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Abstract
A common solution to clinical MR imaging in the presence of large anatomical motion is to use
fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data.
Recently, techniques have been developed which retrospectively correct large scale 3D motion
between individual slices allowing the formation of a geometrically correct 3D volume from the
multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility
of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to
imaging coils. As a result, slices which cover the same region of anatomy at different times may
exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D
reconstruction that can impact both clinical interpretation of key tissue boundaries and the
automated analysis of the data. Here we describe a framework to estimate and correct the bias
field inconsistency in each slice collectively across all motion corrupted image slices. Experiments
using synthetic and clinical data show that the proposed method reduces intensity variability in
tissues and improves the distinction between key tissue types.
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I. INTRODUCTION
Ultrafast multi-slice imaging sequences, such as single shot fast spin echo (SSFSE) [1] or
half-Fourier acquisition single shot turbo spin echo (HASTE) [2] are increasingly popular in
clinical imaging of moving anatomy, allowing the clinician to view 2D slices of anatomy in
challenging clinical applications such as in utero fetal brain studies [3], [4]. However,
accurate 3D representation or measurement of the anatomy is not possible from these studies
due to between-slice motion. Recently, techniques that combine multiple multi-slice
acquisitions into a single geometrically correct volumetric image via full 3D slice motion
estimation have emerged as a viable route to true 3D imaging of moving anatomy. These
techniques estimate full 3D motion of a region of anatomy within each individual slice by a
retrospective image registration, followed by reconstruction into a true volumetric 3D image
from the spatially scattered slice data. These techniques make use of the common clinical
practice of planning multiple approximately orthogonal stacks of slices as part of an imaging
study. These views in different axes can be used to provide complementary geometric
constraints to correct relative slice positioning in 3D. (See Fig. 1.)

The first 3D motion corrected fetal brain imaging approach was described by Rousseau et
al., who proposed an iterative slice to volume matching process [5], [6]. Here normalized
mutual information (NMI) was used to iteratively refine the alignment of individual slices to
a previously estimated 3D volume reconstruction. The repeated steps of volume
reconstruction interleaved with slice alignment estimation form a refined 3D volume. An
alternative approach, termed the Slice Intersection Motion Correction (SIMC) [7], [8],
avoids the intermediate 3D reconstruction step by considering slice to slice matching
directly, to improve the final subvoxel alignment accuracy and reduce the computational
expense of repeated volume reconstruction. This is achieved by minimising the intersection
mismatch of all possible combinations of intersecting slice pairs within an efficient least
squares minimization framework.

Both of these approaches then make use of a final reconstruction step which combines and
resamples the spatially scattered slice data onto a regular voxel lattice to form a single 3D
image through various forms of interpolation [6], [9] or super-resolution [10], [11]. The key
here is that to combine the images all methods assume that the contrast in each slice is
consistent. However, it is common in many imaging situations, including abdominal
imaging used for fetal studies, to have significant bias field inhomogeneity across the slices.
The cause of this bias field inhomogeneity includes the spatially varying coil sensitivity [12]
and the interaction between the imaged object and the scanner [13]. The influence of the
inhomogeneous sensitivity field has been reported especially in case of using phased-array
coils for the image acquisition [4], [14]. The signal received from the target region will have
different levels depending on the positioning of the region with respect to the coil. If this is
combined with significant motion of the anatomy of interest, then the intensity bias of the
same region of tissue when seen in different slices will not be consistent. In the presence of
such bias field inconsistency, the resulting reconstruction of the regions may contain
artifacts. An example of this occurring in fetal imaging is illustrated in Fig. 2 which shows a
T2 weighted axial slice and a coronal slice through the fetal brain which have visibly
inconsistent image brightness as shown in Fig. 2(A). This difference is highlighted in the
comparison of the intensity profile along the intersection of the spatially aligned slices in
Fig. 2(B).
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Bias field inhomogeneity is usually surmountable to a human observer, but images with an
inhomogeneous bias field often impose challenges in post-acquisition processing, including
segmentation, registration and 3D surface extraction [15], [16]. However, in addition, in
motion correction of multislice studies, 2D voxels acquired with inconsistent bias field can
also produce image artifacts when combined into a 3D volume. For a successful 3D volume
reconstruction, it is crucial to ensure that the bias fields of 2D slices are spatially consistent
with one another [6].

