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Abstract
Time-of-flight (TOF) positron emission tomography (PET) scanners offer the potential for
significantly improved signal-to-noise ratio (SNR) and lesion detectability in clinical PET.
However, fully 3D TOF PET image reconstruction is a challenging task due to the huge data size.
One solution to this problem is to rebin TOF data into a lower dimensional format. We have
recently developed Fourier rebinning methods for mapping TOF data into non-TOF formats that
retain substantial SNR advantages relative to sinograms acquired without TOF information.
However, mappings for rebinning into non-TOF formats are not unique and optimization of
rebinning methods has not been widely investigated. In this paper we address the question of
optimal rebinning in order to make full use of TOF information. We focus on FORET-3D, which
approximately rebins 3D TOF data into 3D non-TOF sinogram formats without requiring a
Fourier transform in the axial direction. We optimize the weighting for FORET-3D to minimize
the variance, resulting in H2-weighted FORET-3D, which turns out to be the best linear unbiased
estimator (BLUE) under reasonable approximations and furthermore the uniformly minimum
variance unbiased (UMVU) estimator under Gaussian noise assumptions. This implies that any
information loss due to optimal rebinning is as a result only of the approximations used in deriving
the rebinning equation and developing the optimal weighting. We demonstrate using simulated
and real phantom TOF data that the optimal rebinning method achieves variance reduction and
contrast recovery improvement compared to nonoptimized rebinning weightings. In our
preliminary study using a simplified simulation setup, the performance of the optimal rebinning
method was comparable to that of fully 3D TOF MAP.
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I. INTRODUCTION
Time-Of-Flight (TOF) positron emission tomography (PET) scanners provide the potential
for substantial signal-to-noise ratio (SNR) improvement [1]–[5] and better lesion
detectability [6]. Therefore, TOF PET technology including scintillators, system hardware,
and image reconstruction is attracting increasing interest [7]–[11]. However, fully 3D TOF
PET image reconstruction is challenging due to the huge data sizes involved.

Analytical reconstruction for TOF PET based on a line-integral model was used in [2], [12]–
[16]. In these methods, each TOF sinogram is backprojected with a 1D confidence
weighting function that models uncertainty in the TOF measurement. Then an appropriate
inverse filter is applied in the image space to reconstruct the tracer distribution. An
alternative approach that reduces the computation cost is to rebin 3D TOF data into a lower
dimensional space [16]. Single slice rebinning (SSRB-TOF) [17] combines the TOF oblique
sinograms to form a set of stacked TOF direct sinograms in a similar manner to SSRB for
non-TOF data [18]. As an alternative to SSRB-TOF, an approximate Fourier rebinning
method mapping 3D TOF into 2D TOF data was proposed, where the rebinning is
performed in the Fourier domain [19]. A similar approximate rebinning was also derived in
the native coordinates of the TOF sinograms rather than the Fourier domain [20]. An exact
rebinning equation was derived based on a consistency condition expressed by a partial
differential equation in the continuous data domain, where rebinning is performed with
respect to the axial variables [21], [22]. This result motivated the development of an
approximate discrete axial rebinning method [21], [22]. We have previously developed an
alternative exact rebinning method, which is based on a Fourier transform in the TOF
variable, by using a generalized projection slice theorem [23].

All of the rebinning methods described above rebin 3D TOF to 2D TOF data and
specifically retain the TOF component in the rebinned data. We have recently developed
new rebinning methods that rebin 3D TOF to non-TOF data in either 3D or 2D forms and
shown that rebinning into non-TOF sinograms retains significant SNR advantages over
sinograms collected without TOF information [24]. These results include approximate
rebinning methods that do not require estimation of missing data and we have shown that
they have accuracy similar to that of Fourier rebinning for non-TOF data. These
approximate rebinning methods can map all TOF bins for a single oblique sinogram into the
corresponding oblique non-TOF sinogram with improved SNR relative to the non-TOF case
and minimal approximation error.

Mappings that rebin into non-TOF formats are not unique and there exist infinitely many
rebinnings, depending on which sinogram each TOF oblique sinogram is rebinned into and
also depending on weights used in combining the rebinned data. It is important to optimize
rebinning methods in order to make full use of TOF information and consequently to
maximize the quality of images reconstructed from the rebinned data. In this paper we
address the problem of finding an optimal method to rebin TOF data into non-TOF formats.

We focus on FORET-3D (FOurier REbinning of Time-of-flight data to 3D non-time-of-
flight) [24], which rebins 3D TOF data into 3D non-TOF sinogram formats without
requiring a Fourier transform in the axial direction and hence avoiding the missing data
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problem [25], [26]. We formulate the rebinning problem as estimating 3D non-TOF
sinograms from noisy 3D TOF data. The best linear unbiased estimator (BLUE) turns out to
be a FORET-3D mapping with optimal weights, which is the uniformly minimum variance
unbiased (UMVU) estimator if the noise is approximately Gaussian distributed for high
SNR. This implies that any information loss due to optimal rebinning is as a result only of
the approximations used in deriving the rebinning equation and developing the optimal
weighting. The results in this paper were partly presented in [27].

