
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 5, MAY 2011 1143

Sparsity-Driven Reconstruction for FDOT
With Anatomical Priors

Jean-Charles Baritaux*, Student Member, IEEE, Kai Hassler, Martina Bucher, Sebanti Sanyal, and
Michael Unser, Fellow, IEEE

Abstract—In this paper we propose a method based on (2,
1)-mixed-norm penalization for incorporating a structural prior
in FDOT image reconstruction. The effect of (2, 1)-mixed-norm
penalization is twofold: first, a sparsifying effect which isolates few
anatomical regions where the fluorescent probe has accumulated,
and second, a regularization effect inside the selected anatomical
regions. After formulating the reconstruction in a variational
framework, we analyze the resulting optimization problem and
derive a practical numerical method tailored to (2, 1)-mixed-norm
regularization. The proposed method includes as particular cases
other sparsity promoting regularization methods such as -norm
penalization and total variation penalization. Results on synthetic
and experimental data are presented.

Index Terms—Fluorescence imaging, optical tomography, opti-
mization, reconstruction.

I. INTRODUCTION

F LUORESCENCE diffuse imaging has an intrinsically
limited spatial resolution because of an imaging kernel

containing a strong smoothing component. Smoothing arises
from the high scattering that affects light as it propagates
through biological tissue, leading to millimeter-scale resolu-
tions. Nevertheless, high sensitivity, ability to image in vivo,
and possibility to obtain functional information by using fluo-
rescent probes make fluorescence diffuse optical tomography
(FDOT) an attractive tool for biological research, drug devel-
opment and medical applications. We refer to [1] and [2] for
more details on fluorescence diffuse imaging and to [3]–[5] for
a glimpse at possible applications.

Recently, development of multi-modal imaging systems has
enabled to couple structural (usually high-resolution) and func-
tional (low-resolution) imaging modalities; the most noticeable
examples are CT-PET [6] and MRI-PET [7]. In the field of dif-
fuse optical imaging, hybrid CT-FDOT systems have been de-
signed [8]–[12], and the combination MRI-FDOT is also being
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explored [13]–[15]. Not only do these systems make it pos-
sible to register anatomic and functional image, but structural
information can also be used to improve the accuracy of the
FDOT reconstruction. In the context of fluorescence tomog-
raphy, anatomical priors were either used to enhance the for-
ward modeling, or directly in the reconstruction procedure. In
[16] the authors report that improving the forward model with
structural information leads to more accurate images. On the re-
construction side, the structural a priori knowledge often takes
form of a labeling of the pixels, derived from a segmentation
of the anatomical image. That type of labeling was used in pre-
vious works to design edge-preserving regularization [17], hi-
erarchical Bayesian models [18], and space-varying quadratic
regularization [19]–[22], which helped improving reconstruc-
tion quality; resolution in particular.

In this work we propose to incorporate structural informa-
tion into the reconstruction procedure of FDOT by means of
a suitable sparsity-promoting regularization functional. Spar-
sity-promoting reconstruction techniques have recently received
considerable attention because of the emergence of compres-
sive sampling [23], and the numerous applications of sparse
wavelet approximation of signals. We refer the reader to [24]
for additional details on sparsity, compressive sampling, and
related algorithms. These techniques have been considered in
the context of optical diffuse imaging in [25]–[27], and lead
to resolution improvement. In this contribution, the emphasis
is put on group-sparsity, i.e., sparsity between groups of co-
efficients, rather than sparsity of the coefficients themselves.
To that end, we introduce the (2, 1)-mixed-norm as a regular-
izer for FDOT reconstruction, and use it to incorporate anatom-
ical information. The properties of the (2, 1)-mixed-norm lead
to an image formation method that automatically selects the
fluorescent parts of the anatomy, and focusses the reconstruc-
tion on these areas. Image reconstruction is formulated as a
convex optimization problem that we analyze using primal and
dual approaches tailored to the (2, 1)-mixed-norm regulariza-
tion. We propose a practical numerical method that relies on
state-of-the-art optimization techniques [28]–[30] to solve this
problem. The method uses inner and outer iterations. To further
speed up the reconstruction process, we derive closed-form ex-
pressions that replace inner iterations when the regularization
term belongs to a set of instances often encountered in prac-
tice. Finally, we show that our (2, 1)-mixed-norm framework
includes as particular cases a number of sparsity-promoting reg-
ularizers such as -norm and total variation (TV) semi-norm.