There has been extensive research into the problem of retrospective bias inhomogeneity
correction of MRI [15]–[17]. However, the studies of the bias field correction have focused
on the elimination of the bias field inhomogeneity within a single 2D or 3D image, and the
number of studies on the correction of bias field inconsistency between multiple images is
limited. One related clinical example is the problem of resolving differences between a body
coil and a surface coil [18], [19]. In another related problem, a histogram based method was
proposed to jointly resolve the different bias fields present between MR images of different
subjects [20]. In this work, MR images acquired with bias fields that are inconsistent across
the subject populations are corrected by an entropy minimization approach. The most
closely related work is the early work of Rousseau et al. on fetal motion correction [6],
which incorporated a correction for the bias field inconsistency between slice stacks into a
3D reconstruction process. This approach explicitly assumes that one entire stack of slices
has minimal motion and can be used as a 3D ‘bias reference’ to which all other slices are
corrected. Although this has the advantage of simplicity, it is suboptimal for correcting bias
field inconsistency of 2D slices acquired during motion, as it assumes at least one stack is
acquired with no motion and no bias field variability.

In this paper we present a framework to collectively estimate and correct the bias field
inconsistency between all individual slices of a multi-stack imaging study that does not
assume a motion free 3D estimate of the bias field or underlying anatomy is available. Given
a set of starting slice alignment estimates, accounting for relative motion of individual slices,
the proposed method then brings the bias field of all slices into mutual agreement so that
they can be used to reconstruct a 3D volume image that will be free of bias-related artifacts.
The bias field inconsistency correction process is applied after the slice locations are aligned
using the SIMC method [8], and before the final 3D volume reconstruction. After the bias
field inconsistency resolved reconstruction, the absolute bias field inhomogeneity of the 3D
volume can be removed using conventional retrospective correction techniques.

II. METHOD
The goal of this work is to estimate the geometrically correct 3D MR image of a region of
target anatomy, represented by a vector zwhole ∈ ℝn, where n is the number of voxels in the
3D image. A subregion of interest of zrigid undergoes rigid motion with respect to the
imaging system. We consider this region zrigid ∈ ℝn to be given by zrigid = zwhole, where

 is a masking operator which selects those points moving collectively as a rigid object
from those deforming around it.

When the signal from the anatomy is acquired by the scanner, the signal strength in the
rigidly moving tissues is influenced by the spatially varying bias field  and current location
of the rigid anatomy described by an n×n permutation matrix T for rigid transformation;

(1)

where  is an n × n diagonal matrix.
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When a 2D slice image consisting of mi pixels, yi ∈ ℝmi is acquired from a given slice
selected by an operation Si with the spatial transformation of the rigid anatomy at that time
taking the form Ti, the 2D slice can be expressed as

(2)

where Ri is the masking operator  in the i-th slice,  an n × n diagonal matrix for the 3D
bias field distortion of the i-th slice acquisition, Di an mi × n unitary operator which down-
samples the 3D volume into the i-th 2D image slice and, η the additive noise. This matrix
representation is explained in Fig. 3.

The true 3D image zrigid can be then estimated by solving an inverse problem

(3)

where superscript + denotes the Moore-Penrose pseudo inverse.

