. In the 
study protocol, a chosen eye from each subject was imaged 23 
times with the StratusOCT system using the Fast RNFL 
Thickness (3.4) protocol. This protocol acquired three 
consecutive single scans in one image acquisition giving 69 
single scans for each eye. Fundus images were acquired with 
the GDxVCC which covers an area of 5.9mm×5.9mm around 
the ONH. Patient identifiers were removed from the data 
before being transferred to a secure database at City 
University London. 

III. RESULTS 
The algorithm was used to align all 69 OCT circular scans 

onto the corresponding fundus images for each eye. On 
average, the EM algorithm took 10.3 iterations before 
convergence. In each M-step, the average number of 
Quasi-Newton optimisation was 23.2. Computational time for 
aligning each OCT scan circle to the fundus image was 2.3s 
(SD 0.6s) on a typical desktop PC with one core of Intel Core 
2 Due 2.53GHz CPU and 2GB RAM. 

 

A. Algorithm performance 
An example of the results from the alignment algorithm for 

one of the eyes is shown in Figure 4. The initial location of the 
OCT circular scan and its vessels are described in Figure 1(I). 
The EM algorithm took 11 iterations to estimate the location 
of the scan circle in this example. Relative rotation of this scan 
circle w.r.t. the fundus image was 3.5o  and was corrected 
when plotting the OCT vessels in Figure 4(I). The algorithm 
was successful in aligning the vessels in the images and this is 
quantified by the MAAD between the matched vessels having 
a relatively small value of 0.4o . In this example, most OCT 
vessels (from a to i) could be aligned to the fundus image 
vessels, as indicated by the large posterior probabilities 
( )1 1|i iP =Y X  which are also given in Figure 4(I). On the 

other hand, one OCT vessel (x) could not be aligned to any 
fundus image vessel because in this case ( )1 1|i iP =Y X =0. 
The OCT image in Figure 1(II) shows that the detection of this 
‘vessel’ may be a false positive result by the OCT vessel 
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detection algorithm because it isn’t clear from looking at the 
image alone that there should be a vessel at that location. The 
vessel matching was decided by the largest posterior 
probabilities among ( )' |ij iP Z X  for ' 1 to j M=  which were 

denoted in Figure 4(I).  
The algorithm produced successful inference of scan circle 

displacement for all OCT images. On average, the mean and 
SD of MAAD for all OCT circular scans (n=1242) in this 
sample of eyes were 0.82 0.34±o o . The average number of 
detected vessels in these OCT images was 11.6. On average, 
86% of the OCT vessels could be aligned to fundus images 
with posterior probabilities ( ) ( )1 01| 1|i i i iP P= > =Y X Y X . 
Therefore, the average number of matched vessels is 10 
(11.6×86%), suggesting that, although 14% of the vessels 
were not matched, the algorithm could terminate with 

successful inference (criteria described in Section IID) 
‘agreed’ by the majority of the vessels and was able to align 
the OCT vessels to the fundus image vessels with minimal 
angular difference. 

Locations of the 69 repeated circular scans from the same 
example eye are shown in Figure 4(II). Although the operator 
aimed to scan the same circular area on the retina, the scan 
circles, as inferred by the algorithm, are displaced from each 
other and covered a wide annulus area around the ONH. The 
distance (relative shift in microns and as degrees of relative 
rotation) between the centre of each scan circle, as determined 
by the algorithm, was calculated for all possible pairs of scans 
(n=2346).  In the example shown in Figure 4, the mean 
distance between two scan circles was 143um (SD of 130µm) 
and relative rotation was 1.9º (SD of 1.8º). 

 

 
 
Figure 4. An example of OCT scan circle alignment algorithm. The initial location of the OCT scan circle and its vessels were described in Figure 1(I) and the 
initial rotation was 0°. The OCT scan circle and its vessels were superimposed on the fundus image (I) at the inferred location (black dot) and rotation (3.5°). The 
path of the scan circle centre at each step of the EM algorithm was plotted as a black curve on the fundus image. The posterior probability P(Yi1=1|Xi) and 
P(Zij|Xi) for the matched fundus image vessel is denoted in the bracket beside each OCT vessel in the format of (P(Yi1=1|Xi), matched vessel pair: P(Zij|Xi)).  
 