II. BACKGROUND
A. Data Model

3D TOF data p from a cylindrical PET scanner can be modeled using line integrals along
lines of response (LORs) weighted by a 1D TOF kernel H[19], [24]

(1)

where f ∈ ℝ3 denotes a 3D object; s, ϕ, z and δ specify each LOR, that is, s and ϕ are radial
and angular coordinates, respectively, z represents the axial midpoint and δ is the tangent of
the oblique angle; t is the TOF variable, which is the difference of the arrival times and
converted to distance by multiplying by the speed of light (see Fig. 1). The TOF kernel is
assumed to be shift invariant so that the integral in (1) is written in the form of a
convolution. The expression for p in (1) is general enough to include 3D non-TOF data
when h(·) = 1; stacked 2D TOF sinograms when δ = 0; and stacked 2D non-TOF sinograms
when and h(·) = 1 and δ = 0. In this paper, 2D stacked sinograms are simply referred to as
2D data.

The TOF kernel models the uncertainty in TOF measurements. Here we use a Gaussian
kernel [16], [28]–[30]

(2)

where  with ρh being the full-width at half-maximum (FWHM) representing
the timing resolution of the system (note that h(ρh/2) = h(− ρh/2) = h(0)/2 = maxt h(t)/2).
Since His an even function, that is, h(t) = h(−t), the following symmetry and periodicity
property of p can be shown [19]: p(s, ϕ, z, δ, t) = p(−s, ϕ + π, z, −δ, −t). Therefore, p is

completely characterized once it is defined on the set ℝ × [0, π) × ℝ3. Since ,
the integral of the TOF data p over the TOF variable t yields non-TOF data.

Let ℘(ωs, ϕ, z, δ, ωt) be the 2D Fourier transform of p(s, ϕ, z, δ, t) with respect to s and t
where ωs and ωt are the frequency variables corresponding to s and t, respectively. The
Fourier transformed data ℘ represent 3D non-TOF data when ωt = 0 (recall that the DC
component of TOF data in t is equivalent to non-TOF data), 2D TOF data when δ = 0, and
2D non-TOF data when ωt = 0 and δ = 0. Since His an even function, a symmetry and
periodicity property also holds for ℘ such that ℘(ωs, ϕ, z, δ, ωt) = ℘(−ωs, ϕ, + π, z, −δ,
−ωt). We use the set ℝ+, × [0, 2π) × ℝ3, that is, ωs ≥ 0, as the domain of ℘ without loss of
generality where ℝ+ = {x ≥ 0 : x ∈ ℝ}. Once ℘ are defined on this set, function values
elsewhere can be obtained using the symmetry and periodicity property.
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B. Sinogram Rebinning Operator
We have previously derived an approximate rebinning equation, which maps a TOF oblique
sinogram into a non-TOF oblique sinogram (where ωt = 0) in the Fourier domain [24]

(3)

for  where

(4)

(5)

and ℋ is the Fourier transform of h, that is

(6)

which is real and positive. Equation (4) is slightly different from [24, Eq. (18)], since here
we consider ℘ only on the domain ωs ≥ 0. However, they are equivalent. In (5) and also
throughout this paper, the value of the angular coordinate variable ϕ is considered to be
wrapped so that it is constrained to [0, 2π). Note that (3) does not require a Fourier
transform in the axial variable z and thus there is no missing data problem.

The approximation error in (3) increases as |ωt| and |δ| increase and  decreases [24].
When δ = 0, the mapping (3) becomes exact between 2D TOF and 2D non-TOF sinograms

[24]. The coordinate transformation (4) and (5), when  is replaced with δωz, is
equivalent to that for the exact mapping between a non-TOF oblique and a non-TOF direct
sinogram (cf. [24, (9)], and [25, (14)]). Fig. 2, which is a simplified version of [24, Fig. 3],
shows a geometrical illustration of the coordinate transformation in (4) and (5). Mapping a

TOF oblique sinogram ℘z,δ,ωt (ωs, ϕ) into a non-TOF oblique sinogram , which is

exact when δ = 0, is equivalent to finding ωs and ϕ given  and ϕ′ as in the figure.

We define a sinogram rebinning operator, ℛδ,ωt, which maps a TOF oblique sinogram
℘z,δ,ωt (ωs, ϕ) = ℘(ωs, ϕ, z, δ, ωt), into a non-TOF oblique sinogram

, such that  implies

(7)

where ωs and ϕ are given in (4) and (5).

With the same approximation used in (3), an approximate inverse rebinning equation, which
maps a non-TOF to a TOF oblique sinogram, can be derived [24]

(8)
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where

(9)

(10)

Using the mapping equation above, we define an inverse sinogram rebinning operator δ,ωt

such that  implies

(11)

where  and ϕ′ are given in (9) and (10).

III. THEORY
A. FORET-3D

1) Continuous-Space Expression—We rebin TOF sinogram data into a low-
dimensional non-TOF data format using the sinogram rebinning operator ℛδωt. Since, for a
fixed oblique plane parameterized by z and δ, multiple TOF oblique sinograms ℘z,δ,ωt for
different ωt’s are rebinned into the non-TOF oblique sinogram format, it is natural to take an
average of the rebinned sinograms over ωt to estimate the non-TOF oblique sinogram

(12)

where  and αz,δ,ωt is a nonnegative weight for each TOF sinogram.