The rest of this paper is organized as follows. In Section II we
introduce the (2, 1)-mixed-norm and explain how we use it to in-
corporate structural a priori knowledge. In Section III we briefly
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Fig. 1. Cylinder geometry. Results of reconstruction for different regularizations: (a) Tkihonov , (b) TV, (c) -norm , (d) Weighted (2, 1)-mixed-
norm , (e) Weighted (2, 1)-mixed norm . Figure (f) shows the structural information (regions/labeling) in grey levels, and the fluorophore
inclusions in dashed circles.

review the forward model based on the diffusion approximation
that we used in this work. After that, in Section IV, we derive
the reconstruction algorithm. Then, in Section V we present re-
sults and compare the proposed method to existing regulariza-
tion methods including a priori knowledge.

II. ANATOMICAL PRIORS AND (2, 1)-MIXED-NORM

We assume that the structural a priori information comes in
the form of a labeling of pixels in the reconstructed image. The
labeling defines image segments that correspond to anatomical
features; organs for instance. Such a labeling is typically ob-
tained by segmentation of a high-resolution structural image. In-
stances of labelings (partitioning of the domain into regions/seg-
ments), are presented in Section V, Fig. 1(f), Fig. 2(c), and
Fig. 3(e). Our present goal is to design an algorithm that uses
the structural information given by the labeling as a soft-prior.
This means that the reconstruction will not be restricted to spe-
cific regions; rather, all pixels are admissible, but incur a penalty
related to which segment they belong.

We now introduce the (2, 1)-mixed-norm. Let be
a vector representing our image. We assume that the image is
partitioned into segments. We have , where
each of the sub-vectors corresponds to the
pixels in a segment. We will also employ the notation

to denote such a compound vector. The (2, 1)-mixed-
norm of is defined as follows:

(1)

Fig. 2. Geometry employed in Experiment 2. (a) and (b) Registration of recon-
struction mesh and CT image of the phantom. The capillaries containing the flu-
orophore appear in red on this image. (c) Structural prior used in Experiment 2.

Notice that the labeling of the pixels is implicit in this nota-
tion. Observe that the (2, 1)-mixed-norm is a distance measure
that applies -norms inside segments and a -norm across seg-
ments. This suggests the idea of an algorithm based on pe-
nalization. Similarly to -norm penalization which promotes
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Fig. 3. Results for Experiment 2, normalized concentration. (a) QR0, standard regularization, (b) QR1, regularization restricted to the four cylindrical regions
of the structural a priori, (c) QR2, regularization restricted to the two cylindrical regions containing the inclusions, (d) regularization, (e) cross-section
through the regions used as structural a priori in grey levels, and sources in dashed cricles.

sparsity, we can expect (2, 1)-mixed-norm penalization to en-
force sparsity across segments while retaining regulariza-
tion inside a segment. Formulated differently, we expect an al-
gorithm based on penalization to isolate few anatomical
groups, and to apply regularization inside these groups. In
such an algorithm, penalization operates mainly on those
pixels contained in the selected segments which is likely to lead
to a higher reconstruction accuracy.

The use of on its own might not be entirely
satisfactory. In particular it does not enforce smoothness
constraints. We can therefore extend the idea to penalization of
the more general term , where is a linear operator.
Penalizing , for instance, would yield a solution with
few segments having a high gradient, and constant (most likely
0) in the others.

Although it is natural to choose a labeling that is provided by
a prior anatomy-based segmentation, one could consider some
variations of the method. For instance, several anatomical parts
could be merged under the same label, as it would be the case if
one wanted to mark the two lungs at the same time. The labeling
is another degree of freedom of the method for defining regular-
ization policies. More details on this topic will be provided in
Section IV.