 

TABLE 1. DISTANCES AND ROTATION DIFFERENCE (MEAN±SD) BETWEEN 
TWO CIRCULAR SCANS 

 All scans Three consecutive scans 
Distance on x-axis 88±91µm 29±36µm 
Distance on y-axis 117±103µm 34±43µm 
Overall distance 153±122µm 49±77µm 
Rotation difference 1.7°±1.8° 0.8°±1.6° 

 
During the OCT image acquisition, 3 scans are taken 

consecutively within 1.92 second after the manual placement 
of scan circle so the locations of the scan ‘triplet’ are expected 
to be affected less by the circle placement. To examine the 
assumption, the distances on the x-axis, y-axis, the overall 
distances in microns and the rotational distances in degree 
between all pairs of scan circles were calculated for each eye. 

These distances were compared with those calculated with 
scan circle pairs from three consecutive scans during the same 
image acquisition. The mean and SD of these distances were 
summarized in TABLE 1, showing that, on average, the 
distance between two circular scans tends to be smaller if they 
belong to the scan triplet from the same image acquisition. 

B. Effect of scan circle displacement on RNFLT 
The impact of scan circle displacement on RNFLT 

measurement was examined. Quadrant RNFLT measurements 
(temporal, superior, nasal and inferior) were plotted against 
x-axis and y-axis displacements of the centre of each scan 
circle. Linear regression then gave estimates of the average 
change of quadrant RNFLT caused by the displacement of 
scan circle. An example from one eye is shown in Figure 5.  
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The superior and nasal RNFLT are negatively correlated 
with the scan circle location on y- and x-axis respectively. 
Similarly the inferior and temporal RNFLT are positively 
correlated with the scan circle location on y- and x-axis 
respectively. On average, the inferior RNFLT increases by 
3.9 0.4µm±  and the superior RNFLT decreases by 

4.2 0.4µm±  when the y-coordinate of scan circle centre 
increases by 100µm; the temporal RNFLT increases by 
3.5 0.4µm±  and the nasal RNFLT decreases by 4.2 0.5µm±  
when the x-coordinate of scan circle centre increases by 
100µm. 

 

 
 
Figure 5. Plot of quadrant RNFLT measurements against the scan circle centre locations on x- and y-axis from one eye with fitted linear regression lines. The 
origin point (0µm) of the scan circle centre was arbitrarily chosen within the ONH. The slopes of the lines all differ from 0 (p<0.01). 
 

The impact of scan circle displacement on RNFLT can also 
be observed by the change of RNFLT profile under scan 
circles at different locations. Figure 6 shows four scan circles 
relatively displaced towards superior, inferior, temporal and 
nasal directions. Note that the RNFLT profiles feature a 
‘double hump’ shape where the RNFLT in superior and 

inferior areas is thicker than that in temporal and nasal 
regions. It is clear that moving the scan circle inferiorly 
increases the superior RNFLT and decreases the inferior 
RNFLT, and vice versa. Similarly, the scan circle on the nasal 
side has relatively thicker temporal RNFLT and thinner nasal 
RNFLT compared with the scan circle on the temporal side. 
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Figure 6. The RNFLT profile under scan circles at different locations on the retina. The scan circles at different locations were superimposed on the fundus 
image. These four scan circles were relatively superior (red), inferior (black), temporal (blue) and nasal (green) to each other. The tendency of change on RNFLT 
profile caused by the displacement of the scan circle location is indicated by the arrows in RNFLT profile plots. In each RNFLT profile plot, the x-axis is the 
peripapillary angle in the OCT circular scan. 

C. RNFLT measurement variability 
The RNFLT change caused by the scan circle displacement 

contributes to the variability of RNFLT measurement. The 
effect of scan circle displacement on mean and quadrant 
RNFLT measurement variability was investigated. Variability 
was scored as two times the standard deviation of three 
repeated scans [35], which were drawn from the exhaustive 
combination of all repeated scans of each eye. The average 
variability was calculated with all repeated scans and those 
scans with average distance among scan circle centres smaller 
than 50µm and larger than 300µm (Table 2). In short, the 
former represent a group of circular scans that the technique 
revealed to be closely matched, while the latter are scans that 
are more disparate. 

RNFLT measurements (both mean and quadrant RNFLT) 
under the scan circles that are close to each other (average 
distance <50µm) demonstrates significantly lower (paired 
t-test; p<0.001) variability compared with those measured 
under scan circles that are far away from each other (average 
distance >300µm). This shows that the variability of RNFLT 
measurement is affected by the scan circle displacement and 
the scan circles that are close to each other provide RNFLT 
measurements with significantly better reproducibility.  