How should we determine the weights? The simplest approach would be to take an
unweighted average. We refer to the rebinning method with αz,δ,ωt = 1 as “unweighted
FORET-3D.” However, this naive weighting approach performs even worse than using non-
TOF sinograms acquired without TOF information, as shown in Section IV, for the
following reason. The sinogram rebinning operator given in (7) includes a scaling factor 1/
ℋ(ωt), which can be viewed as a high-pass filter since ℋ is a low-pass filter. Therefore,
noise is amplified where ωt is large and ℋ(ωt)is small. Although unweighted FORET-3D is
far from optimal, we simply include it in the result section for comparison purposes.

To reduce this noise amplification, we have used αz,δ,ωt, which is heuristically chosen to
cancel out the scaling factor 1/ℋ(ωt) in the sinogram mapping operator (we inadvertently
omitted a detailed description of using such weights in [24]). We refer to the rebinning
method with αz,δ,ωt = ℋ(ωt) as “ H-weighted FORET-3D.” We have shown that H-
weighted FORET-3D achieves significant SNR improvements over non-TOF data
acquisition [24]. However, the heuristic weights are not optimal.

Suppose that the noise in the measured TOF sinogram ℘z,δωt is uncorrelated and identically
distributed. This is a reasonable assumption as will be shown in Section III-C2. Then the
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variance of the non-TOF sinogram  obtained by (7) will be proportional to 1/ℋ2(ωt) if
we ignore the coordinate transformation. It can be shown by the Gauss–Markov theorem
[31, p.296], that a weight αz,δ,ωt = ℋ2(ωt, inversely proportional to the variance, will result
in the minimum variance of the weighted average. We call the rebinning method with αz,δ,ωt
= ℋ2(ωt “ H2-weighted FORET-3D.”

However, weighted averaging in (12) is not the only way to map 3D TOF data into 3D non-
TOF data. Therefore, it is not clear whether H2-weighted FORET-3D yields the minimum
variance, even approximately, at least among linear unbiased estimators of the 3D non-TOF
sinogram. The goal of this paper is to show that H2-weighted FORET-3D is indeed the best
linear unbiased estimator (BLUE). We will also identify necessary approximations and
assumptions for the optimality of H2-weighted FORET-3D and validate them.

2) Discretized FORET-3D—Here we focus on discretized models and rewrite

FORET-3D mapping equations in vector-matrix forms. Let a vector  represent a
discrete version of a TOF oblique sinogram ℘z,δ,ωt for i = 0, …, Nδ − 1, j = 0, …, Nz − 1,
and k′ = 0, …, Nt − 1 where i, j, and k′ denote an oblique angle index for δ, an axial
coordinate index for z and a TOF frequency variable index for ωt, respectively, and Ns, Nϕ,
Nz, Nδ, and Nt are the number of sample points through the radial (s or ωs), angular (ϕ),
axial (z), oblique angle (δ), and TOF variable (t or ωt) direction, respectively. For notational
simplicity we assume we do not use zero padding for fast Fourier transforms (FFT) and the
number of sample points in the Fourier and the original domain are the same without loss of
generality; in practice we use a zero-padding factor of 2 when computing FFTs. Let

 be a noisy TOF oblique sinogram such that

(13)

where  represents noise, which is zero-mean.

Suppose  corresponds to ωt = 0 and  represents a non-TOF oblique sinogram. An

estimate of  obtained using unweighted FORET-3D (Section III-A1) can be written as

(14)

where the NsNϕ × NsNϕ matrix  is a discrete version of the approximate sinogram

rebinning operator ℛδ,ωt defined in (7) and  is a diagonal matrix whose lth diagonal

element is 1 if the  corresponding to the lth row of  satisfies  and is 0

otherwise. Note that the lth diagonal element of  is the number of sample points

through ωt such that  for given  and δ corresponding to index l and i,
respectively. Similarly, H-weighted FORET-3D and H2-weighted FORET-3D can be written
as

(15)

Ahn et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and

(16)

respectively, where Hk′ denote samples of ℋ.

B. BLUE
Here we view the rebinning as an inverse problem to estimate non-TOF sinogram values
from noisy TOF data. To solve the inverse problem, we need a forward model to map the
non-TOF sinograms into the TOF data. We use the approximate inverse sinogram rebinning

operator given in (8) as a forward model. A TOF oblique sinogram  can be modeled as

(17)

where the NsNϕ × NsNϕ matrix  represents a discrete version of δ,ωt defined in (11), and

 represents a non-TOF sinogram as defined previously.

Suppose the measured data  are uncorrelated across i, j and k′. This is a reasonable
approximation as shown in Section III-C. Then the best linear unbiased estimator (BLUE)

[31, p.296] of  is given by

(18)

where * denotes the conjugate transpose and

(19)

Note that BLUE does not require any assumption on the noise distribution. If the noise is
Gaussian distributed, e.g., in a case of high SNR, then (18) becomes the uniformly minimum
variance unbiased (UMVU) estimator [32].