III. FORWARD MODEL

In this work we consider FDOT in continuous wave mode.
The investigated object is illuminated with a stationary light
field referred to as the source; typically a laser. The wavelength

of the source is chosen in the near-infrared to guarantee min-
imum absorption in living tissue. It also belongs to the excita-
tion spectrum of the fluorophore that is to be imaged. Simulta-
neously to excitation by the source, the light field emitted by the
fluorophore is recorded at different detector positions. In prac-
tice, a full tomographic data set is generated by scanning and
moving the source and detector positions around the object.

Because we are imaging in a turbid medium, the propaga-
tion of light is well described using the diffusion approxima-
tion [31], [32]. This approximation accounts for the fact that
photons undergo multiple scattering events as they travel inside
the medium. After a few of these events, the direction of propa-
gation becomes essentially random leading to a diffusion-like
profile of the light field. In the diffusion approximation, the
medium is characterized by the diffusion coefficient
and absorption coefficient . The fluence of the light
field is governed by the diffusion equation

(2)

where denotes the domain, and is a source term.
We employ a stationary equation because we are concerned with
FDOT in the continuous mode.

Strictly speaking, the presence of fluorophore in the medium
modifies the absorption and diffusion coefficients. We perform
an additional linearization step, and only account for the flu-
orophore in the source term of the field emitted by the fluo-
rophore. Thus, data acquisition process may be described by
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cascading two diffusion equations. Let us denote by the
excitation field generated by a source in position , by the
(space-varying) concentration of fluorophore, and by the
light field emitted by the fluorophore. Specifically, we have

(3)

(4)

where the delta function models a point-like excitation, and is
a constant accounting for the absorption and the quantum yield
of the fluorophore. Superscripts in and out emphasize that the
quantities depend on the wavelength (excitation and emission).
The spatial map that we want to reconstruct from light measure-
ments on the boundary is the fluorophore concentration .

Using the Green’s function of (4) we get

(5)

The second equality holds because of the reciprocity principle
of light propagation.

Based on this physical model, we implement the forward
model in the following way. First, we compute numerically the
excitation fields for each source position, and the Green’s
functions for each detector position. This is done
using finite elements calculations. Then, we define a discretiza-
tion of the concentration , and evaluate the integrals (5) numer-
ically. This leads to the matrix equation

...
... (6)

Each line of corresponds to a measurement (one configura-
tion of source, detector, and object positions). is the forward
model matrix. It captures everything about the physics of the
problem. Because it is extremely ill-conditioned, advanced reg-
ularization techniques are needed to estimate the distribution .

IV. MIXED-NORM BASED RECONSTRUCTION

A. Mixed-Norm Framework

Motivated by the discussion of Section II, we want to select
the fluorophore distribution that minimizes the (2, 1)-mixed-
norm, among all the distributions that explain the data within
the noise level. We therefore reconstruct the fluorophore distri-
bution by solving the following minimization problem:

(7)

In this expression, is the noise level, is an appropriate linear
operator chosen for regularizing the solution, and is a convex
set representing additional constraints; for instance, positivity.

It is known that solving the constrained problem (7) is equiv-
alent to solving the following unconstrained problem:

(8)

where the parameter depends on the noise level, and provides
a tradeoff between data fidelity and regularization.

Having cast the reconstruction problem in the variational
form (8), it is interesting to notice that this formulation
encompasses a wide class of reconstruction methods. The
reconstruction methods defined by (8) are determined by the
choices of , and of the groups, that are implicit in . We
have the following particular cases.

1) Choosing to be the identity, and one group per pixel,
leads to ; (2, 1)-mixed-norm regulariza-
tion then reduces to -norm regularization.

2) Choosing and the groups corresponding to
at each pixel, we obtain ;

(2, 1)-mixed-norm regularization is TV regularization in
that case.

3) If a choice of and groups has already been defined,
we can consider another regularization term defined
by , where is a
weighting matrix. This corresponds to a situation where
we introduce a weighting of the different groups. It pro-
vides a convenient mechanism for favoring fluorophore
concentration in certain anatomical segments.