Matrices Di and Si can be directly obtained from the scanner setup and Ti can be estimated
using motion estimation algorithms [6], [8], [9], The value of the individual slice intensity
bias , however, remains unknown, because motion of the coil array and the subject
anatomy during image acquisition is unavailable. Since the undetermined  can corrupt the
final reconstruction ẑrigid, we eliminate  in (3) by estimating the unbiased 2D slice image

;

(4)

Since the slice selection and the bias field distortion are point-to-point multiplications, the
matrices Si and  are diagonal and thus commutative. Therefore, (2) can be rewritten as

(5)

where the 2D bias field operator Bi is defined by , which is an mi × mi
diagonal matrix. Although the true bias field  is not available, we can estimate Bi that
minimizes the intensity difference of the shared anatomy in the slices.

For any given pair of slices i and slice j that have a line of intersection, it is assumed that the
intensities along the intersection should match such that:

(6)
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where the slice selection operators Si and Sj are cross-operated to extract the intersections of
slices i and j.

For the i-th image slice, we define a 2D windowing vector ri = diag{Ri}, and a 2D bias field
vector bi = diag{Bi}, then (5) is rewritten as

(7)

for the voxel located at xi. We further define a bias field correction term  as a
functional of the parameter vector θi, namely, . Eq. (6) is then rewritten in a
functional form;

(8)

where Ωi is the set of 3D points covered by the i-th slice, and ω is a point along the
intersection line between slice i and slice j in 3D space. We estimate the bias field parameter
vector θi by simultaneously comparing all intersecting slice pairs along their intersection
lines.

In order to find the bias field parameters that minimize the discrepancy of the image
intensity of all the slices, we define a global energy function, and minimize it with respect to
the bias field parameters. For the energy function, we use the mean square intensity
difference between two intersection profiles, evaluated for all orthogonally planned slice

pairs. Given 2D slice images y1, …, yN and bias field correction terms , the energy
function is

(9)

where Si is the set of slices in the stacks that are orthogonally planned to the i-th slice, r(ω)
the 3D windowing function for the rigid object at ω, and N the total number of slices in the
study. We define Θ, a vector representation of the bias field parameters of all slices, namely,

. This energy function assumes the noise is added before the signal
scaling, to model the noise due to the tissue property variation. [21]

Given that the bias field correction term  is a linear functional of the bias field parameter
vector θi and the 2D spatial location x;

(10)

where u(x) is a vector of spatial basis functions at the location x. The basis functions of u
can be any linear combination of linearly independent functions. For example, one can
choose
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(11)

for the first degree bias correction model, at the voxel location x = (x1, x2) in the i-th slice,
and

(12)

for the second degree model. The energy function in (9) then can be rewritten in a quadratic
form

(13)

The bias covariance matrix M is a block matrix;

(14)

where

(15)

For a d-th degree model, M is a square matrix with  rows and columns.

In order to eliminate undesired degrees of freedom in the spatial intensity distribution, we
impose a set of constraints that require the following quantities are preserved;

(16)

(17)

where xi(ω) corresponds to the voxel location in the i-th slice image and v(ω) the voxel
location in the 3D reference space. k(v) is a polynomial vector, which is set to

(18)

for the first degree model, and
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(19)

for the second degree model, etc. We define the intensity distribution matrix

, where

(20)

Equation (17), then, can be also rewritten in a matrix-vector product form,

(21)

where Θ0 is the vector of parameters for no bias correction.

The solution Θ̂ of the constrained quadratic equation

(22)

(23)

can be found using the method of Lagrange multipliers [22] where the Lagrangian function
is given by

(24)

and λ is the Lagrange multiplier. The solution of the stationary conditions of (24) is

(25)

Note that (25) is the exact and general solution to Eqs. (22)–(23), for any multiplicative bias
field model.