C. Equivalence of H2-Weighted FORET-3D and BLUE
Suppose the following approximations hold:

(20)

(21)

(22)

where INsNϕ is an NsNϕ × NsNϕ identity matrix and σij is a positive scalar, which will be
defined below. Then (16) and (18) are equivalent. In other words, if the above
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approximations are reasonable, H2-weighted FORET-3D is equivalent to BLUE (and to
UMVU if the Gaussian noise assumption is reasonable). This is the key result of this paper.
Now we show the validity of (20)–(22).

1) Adjoint of Inverse Sinogram Rebinning Operator—To obtain insights about (20)
and (21), we examine continuous-space analogs through the adjoint of the inverse sinogram
rebinning operators. Interestingly, the adjoint ( δ,ωt)* of the inverse sinogram rebinning
operator δ,ωt turns out to be a diagonally weighted version of the corresponding sinogram
rebinning operator ℛδ,ωt, that is

(23)

where a diagonal weighting operator δ,ωt is defined such that q = δ,ωtr implies

(24)

See Appendix A for derivation of (23) and (24). Since

 for any ℘ by (7), the diagonal weights of δ,ωt for

 indeed do not matter in the sense that  is always 0 for

 in (23) whatever values are assigned to those weights.

Noting that ℋ(0) = 1 (recall we assume ∫ h(t)dt = 1) and that δ is practically small and ωt is
small compared to ωs [24], we make the following approximation:

(25)

which is accurate when  [see (23) and (24)]. The
approximation (25) makes the resultant estimator simple to implement and robust to

modeling and interpolation errors. Although this approximation becomes inaccurate when 

is larger than  but not much larger, such a region is usually small (since

 is practically small) and the inaccuracy does not introduce any systematic bias
but rather increases the variance.

On the other hand, one can derive from (4), (5), (7), and (9)–(11) that

(26)

where δ,ωt is defined such that q = δ,ωtr implies

(27)
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The diagonal matrix  defined in Section III-A2 is a discretized version of δ,ωt.
Combining (25) and (26) yields

(28)

From (25) and (28), one can see that (20) and (21) are reasonable approximations. By

substituting the noiseless TOF data  from (17) into  in (14), (15), and (16) and

then using a discretized version of (26), , one can also see that , that is,
FORET-3D is approximately unbiased.

2) Noise Model—Here we show that (22) is a reasonable approximation. Suppose we

measure noisy TOF data , a noisy discretized version of p(s, ϕ, z, δ, t), where i represents
an index for the oblique angle δ, j for the axial coordinate z, k for the TOF variable t, l for
the radial coordinate s, and m for the transaxial angular coordinate ϕ. We take the 2D FFT of

 with respect to k and l to obtain , a noisy discretized version of ℘z,δ,ωt (ωs, ϕ),

where k′ represents an index for ωt and l′ for ωs. Note  are the elements of  given in
(13).

It is a reasonable assumption that the data  are independent with . Due to

the independence of , one can show that

(29)

where  is the FFT of  with respect to k and l, and δ.. is the Kronecker delta (see

Appendix B for derivation). Note . The  are
correlated across the TOF frequency variable index k′ and the radial frequency index l′. In
other words,  is not simply an impulse at (k′, l′) = (0, 0). However, practically, 
has a peak, centered at (0, 0), with a relatively narrow width; see Fig. 3(a) for an illustration

using realistically simulated data. Therefore, we approximate  as an impulse:

. We further approximate  since  does
not vary substantially with the transaxial angular index m in each oblique plane; see Fig.
3(b) for illustration. In summary, our noise covariance model is

(30)

and therefore (22) follows.

D. Noise Properties of Rebinned Data
We now examine the noise properties of the rebinned data. It is important to know the
covariance of the rebinned data for optimized image reconstruction. Although the
approximations we make here for analysis may be oversimplifying, we can obtain useful
insights through the analysis, estimates of SNR gains for the rebinning methods, and ideas
of how to reconstruct images from rebinned data.

Ahn et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



First, we approximate the inverse rebinning matrix: . Considering that δ is
generally small in practice and ωt is usually smaller than ωs [24], one can see from (9) and

(10) that  and ϕ′ ≈ ϕ is a useful, if crude, approximation for analysis
purposes. For example, for the clinical PET scanner we simulate in Section IV, the
maximum δ2, ωt and ωs values are 0.068, 0.012/mm and 0.25/mm, respectively. Similarly,

we approximate the rebinning matrix: . Note this simplified rebinning is
similar to single slice rebinning (SSRB) [17], [18] but collapses the TOF variable rather than
the oblique angle.

Under those approximations, we can calculate the covariance matrix of the rebinned data 

in (16) for H2-weighted FORET-3D, ignoring  terms for simplicity

where (22) is used. Since  is the covariance matrix of the non-TOF data , the above
equation implies that the rebinned data has approximately the same covariance matrix as the

non-TOF data within the scaling factor . Therefore,  provides
an estimate of the SNR gain for H2-weighted FORET-3D compared to using non-TOF data
acquired without TOF information.