B. Forward–Backward Splitting

Forward–backward splitting is a technique for optimizing
functions that are a sum of two terms, one of them being
nonsmooth, possibly. We recall the basic ingredients, and
then develop a specific algorithm for our problem. We write

, where is
the least-squares term, and is the
regularization term along with the characteristic function of the
convex constraints. The present convention is that takes
values 0 for and otherwise. The function is
lower semi-continuous. We have the following fact (see [33]):
for all , for all , there exists a unique such that

, where is the subdifferential of at .
This amounts to saying that the mapping
is one-to-one. In addition, this mapping is characterized by the
following optimization problem:

(9)

The above operator that acts on is called the proximal map of
and denoted by . It is typically nonlinear.

Since is convex, a necessary and sufficient condition for
to be a minimizer is that ,
which is equivalent to . We
rewrite the last equality

, which characterizes the minimizer
as a fixed point, and suggests the iterative procedure

The key ingredient that is needed to apply the algorithm is the
proximal map of . We present methods to compute it in
the next section. We refer the reader to [29] for more details
and convergence analysis of the forward–backward splitting
method.
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TABLE I
PROXIMITY MAPPINGS FOR (2, 1)-MIXED-NORM REGULARIZATION

C. Proximal Map Evaluation

In practice, the applicability of the aforementioned algo-
rithms depends on our ability to compute efficiently .
In the present case, this operation corresponds to denoising the
input using the (2, 1)-mixed-norm. It turns out that
has a closed-form expression in several cases of practical in-
terest. We summarize these expressions in Table I. The results
for the third and fourth line of the table are derived in the
Appendix. They are specific to this work and new to the best of
our knowledge. When no analytical expression can be found,
iterative methods have to be employed. In the sequel, we present
a method based on minimax duality that is particularly well
suited to deal with the particular type of criterion introduced in
this work. This method leads to a numerical algorithm, but can
also be used to find closed form expressions of .

Specifically, we want to solve the problem

(10)

By definition of the dual norm , we have

(11)

which leads to the identification of the dual norm

(12)

It is simply the max of the -norms over the segments. We have
the corresponding dual unit ball

(13)

The direct implication is that

.

This naturally leads us to introduce the minimax problem

(14)

where

(15)

Because the function is strongly convex in and con-
cave in , we have the guarantee of the existence of a saddle
point (but not unicity) [34]. That is, there exists such
that

(16)

We can now define the primal and dual objective functions
and , respectively

(17)

(18)

where is the orthogonal projection on . This yields the char-
acterization of a saddle point by means of the primal and dual
problems

(19)

One obtains a minimizer of from a maximizer of
by the formula . Notice that

enters in the definition of the dual problem, which implies that
has to be simple to implement for the proposed method to

be of practical interest.
While the primal problem corresponds to our initial problem,

the dual problem is different and is possibly easier to solve in
practice. If the dual problem has a closed-form solution, then
we obtain a closed-form solution of the primal problem as well.
Otherwise, we can employ an iterative method to solve the dual
problem. Contrary to is a smooth function: it is con-
tinuously differentiable and its gradient

is well-defined. It is thus possible to apply optimization
techniques for smooth functions to the dual problem.

One important issue when using iterative methods is the stop-
ping criterion. In the method we propose, the natural quantity to
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monitor is the duality gap . This quantity is
always positive, by definition, and is equal to 0 only at a saddle
point. Therefore, by monitoring the duality gap we can assess
whether or not the method has converged. In practice, at the
current iterate , we compute and the
duality gap . If is below a threshold ,
we stop the iterations.