III. Implementation
A. Motion correction

The original image stacks are acquired approximately in axial, sagittal and coronal planes of
the subject coordinate system. The multislice MR acquisitions are prepared for alignment
using the SLIMMER tool [23]. The motion that occurred during the acquisition of the slices
is corrected using the SIMC method, where the fetal motion was estimated by comparing the
spatial gradient of the image intensity and the intensity difference between the slices images.
Slices corrupted by in-plane motion were excluded automatically from the reconstruction by
thresholding the mean signal intensity difference of a slice along the slice intersections, or
manually by a visual inspection. After the motion correction, for comparison, a 3D volume
was reconstructed without bias correction using the gradient weighted Gaussian averaging
[8].
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B. Spatial smoothing
The least square error solution of (22–23) is determined such that it minimizes the square
difference of intensity between all slices. However, there are cases that can be mistaken for a
bias field mismatch arising from fine scale differences in structure. Examples include partial
voluming at sharp intensity boundaries, slight misalignment of images, different noise
levels, or subtle differences in image quality. Since such mismatches cannot be resolved by
adjusting the bias parameters, the solution can overfit the curve and consequently considers
it as a darkened region. In order to avoid such overfitting caused by fine scale differences in
structure and leave only the influence of the bias field, the high frequency components of the
intersection profiles can be suppressed through low-pass filtering. A 2D low-pass filtering,
however, is not legitimate for the purpose, because the 2D filters used for low-pass filtering
are defined within individual slice planes that have different orientations. The comparison of
the intersection profiles of slice images filtered with different 2D filters is suboptimal. In
this consideration, the slice intersections are filtered in 1D along the direction of the
intersection line to avoid the overfitting. We defined a modified bias field matrix M′, where
the entries are redefined from (15) such that;

(26)

where * stands for convolution and  a 1D Gaussian filter defined in the i-th slice along the
intersection with the j-th slice, with the standard deviation σ.

C. Bias field inconsistency correction
For the implementation, first and second degree bias correction models are used, as given in
(11) and (12). The dimensions of the matrix M vary depending on the number of slices in a
study. Each entry of M is computed using a pair of slice intersection profiles, smoothed with
a 1D Gaussian filter as in (26), where σ = 7.5 mm was empirically chosen. Since the true
masking operator  is unavailable in the clinical setup, we used a parametric model
consisting of an ellipsoid within the field of view of the subject as in [8]. The matrix
inversion of (25) is computed using the LU decomposition.

D. Bias field inhomogeneity correction
The correction for the bias field inconsistency between slices brings the bias field of the
individual slices into collective agreement. This allows the artifact-free contributions when
combined to reconstruct a 3D volume image. However, the global inhomogeneity of bias
field that would arise even with no motion present is still present across the scattered slice
data. When the volume image has been reconstructed into a regular 3D voxel lattice it may
thus contain significant bias field inhomogeneity. For accurate evaluation and further
quantitative analysis, we remove this final absolute bias field inhomogeneity using the
automated model-based bias correction method [24], using anatomically specific priors [25],
for accurate evaluation and further quantitative analysis.

IV. RESULTS
A. Experiment with the Shepp-Logan Phantom

The proposed method was first evaluated using 50 simulated studies, generated using the
Shepp-Logan phantom [26]. The simulation accounted for rigid target motion,
inhomogeneous bias field, and partial volume effect. The original phantom was constructed
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with 256×256×256 voxels, with 0.333mm×0.333mm×0.333 mm voxel dimensions. Each
simulated study consisted of 6 stacks of image slices, two stacks per each orientation. A
simulated stack was formed consisting of 40 slices, where the voxel dimensions was
0.5mm×0.5 mm in-plane, and the slice thickness was 2.1 mm. Since the simulated slices
have greater voxel dimensions than the original phantom, partial volume effect was
simulated, assuming a Gaussian point spread function to model the 2D slice selection
process. The target object motion was parameterized with three translational and three
rotational parameters. The simulated acquisition employed a clinical setup, with an
interleave of two, no gap and no overlap between slices. Two motion points were randomly
added for each of six motion parameters in each stack, and the motion was temporally
smoothed for physical reality. The simulated studies have a varying amount of motion,
which was quantified by the slice intersection error before motion estimation [8]. A
simulated coil sensitivity field was generated such that the signal is inversely proportional to
the distance to a coil, which is located outside the field of view. Although the sensitivity
field was static, the motion within the non-uniform sensitivity field induces bias field
inconsistency between slices.