Similarly, one can obtain

using (15) for H-weighted FORET-3D, and

using (14) for unweighted FORET-3D. Therefore, the SNR gain for H-weighted FORET-3D
and for unweighted FORET-3D are given by

, respectively. One can arithmetically
show that GH2 ≥ GH ≥ Gno where equality holds only if H0 = ⋯ = HNt − 1, which
corresponds to h(t) = δ(t) when there is no uncertainty in the TOF measurement.

We can further examine the SNR gains for FORET-3D by exploiting the Gaussianity of the
TOF kernel. Ignoring aliasing and windowing effects [33], one can calculate, from (2),

 where Δt is the sampling
interval in the TOF variable t direction. Since squaring ℋ is equivalent to multiplying σh by
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 [see (6)], one can also calculate .
Using these, we have

(31)

(32)

We take the sampling interval Δt for the TOF variable as half the timing resolution ρh, that
is, Δt = ρh/2. In this case, the aliasing error is negligible [23], and the SNR gains become
and GH2 ≈ 0.332Nt and GH ≈ 0.221Nt ≈ 0.664GH2. Since we assume we have already
corrected for scatter and randoms, our uncorrelated noise model requires that the TOF kernel
along each LOR should overlap with the object and therefore NtΔt should be about the
object size; if a TOF kernel along an LOR does not overlap with the object, the
corresponding data would be deterministically zero-valued. The SNR gain achieved by the
optimal H2-weighted FORET-3D is proportional to the number of TOF bins overlapping
with the object, and the optimal gain is larger than that for H-weighted FORET-3D by about
30%.

Interestingly, if NtΔt in (31) is replaced with the diameter of a disk object, GH2 is identical
to Tomitani’s expression for the SNR gain of confidence weighted filtered backprojection
(FBP) using TOF data [12]. Tomitani’s expression was also shown to provide reasonably
accurate estimates of the SNR gain achieved using the full TOF data in statistical image
reconstruction when the object is much larger than the timing resolution [34]. This implies
that our optimal rebinning method, H2-weighted FORET-3D, could approach fully 3D TOF
reconstruction in terms of noise variance while achieving substantial reduction of
computation.

E. Image Reconstruction From Rebinned Data
As shown in Section III-D, the covariance of the rebinned data is approximately equal,
within a scale factor, to the covariance of the non-TOF data acquired without TOF
information. Since the non-TOF data are independent, the rebinned data are also nearly
independent, as demonstrated in Section IV. If the non-TOF data follow the Poisson
distribution, then the variance of the rebinned data will be approximately proportional to its
mean. However, before applying rebinning methods, the measured data should be corrected
for detector efficiency, attenuation and scatter and randoms since the rebinning methods are
based on line integral based projection models. Data correction destroys the Poisson
distribution and the variance of corrected data is no longer proportional to its mean.

Although data must first be corrected before rebinning, we can then undo the correction by
dividing the rebinned data by the correction factors as in [35]. One can show that the
rebinned data after undoing correction have approximately the same covariance structure as
the raw non-TOF data before data correction, within the SNR gain scaling factor (see
Appendix B). Since the non-TOF data before data correction follow the independent Poisson
distribution, the variance of the rebinned data after undoing correction is approximately
proportional to its mean and the rebinned data are independent. This finding is similar to
previous observations for rebinning of non-TOF data, which were used to justify use of EM
or OSEM reconstruction of Fourier rebinned data after undoing corrections [35].
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Therefore, one can use penalized weighted least squares (PWLS) [36] for reconstructing
images from the rebinned data with diagonal weights, equal to the inverse of the variance of
the rebinned data, which can be practically approximated from experimental data after
rebinning in a manner similar to that described in [36]. Alternatively, it is a practically
reasonable choice to reconstruct images from the rebinned data using Poisson based ML
(maximum likelihood) orMAP (maximum a posteriori) estimation since the rebinned data is
approximately Poisson distributed in the sense that the variance of the data is approximately
proportional to the mean. In this case, one can use existing non-TOF data reconstruction
codes without modification, which avoids the need to estimate the weights for PWLS. In
Section IV, we apply MAP reconstruction methods to simulated and real TOF data.

IV. RESULTS
A. 3D TOF PET Simulation

1) Simulation Setup—To evaluate the performance of the optimal rebinning method, we
simulated the Siemens Biograph PET/CT TruePoint TrueV scanner [37] as in [24]. The
scanner had 672 detectors per ring and 55 rings with a ring radius of 421 mm and an axial
field of view of 216 mm. We generated 3D TOF data using line integral based projectors
[38] and a Gaussian TOF kernel [28] with timing resolution 500 ps, and the data were
sampled with a sampling period of 250 ps, producing 15 TOF bins. The maximum ring
difference was 54 and the number of LORs per angle was 336. We had 639 oblique and
direct sinogram planes with span 11. The image size was 256 × 256 × 109 with a voxel size
of 2 mm.

The NCAT torso phantom was used as a 3D object for data generation [see Fig. 4(a)] [39].
We generated noisy 3D TOF data with a total of 20 M counts for trues and we simulated
randoms corresponding to a uniform field of 15% of the total count. We simulated Poisson
noise and produced randoms-precorrected data, simulating real-time randoms subtraction
[40]. Scatter, attenuation and detector efficiencies were not considered for simplicity. As
long as the data is properly corrected, correction factors such as randoms, scatter,
attenuation and normalization do not affect the rebinning methods other than through
increased variance, which we achieve through use of simulated randoms only. The effects of
inaccurate correction on the rebinning methods are not investigated in this paper.