D. Algorithm

The forward–backward splitting scheme presented above is
known to have a slow convergence rate in practice. For our
present implementation, we decided to employ the FISTA
method [30] instead. FISTA is a multi-step version of the
forward–backward splitting scheme, intended to deal with
the same class of optimization problems. It is also based on

and only, but exhibits a faster convergence rate.
Algorithm 1 describes our image reconstruction algorithm
based on the monotonic version of FISTA. The step denoted
Denoise21 corresponds to the computation of the proximal
mapping ; we like to interpret it is a denoising step
for it produces an estimate that is close to the input signal

subject to the constraint that is small. We use a
closed-form for the denoising function whenever possible. Oth-
erwise the denoising function is computed with Algorithm 2;
the FISTA algorithm is applied to the dual of the denoising
problem as described in the previous section. Another option
could be to use Nesterov’s algorithm for smooth functions
[28] for solving the dual problem. Both FISTA and Nesterov’s
method are first-order convex optimization methods that ex-
hibit state-of-the-art convergence rate ( , where is
the iteration number, as opposed to for the standard
gradient method).

Note that the dual approach cannot be applied directly to the
original problem (8) because of the presence of the system ma-
trix . In particualr, when has a nonempty null space, the
saddle point analysis does not hold anymore. Otherwise, the ap-
plication of the dual approach would require inverting the matrix

which is extremely ill-conditioned. This is therefore not
a practical solution.

We conclude this section with the following remark. We
have mentioned previously that -norm and TV semi-norm
are particular instances of the (2, 1)-mixed-norm. Likewise,
we can interpret the algorithm proposed in this work as an
extension of recent algorithms proposed for image restoration
such as ISTA [35], which is related to -norm penalization,
and [36], [37] which are dual approaches to TV denoising and
TV debluring.

V. RESULTS

We present five experiments. The first one is made on syn-
thetic data, while the last four are based on experimental data
acquired on phantoms. In each experiment the algorithm is run
using a range of regularization parameters, and the best recon-
struction is selected based on visual assessment. This operation
is repeated in order to refine the parameter value. Reconstruction
quality is also evaluated using contrast-to-noise ratio.

A. Experiment 1: Two Dimensions, Synthetic Data, Multiple
Inclusions

In this experiment we consider a cylindrical shape geometry
with radius 12.5 mm. The cross-section is shown in Fig. 1(f).
There are four fluorophore inclusions, each with unit concen-
tration (in arbitrary units). They are outlined by dashed circles.
Otherwise, the cylinder is homogeneous with cm
and cm . It is partitioned into seven regions (in-
cluding background). The regions are displayed in grey levels.
We assume that the fluorophore distribution is invariant by trans-
lation along the axis of the cylinder, which enables to employ
a 2-D forward model in order to alleviate the computational
burden. A triangular reconstruction grid with 1 mm cell size
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is used. Whether it be simulated or experimental, the acquisi-
tion setup considered in this work is transillumination. For each
acquisition, a point source (of the excitation light field) is gen-
erated by a laser beam at the surface of the measured object.
An acquisition consists in sampling the fluorescence light field
at several points on the surface opposite to the source position.
These points are referred to as detectors in the following. In the
present experiment we simulate 36 sources spaced every 10 .
For each source the light field is sampled at 90 detectors spaced
every 2 . Lastly, the inclusions are positioned rather close to the
boundary, but some of them are also close to each other.

Fig. 1(a)–(e) displays the reconstructions obtained with var-
ious regularizers. Fig. 1(f) presents the regions (or labelling)
used as structural a priori. We differentiate separate compart-
ments by employing distinct grey levels. In order to test the
robustness of the scheme, we define more regions than inclu-
sions, with various sizes compared to the inclusion size. We
present results for , TV, , and .
The matrix , which reflects our prior knowledge as well, is
a weighting matrix allocating a weight of 1 inside the regions,
and 2 in the background.

We notice that the locations of the reconstructed inclusions are
correct for all methods. However, the three methods that do not
include any structural a priori are unable to resolve the four in-
clusions. On the contrary, all inclusions are accurately recovered
when structural information is incorporated. Also, recovered
values are more accurate when a structural a priori is employed.
Contrary to and TV regularizations, which lead to fluorophore
distributions spread over large regions, the reconstructions
are well localized in space. This enables the algorithm to recover
accurate concentration values. The result obtained with shares
the same property. Overall, it is the that yields the
best result; the solution is smooth and accurate.