Three full 3D volumes were reconstructed for each study using the gradient weighted
Gaussian averaging [8], before the bias field inconsistency correction, and after the
correction with the first and second degree polynomial models. Figure 5 shows the
reconstruction of one of the simulated studies before (A) and after (B) the bias field
inconsistency correction using the second degree polynomial model. The reconstruction
quality of the 3D volumes improved after the bias field inconsistency correction, which is
drastically contrasted in the high contrast view.

The correlation between the amount of bias related reconstruction artifacts and the amount
of corrected motion is plotted in Fig. 6. The coefficient of variation (CV; the standard
deviation divided by the mean) of the intensity value in the main mid-gray region of the
phantom was used to quantify the bias related artifacts [17]. Corrected motion was
quantified by the root mean square (RMS) of intersection error (IE) [8]. CV of the signal
intensity in the gray region of the volume reconstructed before the bias field inconsistency
correction (marked by black diamonds) demonstrates the tendency of increasing bias field
inconsistency with increasing motion. The CV appears linearly dependent on RMSIE in the
plot, with the rate of 0.10 % per mm (r2=0.80). When the bias field inconsistency was
corrected, on the other hand, the CV of the reconstruction with severe motion recovery
(higher RMSIE) was comparable to the CV of lower RMSIE studies, for both first and
second degree polynomial models. The results clearly demonstrate that the proposed method
effectively removes reconstruction artifacts caused by the bias field inconsistency between
the image slices, and the first degree polynomial model is sufficient for the Shepp-Logan
experiment.

B. Application to Clinical Image Data
1) Data description—The 18 subjects were healthy fetuses aged between 21 and 27
gestational weeks, as measured from the last menstrual period (LMP). All had MR imaging
as part of a study of fetuses with mild ventriculomegaly, which was approved by our
Institutional Review Board; written consent was obtained from the mother in all cases. No
sedation was used during the examination. All scans were interpreted as normal by a
pediatric neuroradiologist. Images were acquired using a single shot fast spin-echo (SSFSE)
technique on a 1.5T MR scanner (Signa, GE Healthcare, Milwaukee, WI) using a torso
phased array coil. For each study, slice stacks were planned in axial, sagittal, and coronal
planes using voxel dimensions of 0.5mm×0.5mm×3 mm. Across the different subject
studies, both the repetition time (TR) 6400±2600 ms and the echo time (TE) 90.6±0.6 ms
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varied. The motion between the acquisition of slices was corrected using a slice intersection
motion correction method [7] and the full 3D volume was reconstructed using the motion
corrected slices [8].

2) Quantitative evaluation—In order to quantify the improvement of the image quality,
the 3D volume was reconstructed in three ways: First, the 3D volume reconstruction method
in [8] was performed without the bias field inconsistency correction step, second, the
reconstruction was done after the bias field inconsistency correction with the first degree
polynomial model. and third, the reconstruction was done after the correction with the
second degree polynomial model. All reconstructed 3D volumes were then corrected for bias
field inhomogeneity using the model-based bias correction algorithm described in [24] and
adapted for fetal imaging [27]. This used four pre-segmented labels—gray matter, fetal
white matter (including subplate (SP) and intermediate zone (IZ)), germinal matrix, and
cerebrospinal fluid (CSF).

The energy function in Eq. (9) was evaluated before and after the bias field inconsistency
correction. It was then normalized and plotted against the gestational age in Fig. 7. The plot
demonstrates that the amount of initial bias field inhomogeneity has no dependency on the
gestational age of the fetus. In all cases, the proposed method improved the amount of bias
field mismatch. The second degree model provided a small but consistent improvement over
the first degree model. The energy value after the bias field inconsistency correction varied
across the subjects, this may be attributable to different noise levels, within-slice motion
artifacts and motion estimation error.