Noisy 3D TOF data were rebinned into 3D non-TOF data by FORET-3D with the three
different weightings given in (14), (15), and (16). To reduce approximation errors, for small
|ωs|, only the data for small |ωt| were used for rebinning. As in [24], when the index for |ωs|
was less than 7, we only rebinned the data corresponding to |ωt| = 0. The 3D non-TOF
sinograms acquired without TOF information were obtained by summing the 3D TOF data
over the TOF bins.

A fully 3D MAP reconstruction method [41] was applied to the rebinned data and also to the
non-TOF data acquired without TOF information. For each reconstruction, two iterations of
OSEM (ordered subsets expectation maximization) with six subsets [42] followed by 30
iterations of PCG (preconditioned conjugate gradient) were performed. We have
implemented fully 3D TOF MAP by modifying our non-TOF MAP code and applied it to
TOF data. For each reconstruction, we ran 10–15 iterations of PCG, which were reasonable
for practical convergence. Note that convergence rates for TOF reconstruction are faster
than non-TOF because of TOF reconstruction being better conditioned.

2) Comparison of Rebinned Data—To evaluate the performance of FORET-3D with
different weights, we compared the rebinned data and also the non-TOF data using a Monte
Carlo simulation with 50 noisy data sets.
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Fig. 4(b) shows the profiles of the sample mean for the rebinned data in an axial center plane
with the maximum ring difference. The mean profiles for FORET-3D agreed well with that
for the non-TOF data acquired without TOF information. This implies that FORET-3D is
nearly free of systematic bias as discussed in Section III-C1.

Fig. 4(c) shows the profiles of the sample variance for the rebinned data. Unweighted
FORET-3D showed even larger variance than the non-TOF data acquired without TOF
information. However, using H-weights and H2-weights substantially reduced the variance
and the optimal H2-weighted FORET-3D gave the smallest variance.

To further investigate the SNR gain of the rebinning methods compared to the non-TOF data
acquired without TOF information, we calculated the ratios of the variance of the non-TOF
data and the rebinned data in all sinogram bins. Fig. 5(a)–(c) shows the histograms of the
variance ratios. The median ratio for H2-weighted FORET-3D was 6.1, meaning that the
variance of the rebinned data is smaller than that of the non-TOF data by a factor of about
6.1 [Fig. 5(a)]. The median ratio is close to the estimated SNR gain factor GH2 ≈ 0.332×15
= 5.0 (see Section III-D) although that calculation was based on a very simplified model.
The median ratio for H-weighted FORET-3D was 4.7 [Fig. 5(b)] while the estimated SNR
gain factor was GH ≈ 0.221 × 15 = 3.3 (see Section III-D). The median ratio for unweighted
FORET-3D was 0.36, meaning the variance for unweighted FORET-3D is about three times
that for the non-TOF data.

The difference between H-weighted and H2-weighted FORET-3D in log-scaled variance
profiles in Fig. 4(c) did not seem large but the mean ratio of H-weighted to H2-weighted
FORET-3D was 1.30 [Fig. 5(d)]. This implies optimal H2-weighted FORET-3D has a better
SNR than H-weighted FORET-3D by about 30%, which agrees with the analysis results in
Section III-D.

As can be seen in Fig. 4(c), the shapes of the variance profiles for FORET-3D look similar
to that for the non-TOF data acquired without TOF information. The variance of H2-
weighted FORET-3D was highly correlated with that of the non-TOF data across sinogram
bins (Pearson correlation coefficient = 0.9265). Also, the correlation coefficient between the
variance of H-weighted FORET-3D and the non-TOF data was 0.8935, and the correlation
coefficient was 0.8719 for unweighted FORET-3D. The variance of the rebinned data was
nearly a scaled version of that of the non-TOF data, which agrees with the analysis results in
Section III-D. We also calculated the covariance of the rebinned data to test whether there is
a spatial correlation in the rebinned data. Fig. 4(d) shows profiles of the covariance between
the sinogram central bin and all the sinogram bins in the central oblique plane with the
maximum ring difference. The spatial correlation in the rebinned data is small and it is
practically reasonable to assume the rebinned data are spatially uncorrelated.

3) Monte Carlo Simulation for 3D Data Reconstruction—We conducted a Monte
Carlo simulation study using 50 noisy 3D TOF data sets to evaluate and compare the
statistical properties of reconstructed images at two ROIs in the center plane [ROI A and B
in Fig. 4(a)]. For each noisy TOF data set, we performed fully 3D TOF MAP reconstruction
using quadratic regularization with smoothing parameters spatially variant to achieve count-
invariant resolution [43]. We rebinned each TOF data set by H-weighted and H2-weighted
FORET-3D and also obtained a noisy non-TOF data set by summing the TOF data over
TOF bins, and then applied fully 3D non-TOF MAP [41] to the rebinned and the non-TOF
data with varying smoothing parameters.
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To make a fair comparison of the noise properties of different methods, for each ROI, we
applied 2D Gaussian smoothing so that the following recovery coefficient (RC), which is the
normalized sample mean of ROI quantitation, is matched for different methods

where  is the reconstructed value at voxel j for data set k,  is the true value at voxel j
and N is the number of data sets. To quantify noise, we calculated a normalized standard
deviation of ROI quantitation

We also estimated the voxel-wise variance as the sample variance across realizations
averaged within ROI

where NROI is the number of voxels in ROI.