 
TABLE 2. MEAN AND QUADRANT RNFLT VARIABILITY WITH ALL REPEATED 

SCANS AND SCANS WITH DIFFERENT AVERAGE DISTANCES AMONG SCAN 
CIRCLE CENTRES 

 <50µm >300µm All scans 
Mean RNFLT 4.3 7.4 6.2 
Temporal RNFLT (µm) 6.8 10.7 8.9 

Superior RNFLT (µm) 8.5 14.9 12.7 
Nasal RNFLT (µm) 9.7 15.1 13.9 
Inferior RNFLT (µm) 8.3 14.7 11.2 

 

IV. DISCUSSION 
Retinal vessels, compared with other RNFL structures, are 

relatively stable features for tracking a patient with glaucoma 
over time. This makes it possible to align multiple OCT 
circular scans, acquired in time, to a uniform coordinate 
formed by the vessel structures in the retinal fundus image. 
The two tasks in scan circle alignment, vessel matching and 
scan circle displacement inference, however, interact in a 
complicated way and have not been studied previously. The 
scan circle alignment algorithm proposed in this study 
integrated these two interactive steps into an EM framework: 
the iterative E- and M-steps in the algorithm incorporate the 
vessel matching, parameter inference and their interaction in a 
natural way. The algorithm guarantees to find a local 
maximum that gives an optimal alignment between two types 
of images.  

Despite the superior specifications of the new SD-OCT, 
recent studies found that the diagnostic capability of TD-OCT 
is no worse than that of SD-OCT in clinical management of 
glaucoma [36-38] and other retinal diseases [39]. Particularly, 
the reproducibility for TD-OCT, for 'closely-matched' scans 
(average distance among scan circles <50µm in Table 2) 
identified by the algorithm, is close to reported reproducibility 
for SD-OCT [40, 41]. Therefore, many glaucoma services 
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'inheriting' TD-OCT from their retina specialist colleagues as 
they migrate to SD-OCT, may be confident that the TD-OCT 
provides similar monitoring capabilities for glaucoma as 
current SD-OCT devices. 

The rate of RNFLT change caused by scan circle 
displacement demonstrated in Section IIIB (3.5µm in 
temporal, 4.2µm in superior, 4.2µm in nasal and 3.9µm in 
inferior when scan circle displaces by 100µm on x- and y-axis) 
is significant when compared with the variability of RNFLT 
measurement in Table 2. Dividing the rate of RNFLT change 
by the RNFLT variability with all scan circles in Table 2 
shows that, on average, 39%, 33%, 30%, 35% of the 
variability in the temporal, superior, nasal and inferior 
quadrants can be explained by the scan circle displacement of 
100µm, which is a significant amount of displacement 
compared with the average displacement in TABLE 1 (88µm 
on x-axis, 117µm on y-axis and overall 153µm). 

The results from the validation experiment indicate that the 
variable location of the scan circle adversely affects the 
reproducibility of RNFLT measurements. RNFLT 
measurements and estimates of the corresponding 
displacement of the scan circles used together would be 
clinically useful when following a patient over time. The 
alignment algorithm, when applied retrospectively to data, will 
identify measurements that might be expected to have high 
variability. The technique, therefore, could provide a quality 
measure of scan acquisition, and this could even be achieved 
at the point of image acquisition. Moreover, the scan circle 
alignment algorithm can be used to identify those RNFLT 
measurements from areas that are close to each other. For 
multiple scans acquired at different periods of time, the 
RNFLT measurements that are identified as more reproducible 
may better reveal the real physiological change of the RNFLT 
in the longitudinal assessment of glaucoma. This will, 
therefore, have clinical impact on monitoring the progression 
of glaucoma over time. A recent study about the rate of 
RNFLT change caused by glaucoma reported decrease rates 
between −1.2µm/year and −15.4µm/year of mean RNFLT 
over a 5-year period [42]. We have shown that the scan circle 
alignment yields about a 30% reduction in the variability 
associated with average RNFLT measurements (Table 2: 
6.2µm to 4.3µm). This better reproducibility (lower 
variability) of the RNFLT measurement means that fewer 
scans would be needed to detect the ‘progression signal’, 
potentially saving patient visits and resources. Moreover, the 
better reproducibility allows for earlier identification of 
progression and more accurate determination of a progression 
rate in a shorter period of time, which leads to more 
appropriate treatment, targeting more aggressive treatment of 
fast progressors and not over-treating those falsely believed to 
progressing rapidly because of noisy data. 