B. Experiment 2: Three Dimensions, Experimental Data, Two
Inclusions, Accurate Structural Information

Here, we consider a cylindrical phantom with radius 12.5 mm
and height 50 mm. The cylinder is equipped with two 3-mm-
diameter longitudinal holes that can receive capillaries filled
with an aqueous fluorophore solution; Alexa Fluor 680 (Invit-
rogen, Carlsbad, CA) in this case. Except for the two holes, the
phantom is homogeneous with constant optical coefficients. It
is made of silicon mixed with india ink and titanium oxide in
order to match absorption and scattering coefficients of biolog-
ical tissue. We have cm and cm .

Prior to optical measurements, the phantom was imaged with
a mirco-CT system, which enables us to outline its inner struc-
ture. Although the structure is very simple in that case, it is
a ground truth to validate FDOT reconstruction, and a good
starting point to define a structural a priori. A three dimensional
reconstruction mesh is defined around the two inclusions. We
use a mesh resolution of about 1 mm in and 0.7 mm in ,
which results in a mesh with 46349 tetrahedra. The micro-CT
image of the phantom with the two inclusions is displayed in
Fig. 2(a) and (b). Data is acquired with a laser power of
and an integration time of 200 ms. The object was sampled for
220 source positions spaced every 18 around the rotation axis,
and 2 mm in .

The goal of this experiment is to assess the performance of
regularization, in a scenario where the structural a priori is

close to the fluorophore distribution. For that, we partition the
phantom into five regions: four cylinders, and the background.
This situation is illustrated in Fig. 2. Note that the background is
also an admissible reconstruction region for the algorithm.
Among the four cylinders, two are enclosing tightly the inclu-
sions, and the other two are empty. The two empty regions are
placed to demonstrate the behavior of the algorithm in presence
of spurious regions. We compare the performance of regu-
larization with three other methods based on regularization
that we will denote QR0, QR1, and QR2 (for quadratic regular-
ization). QR0 is the standard Tikhonov regularization that does
not include any structural a priori. For QR1, the structural a
priori is exploited by restricting the reconstruction to those
mesh-nodes contained in the four cylinders. Similarly, QR2 is
restricted to the two cylinders that coincide with the inclusions;
this is a very strong a priori.

Results for this experiment are presented in Fig. 3. An
cross-section through the regions employed is displayed in grey
levels in Fig. 3(e). Note that the regularization parameter was
tuned separately for each method. We see on Fig. 3(a) that QR0
locates the fluorophore correctly but is unable to resolve the
two inclusions. On the contrary, QR1 and QR2 take advantage
of the structural information to resolve the sources. QR1 how-
ever, wrongly reconstructs some fluorophore in the two empty
regions, as we can see on Fig. 3(b). As expected, the result of
QR2 [Fig. 3(c)] is almost perfect, since, in that case, the re-
construction is restricted to a region that coincide with the ac-
tual fluorophore distribution. Fig. 3(d) displays the result ob-
tained with regularization. We use the weighted -norm
with a weight of 1 for the four cylinder regions, and 10 outside.
This choice of weights expresses that the fluorophore has more
chance to be in the four cylinders than in the background. The
latter is therefore penalized, but still an admissible region. As
we can see on Fig. 3(d), the reconstruction is as good as with
QR2 (strongest a priori). Contrary to what happened with QR1,
the method is not hindered by the presence of the extra re-
gions. Since there is a good correspondence between the a priori
and the inclusions, this is what we expect. Indeed, the effect of
the term is to select a few active regions for reconstruction,
while setting the solution to zero elsewhere. In the present case,
some regions enclose tightly the actual fluorophore distribution.
The algorithm has selected these regions, which leads to an ac-
curate reconstruction.

The reconstruction accuracy is also quantified using the
contrast-to-noise ratio (CNR). Given a region of interest (ROI)
where the fluorophore is confined, the CNR is defined by

(20)

where and are the mean concentration values in the
ROI and background, respectively, and are the vari-
ances, and and are the relative volumes of ROI and
background. The CNR measures how well features of interest
are rendered by the reconstruction [27], [38], [39]. The obser-
vations made on Fig. 3 are confirmed by the CNR (see Table II).
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Fig. 4. Results for Experiment 3, normalized concentration. (a) QR, regularization restricted to the two segments containing the fluorophore, (b) regu-
larization, (c) cross-section through the regions used as structural a priori in grey levels, and sources in dashed cricles.