Fig. 6(a) and (b) shows the trade-off between recovery coefficient and standard deviation of
ROI quantitation. Fig. 6(c) and (d) shows the trade-off between ROI recovery coefficient
and voxel-wise variance across realizations averaged within ROI. Standard errors were
computed in all cases using bootstrap resampling. As can be seen in Fig. 6, between H2-
weighted and H-weighted FORET-3D and non-TOF data acquisition, H2-weighted
FORET-3D consistently produced the minimum statistical uncertainty at matched ROI
recovery coefficient while non-TOF data acquisition produced the maximum statistical noise
(see [27, Fig. 5], for a comparison of resolution and variance trade-offs). On the other hand,
H2-weighted FORET-3D and TOF MAP seemed comparable while the former occasionally
outperformed the latter and vice versa. It should be noted that we observed spatially
nonuniform voxel variance within ROI and also different spatial noise correlations for TOF
MAP and H2-weighted FORET-3D (not shown here). This explains, for example, why TOF
MAP showed a higher standard deviation of ROI quantitation for ROI A than H2-weighted
FORET-3D for the low recovery coefficient [see the left-most marks in Fig. 6(a)] but
showed a similar voxel variance averaged within ROI A [see the left-most marks in Fig.
6(c)]. Further investigation will be needed to evaluate more rigorously FORET-3D against
TOF MAP as discussed in Section V. However, this preliminary study demonstrates that the
performance of H2-weighted FORET-3D is comparable to that of TOF MAP in our
simplified simulation setup.

B. Application to Real Data in Phantom Study
We applied the rebinning methods to experimental TOF data obtained from a prototype TOF
Siemens Biograph TruePoint TrueV PET/CT scanner by scanning a Data Spectrum
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anthropomorphic torso phantom with a lesion and background activity ratio of 12:1. The
scan time was 60 min and the number of total prompts amounted to 2.6 × 109. Total counts
are high relative to average in vivo studies but the data set is sufficient to demonstrate the
relative performance of the rebinning methods and non-TOF data acquisition since the
processing performed here is all linear.

We reconstructed images from the rebinned data and also from the non-TOF data by a fully
3D MAP reconstruction method (see Fig. 7). To evaluate contrast recovery, we chose a
transverse plane and took a background region-of-interest (ROI) as shown in Fig. 7 and a
lesion ROI of 4 × 4 voxels to include a lesion around the center. The diameter of the lesion
was 7.8 mm. We calculated a contrast-to-noise ratio (CNR) as

where f̂j is the reconstructed value at voxel j, ROIl the lesion ROI, ROIb the background
ROI, Nl the number of voxels in the lesion ROI and Nb the number of voxels in the
background ROI. The CNR was 17.97 for H2-weighted FORET-3D, 16.41 for H-weighted
FORET-3D and 10.95 for non-TOF data acquisition. The optimal H2-weighted FORET-3D
yielded the largest CNR, with significant improvement compared to non-TOF data
acquisition.

V. DISCUSSION
We have optimized a Fourier rebinning method, which rebins 3D TOF data into 3D non-
TOF data formats, and derived H2-weighted FORET-3D. This method does not require a
Fourier transform in the axial direction and is therefore a practical method that does not
suffer from a missing data problem. H2-weighted FORET-3D is shown to be the BLUE
(best linear unbiased estimator) of non-TOF sinograms under reasonable approximations
and the UMVU (uniformly minimum variance unbiased) estimator under Gaussian noise
assumptions. This implies that we lose little information as a result of optimal rebinning.
The optimal rebinning method was applied to real phantom data as well as simulated data
and showed clear SNR and contrast recovery improvements over the other rebinning
weights and non-TOF data acquisition. Furthermore, the SNR gain achieved by the optimal
rebinning was close to that predicted by Tomitani’s expression [12], which was also
confirmed in the context of likelihood-based image reconstruction using full TOF data [34].
This suggests that optimal rebinning should approach the performance of fully 3D TOF
reconstruction, at least with respect to reconstructed image noise variance, while achieving
substantial reductions in computation cost.

In our MC simulation study, H2-weighted FORET-3D showed comparable performance to,
and occasionally outperformed, fully 3D TOF MAP. This is unsurprising in that 3D TOF
MAP reconstruction was not optimal for the data we generated, although it would not be far
from optimal, because of randoms-precorrection, which destroys the Poisson statistics [40],
and also model mismatch (a line integral based projector [38] used for data generation and
the geometric projector [44] used for both TOF MAP and non-TOF MAP reconstruction).
Nonetheless, the simulation results are promising, and further investigation will be needed to
evaluate the performance of the rebinning methods against TOF MAP in more realistic
studies, where correction factors such as attenuation and detector efficiency and detector
blurring are considered, and also in clinical data.