For quantification, the CV of the intensity values in SP (CVSP) and in IZ (CVIZ) were
computed. The method for delineation of the interface between SP and IZ was previously
described in [28]. This delineation was based on the intensity difference between SP and IZ
in the 3D volume reconstructed without bias field inconsistency correction. The average
voxel intensity was computed in SP and IZ, for the 3D reconstructions with and without the
bias field inconsistency correction.

Figure 8(A) and (B) show CVSP and CVIZ after the bias field mismatch correction using the
first (triangle) and second (square) degree polynomial models plotted against the CV before
the correction. Among 18 subjects, 8 subjects showed CVSP decreased by more than 2% and
1 subject had CVSP increase by more than 2% (6 decreased and 1 increased for CVIZ). This
implies that the application of the proposed method reduced the amount of intensity
variability by more than 2% in the entire SP area for the 8 subjects, by resolving the bias
field inconsistency between image slices.

3) Impact on Visual Interpretation of Images—Before 3D reconstruction, the
inspection of individual slices has shown that the proposed correction method removes
visual differences in the bias field inhomogeneity. For example, the intensity profiles along
the intersection lines of Fig. 2, which originally displayed significant discrepancies, are
adapted to match each other more closely, as shown in Fig. 9.

After 3D reconstruction, the volumetric images were found to display less bias related
artifacts and delineate structures with more subtle tissue contrast, after the bias field
inconsistency correction. Figure 10 is the reconstructions of a fetal brain at GA=24.14
weeks, which demonstrated substantial decrease of CV both in SP (5.44%→4.91%) and IZ
(5.33%→4.92%). Figure 10(A) and (D) are the views with a typical contrast, where the
tissue boundaries at the interfaces of CP-SP and IZ-CSF are sharply resolved in axial (A)
and coronal (D) planes. When displayed with greater contrast, the tissue boundary at the SP-
IZ interface emerges (B,E). However, in this case, artifacts caused by the fusion of image
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slices with different bias fields becomes more apparent. The proposed bias field
inconsistency correction method removed these artifacts, as shown in panels (C,F), where
the second degree polynomial model was employed. The removal of the artifacts,
consequently, improves the intensity based delineation of tissue boundaries by removing
local variability of bias field strength. In panels (E,F), this improvement is apparent in the
coronal view, where the boundary at the SP-IZ interface (white arrows) is better pronounced
after the correction (F) than before the correction (E). Panels (G,I) are the division of
uncorrected intensity values in (B,E) by the corrected image intensity values (C,F). This
result demonstrates bright stripes (marked by black arrows) suggesting that the local
inconsistency of the bias field in the uncorrected reconstruction is mainly caused by
contributions from relatively hyperintense axial slices in this region, as indicated in the
sampling density map (H,J).

V. DISCUSSION
Ultra-fast multi-slice imaging is increasingly important in imaging moving anatomy. When
combined with retrospective slice motion correction it provides a viable route to full 3D
imaging in the presence of regional tissue motion. The approach introduced in this paper
contributes to this area by presenting a novel framework to estimate and remove the bias
field inconsistency patterns between sets of multislice MR studies acquired from a moving
region of anatomy. In such cases, the spatially varying bias field, coupled with the motion of
the anatomy within the inhomogeneous bias field, induces inconsistent intensity levels for
identical regions of tissue appearing in different slices. When these multislice studies are
motion corrected and combined to form a single regularly sampled 3D volume, the
underlying inconsistency in image intensity can introduce artifacts in the final volumetric
image. The proposed method builds on earlier work to estimate relative slice motion using
slice intersection matching, by deriving a least squares formulation that simultaneously
resolves bias field inconsistencies between all intersecting slices.

We define an energy function to quantify the mismatch of the bias field between slice pairs.
The overall energy minimization problem is then solved using a least squares approach with
a set of constraint equations that conserve the spatial intensity distribution of the slices. The
problem can be written into a quadratic equation, and the exact solution can be found using a
Lagrange multiplier formulation.