The algorithm proposed in this study also helps to bridge 
OCT to the other imaging techniques such as SLP so the 
power of these techniques can be improved by their 
combination. It was shown, in a recent study [19], that the 
reproducibility of the calculated RNFL birefringence was 
improved when the OCT scan circle is aligned to the SLP 

image using the alignment algorithm. 
 

 
Figure 7. Illustration of the mixture of Gaussian distributions in Equation (6) 
for vessel matching. The two Gaussian distributions centre on the same mean 

( ),  ,  jf s tµ θ=  but have different standard deviations satisfying 1 0δ δ<< . 

The two Gaussian distributions intercept at two points that are δΔ  from µ . 

 
The vessel matching in the scan circle alignment algorithm 

is ‘encoded’ by two unobserved variables iY  and iZ . The 
mixture of Gaussian distributions conditioned on iY  in 
Equation (6) indicates whether the OCT vessel iX  can be 
aligned to a fundus image vessel and plays a key role in the 
algorithm. Figure 7 illustrates the mixture of Gaussian 
distributions with the same mean centred on a fundus image 
vessel but with different standard deviations 1 0δ δ<< . An 
OCT vessel follows a peaked distribution around the fundus 
image vessel and scores a high probability if these two vessels 
are close enough. The ‘closeness’ is defined by the two 
interceptions of two Gaussian distributions that are δΔ  away 
from the mean. On the other hand, if the distance between the 
two vessels is not close enough (beyond the two 
interceptions), the probability of the Gaussian defined by 1δ  
drops under the Gaussian defined by 0δ . In this case, the OCT 
vessel is ‘forced’ to follow the more ‘uniform’ distribution in 
order to score a relatively higher probability. 

OCT vessels that cannot be aligned to any fundus image 
vessel (named here as ‘noisy’ vessels such as OCT vessel ‘j’ 
in Figure 4(I)) considerably mislead the parameter inference 
because their large distances from fundus image vessels 
dramatically affect the maximisation of the third term in 
Equation (13). The usage of the Gaussian mixture model helps 
to isolate the effect of these ‘noisy’ vessels. As an illustration, 
these ‘noisy’ vessels are all forced to follow a more uniform 
distribution (Figure 7) and thus have low probability values 
(defined in Equation (6)) near to zero. This, in turn, results in 
small ijα  and k

ijβ  for the corresponding ‘noisy’ vessels in the 
E-step. These near-to-zero values, once substituted into the 
objective function Equation (13) in the M-step, have minimal 



 12 

effect on the objective function as well as its derivatives with 
respect to the scan circle displacement parameters. This 
process ensures that the ‘noisy’ vessels do not interfere with 
the parameter inference. 

Instead of using fixed values for the standard deviation 1δ  
and 0δ ,  the model was adjusted to infer (data not shown) 1δ  
and 0δ  from the data in the EM algorithm. However, the 
inference algorithm tended to increase 1δ  and decrease 0δ  so 
that more OCT vessels are matched to the fundus image vessel 
even with a large angular difference. This approach increased 
the likelihood in Equation (9) because more OCT vessels 
follow the ‘peaked’ Gaussian distribution in the Gaussian 
mixture even if they are not well aligned, but the accuracy of 
the alignment is worse (larger MAAD) at the same time due to 
the larger 1δ  (Figure 3). Therefore, 1δ  and 0δ  are fixed as 
described in Section IIE. The chosen standard deviation of 

1 2δ = o is small enough to meet the requirement of alignment 
accuracy and can incorporate the possible variance of vessel 
locations caused by factors such as potential eye movement 
during the image acquisition and possible physiological vessel 
shift over a long period of time. If the interceptions between 
the two Gaussian distributions are defined to be at 12.5δ δΔ =  

away from the mean, the 0δ  is calculated to be 45o . 
Last but not least, as illustrated in Figure 4, if a large 

sample of repeated circular scans were acquired, then they 
might cover an annulus area around the ONH potentially 
allowing for a three-dimensional RNFLT profiles to be 
reconstructed. We have previously shown that this might be a 
way of bridging measurements acquired with StratusOCT and 
those volume measurements from more recently established 
SD-OCT systems [43]. 
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