TABLE II
CNR FOR EXPERIMENT 2

TABLE III
CNR FOR EXPERIMENT 3

C. Experiment 3: Three Dimensions, Experimental Data, Two
Inclusions, Inaccurate Structural Information

The setup employed here is same as for Experiment 2.
The difference is in the structural a priori that we define. In
Experiment 2 the a priori contained two segments coinciding
with the inclusions. At present we study the behavior of
regularization in the presence of less accurate prior knowledge.
For this we segment the phantom in three regions : one large
ellipse containing the first inclusion, one smaller cylindrical
region containing the second inclusion, and the background.
The cross-section through the regions is presented in grey
levels in Fig. 4(c). There is a close correspondence between
structural information and fluorophore distribution for one
inclusion, while the second one is embedded in a much larger
region. Again we compare regularization with regular-
ization including structural knowledge. We denote by QR a
based reconstruction restricted to the elliptical and cylindrical
regions.

The results are presented in Fig. 4(a) and (b), for QR
and , respectively. CNR is also computed and shown
in Table III. We observe that outperforms slightly QR
in terms of localization. Indeed, the inclusion placed in the
accurate region is perfectly recovered by both methods, while

yields a reconstruction more concentrated around the
inclusion location in the less informative elliptical region.
Overall, this result leads to think that penalty allows to
exploit structural information at best. If the a priori is very
informative about the fluorophore distribution, then we get an

accurate reconstruction, and otherwise, we revert to a -like
behavior.

D. Experiment 4: Three Dimensions, Experimental Data,
Acquired A Priori Information

In the previous two experiments we employed arbitrary
structural information so as to demonstrate the response of
the proposed method to different a priori accuracies. Now we
present an experiment with a heterogeneous phantom, and we
use structural information obtained from a segmentation of
the CT image. Fig. 5 shows the geometry of the measured
object. The phantom has a cylindrical shape of the same size
as the one used in experiments 2 and 3. In Fig. 5(a) we
display the reconstruction mesh registered with the CT image.
Then, Fig. 5(b) shows the cross-section through the CT
image. We see that the cylinder is equipped with five holes;
four small ones (3 mm diameter), and a bigger one (5 mm
diameter). We realize a segmentation of the CT image to get
the structural a priori. This results in the partition represented
schematically in Fig. 5(c) : five regions corresponding to the
holes represented in grey levels, numbered 1–5 on the figure,
and the background. Optical properties in the phantom are
inhomogeneous. Holes number 1 and 2 contain a solution
with scattering and absorption five times higher than for the
rest of the cylinder; otherwise, the optical coefficients have
the same values as in experiments 2 and 3. A capillary filled
with fluorophore (same characteristics as above) is inserted in
hole number 1.

Fig. 6 presents the reconstruction results. Similar to experi-
ment 3, we compare regularization restricted to regions 1–5
(QR method) to regularization using the segmentation (re-
gions 1–5, and background) as a priori. The results are consis-
tent with observations made in experiments 2 and 3. QR tends to
reconstruct fluorophore wrongly over several holes. By contrast

selects the correct region of the a priori for reconstructing,
leading to a more faithful reconstruction. We display the CNRs
for these reconstructions in Table IV, confirming visual inspec-
tion. This demonstrates the efficiency of the proposed method in
a nonhomogeneous phantom with a priori knowledge acquired
from the CT image.
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Fig. 5. Geometry employed in Experiment 4. (a) Registration of reconstruction mesh and CT image of the phantom. (b) cross-section through the CT image.
(c) Schematic cross-section through the structural a priori obtained after segmentation of the CT image. Each region is identified by a number and a grey level.

Fig. 6. Results for Experiment 4, normalized concentration. (a) QR, -regu-
larized reconstruction restricted to regions 1–5. (b) regularization.