The final solution of the equation is a set of bias field parameters for each slice that
minimizes the mean square intensity difference between all slices. This solution resolves the
bias field inconsistency between slices, and the residual bias field inhomogeneity can then
be removed after reconstruction into a 3D volume using conventional techniques such as
[24], [29]. We have shown that this postprocessing procedure successfully suppresses the
resulting artifacts that appear when the scattered slice data are combined to form a regular
3D volumetric image.

The methodology presented makes use of the relative slice location information first
computed using Slice Intersection Motion Correction (SIMC) method [8]. We have found
that the initial motion estimation is relatively robust to the subtle changes in bias field
inconsistency that can induce reconstruction artifacts, allowing the bias field inconsistency
correction to be carried out as a post-hoc procedure. However, future work will examine
optimal approaches to interleaving the motion correction and bias field inconsistency
correction steps into a single formulation to deal with extreme cases of intensity bias.
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Fig. 1.
(left) MR image stacks of a human fetal brain, planned and acquired in utero in axial,
sagittal and orientations. (right) A full 3D volume of the fetal brain is reconstructed from the
2D slice image stacks, after the motion of the local rigid anatomy of the fetal head between
each slice was compensated.
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Fig. 2.
(A) An axial slice (left panel) and a coronal slice (right panel) with different bias field
strength, displayed in the same contrast and scale. The intersection lines of the slice pair are
drawn, with markers for relative locations. (B) The intensity profiles along the intersection
lines in (A), plotted against relative locations. The intensity profile of the axial slice (left
panel in (A)) is in a solid line, and the coronal slice (right panel in (A)) in a dashed line.
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Fig. 3.
Matrix representations of MR image slice acquisition of two slices, slice i and slice j,
accounting for the rigid motion T*, spatially non-uniform bias field , slice selection S*,
and 2D downsampling D*.
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Fig. 4.
Simulated slice stacks acquired in three orientations. Each slice undergoes motion with 6
degrees of freedom—3 rotational and 3 translational. Although the sensitivity field was
static, the motion within the non-uniform sensitivity field induces bias field inconsistency
between slices.
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Fig. 5.
Comparison of 3D reconstruction (A) without and (B) with the bias field inconsistency
correction, shown in the original contrast (top) and in enhanced contrast (bottom).
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Fig. 6.
Plot of root mean square intersection error (RMSIE) versus the coefficient of variation (CV),
before (black diamond) and after the first (white triangle) and second (white square) degree
bias field inconsistency correction. RMSIE and CV reflect the amount of motion and the
amount of imaging artifacts, respectively.
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Fig. 7.
The normalized energy function plotted against the gestational age, before and after the bias
field inconsistency correction. (Black diamond: before correction, white triangle: the first
degree correction, white square: the second degree correction.)
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Fig. 8.
The coefficients of variation (CV) in the intermediate zone (A) and in the subplate (B) after
the bias field inconsistency correction are plotted against the CV before the correction. The
first degree polynomial model is plotted in triangles, and the second in squares.
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Fig. 9.
The intensity profiles along the intersection lines in Fig. 2(A) with the bias field
inconsistency correction, plotted against location along the intersection. The intensity profile
of the axial slice (left panel in Fig. 2(A)) is in a thick solid line, and the coronal slice (right
panel in Fig. 2(A)) in a thick dashed line. The corresponding bias field correction term bc is
plotted in thin lines.
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Fig. 10.
The uncorrected 3D reconstruction of one of the subjects (GA=24.14 weeks) is viewed in
axial (A) and coronal (D) perspectives. The same uncorrected 3D reconstruction is viewed
with higher intensity contrast in (B,E) to visualize subtle local bias field inconsistency,
particularly within the subplate (SP) and the intermediate zone (IZ). The bias field
inconsistency corrected (using the second degree model) 3D reconstruction is viewed with
high image contrast in (C,F). Panels (G,I) are the division of the uncorrected image (B,E) by
the corrected image (C,F). Panels (H,J) demonstrates the contribution of slices in terms of
sampling density. (White arrows: SP-IZ boundary, black arrows: bright striated regions)
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