TABLE IV
CNR FOR EXPERIMENT 4

E. Experiment 5: Three Dimensions, Experimental Data,
Quantification

Now we perform a quantification experiment to demonstrate
the ability of the method to quantify the fluorescent probe.
The same is also done for regularization, as a control. In this
case, we employ a cylindrical phantom with a single hole. Oth-
erwise, the characteristics of the phantom remain the same as
in the previous experiments. A capillary of known volume is
filled with a fluorophore solution of concentration varying from

M to M, and inserted into the hole. Then,
the reconstructed fluorophore concentration is integrated over
the domain, and monitored as a function of the actual concen-
tration. We use a structural a priori composed of two regions :
one is slightly larger than the hole containing the capillary, and
the other one is the background. The region containing the hole
is used as admissible region for the regularization, similarly
to experiments 2 and 4.

In Fig. 7 we display the total reconstructed fluorescence
as a function of concentration for and . The observed

Fig. 7. Results for Experiment 5: quantification. In blue, the total reconstructed
fluorescence as function of fluorophore concentration (in M). In red, ideal linear
response.

responses are linear, from which we can infer that an ap-
propriate calibration would enable to quantify fluorophore
concentration.

VI. CONCLUSION

In this contribution we have shown how a sparsity promoting
technique can be employed to incorporate structural priors in
FDOT imaging. We presented a novel regularization scheme
based on penalization, and proposed a practical numer-
ical reconstruction method. We further refined the method by
deriving analytical formulae for the proximal maps required
in several configurations of interest. The proposed regulariza-
tion method was demonstrated on synthetic and experimental
data. These experiments lead us to think that a structural prior
combined with the proposed method helps improving the re-
construction in terms of localization, and contrast. We observed
that regularization systematically yields more realistic re-
constructions of fluorophore distribution compared to with
hard constraints, when the a priori contains only partial infor-
mation about shape and number of inclusions. In particular, arti-
facts are reduced and CNR is increased. Lastly, our experiments
suggest that for uninformative a priori, both regularizations lead
to similar results. This agrees with the intuition that if we use a
single segment of large size, the mixed-norm-based method re-
verts back to regularization. At the other extreme (one region
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per node of the mesh), it is equivalent to a sparsity-promoting
regularization.

APPENDIX

Unless otherwise mentioned, inequalities between vectors are
understood coordinate-wise in this section.

Proposition 1 (Proximal Map With Positivity Constraints):
Let , and . Assume without loss of generality
that , where and The solution of
the constrained denoising problem

(21)

is where

(22)

Proof: Clearly,

(23)

Thus we only need to solve the problem

(24)

whose unconstrained solution is known and satisfies the posi-
tivity constraint

Proposition 2 (Proximal Map With Box Constraints): Let
be two vectors with strictly positive components, and

. The solution of the constrained denoising problem

(25)

is if . Otherwise, it is obtained as follows.
Define the sets

(26)

(27)

(28)

Let be the cardinal of . Without loss of generality we as-
sume that . Define and
assume that is ordered such that the sequence is
non decreasing. Furthermore, pose , and .
Define the sequence of functions

(29)

There exits a unique , such that the equation
has a unique solution in the interval , and has

components

(30)

Proof: The dual problem is given by

(31)

where and is the orthonormal projection on .
We have . Notice that the minimizer of
the primal problem is given by . Since is
convex and the constraints are convex, the KKT conditions are
necessary and sufficient. The KKT system reads

(32)

We have .
Conversely if , then clearly is a minimizer
of (even unconstrained), which implies . In that case,

.
Let us consider the case . This leads to

. From this we deduce that . For all
, we have

(33)

Let us denote
. We clearly have that and

. From now on, we assume that , and we pose
. Using the fact that , we

get (see drawing of the two functions, or do the equivalences)
that

(34)

(35)

The number belongs to a unique interval . This is
equivalent to saying that and

. This implies that . Conversely,
the functions are strictly decreasing in , from to 0.
Thus, , the equation has a unique so-
lution. Notice that
which implies that .
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It is therefore the case for a unique function , that the equa-
tion has a solution in . Taking the corre-
sponding and , we obtain a solution of the minimization
problem
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