Ahn et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The derivation of the optimal H2-weighted FORET-3D is based on several approximations
as summarized as follows. First, the sinogram rebinning operator ℛδ,ωt and the inverse
operator δ,ωt, used for deriving FORET-3D, are approximate. Since the approximation
error increases as |ωt| increases and |ωs| decreases, we used for small |ωs| only the sinograms
with small |ωt|, which is a common practice to reduce errors in approximate Fourier
rebinning [24], [25]. This approach reduces systematic bias, possibly at the cost of increased
variance. However, the increased variance may not be significant because the ℋ2(ωt) weight
decreases as |ωt| increases. Second, to show the weights for H2-weighted FORET-3D are
optimal, we made approximations related to the inverse sinogram rebinning operator in (20)
and (21) and assumed an uncorrelated noise in the Fourier space. The approximations in (20)
and (21) make the resulting estimator simple and robust to modeling and numerical errors

but become inaccurate when  is larger than  but not much larger. Also, the
noise model becomes inaccurate when the noise is correlated in the Fourier space. One such
instance is when the object size is small and the noise covariance is radially narrow in
sinogram space and broad in Fourier space. In this case, since the object is small compared
to the timing resolution, TOF information is not very useful anyway. Note that suboptimality
in the weights for FORET-3D that arise from any inaccurate approximations does not
introduce any systematic bias but rather increases the variance. Finally, we assume the data
have been corrected for randoms, scatter, attenuation and normalization before rebinning.
The effects of any inaccuracy in the correction factors on rebinning results have not been
examined in this paper.

Although we focus on FORET-3D, which rebins 3D TOF into 3D non-TOF data, the
methods we present in this paper apply to other rebinning methods. Among them, probably
the most interesting one would be FORET-2D, which rebins 3D TOF into 2D non-TOF data.
Although our preliminary study in [24] shows the approximations error for FORET-2D
seem somewhat larger than that for FORET-3D, it is worthwhile to further investigate the
method since the computational saving for reconstruction would be substantial.
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APPENDIX A
Here we derive the adjoint of δ,ωt. For any functions q(ωs, ϕ) and r(ωs, ϕ), we have
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(33)

(34)

where , a change of variables is made in (33), and the Jacobian determinant

 is computed using (4) and (5). Since (34) equals 〉( δ,ωt)*q, r〈 by the
definition of the adjoint operator, ( δ,ωt)* can be written as (23).

APPENDIX B

First, we prove (29) in Section III-C2. Suppose  are independent with covariance

. Let  be the 2D FFT of  with respect to k and l.

Then one can calculate the covariance of  as

(35)
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where  is the FFT of  with respect to k and l. Since we deal with complex
numbers in the Fourier domain, we adopt the definition of covariance, Cov {X, Y} ≜ E[(X −
E[X])(Y − E[Y])*] where * denotes complex conjugate [45, p.66]. The sign change in (35)
is due to this.

Next, we prove the claim made in Section III-E that the rebinned data after undoing
correction have approximately the same covariance structure as the raw non-TOF data

before data correction within a scaling factor. We consider corrected data ,
which are statistically independent, where cijklm are multiplicative correction factors.

Suppose that  is the FFT of  with respect to k and l and that we apply FORET-3D,

given in (14), (15) or (16), to the corrected data  and obtain rebinned data  as an

estimate of the non-TOF sinogram. Assume that the covariance of  follows (30). Then
the covariance of the rebinned data is approximately the same as that of the non-TOF data

 within a scaling factor 1/G where G is a SNR gain factor, as shown in

Section III-D. Therefore, the rebinned data  are approximately independent and the
variance is given by

 denote the

non-TOF data before correction. Since , the variance of the
rebinned data after undoing the correction is a scaled version of the variance of the raw non-
TOF data before correction.
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Fig. 1.
Data acquisition geometry: (left) transverse and (right) sagittal view. 3D TOF data are line
integrals of a 3D object along an LOR weighted by a TOF kernel h. Each LOR is specified
by s, ϕ, z, and δ = tan θ.
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Fig. 2.
Geometric illustration of the coordinate transformation for the approximate mappings
between a TOF oblique sinogram ℘z, δ, ωt (ωs, ϕ) and a non-TOF oblique sinogram

.
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Fig. 3.

Illustration of the noise properties of 3D TOF data in Fourier domain. (a) Covariance  of
the 2D FFT of the 3D TOF data with respect to the radial coordinate and the TOF variable
index. This figure shows profiles along the radial frequency and the TOF frequency
direction. In this figure, the zero-frequency component was shifted to the center. (b) Sum of
the data variance over the radial and TOF variable index versus transaxial angular index for
the oblique plane with the maximum ring difference.
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Fig. 4.
(a) Axial center plane of the NCAT torso phantom used for Monte Carlo simulation studies.
Two ROIs are shown: ROI A with 36 voxels (144 mm2) and ROI B with 23 voxels (92
mm2). (b) Sample mean profiles and (c) sample variance profiles for the rebinned data and
the non-TOF data acquired without TOF information in an axial center plane with the
maximum ring difference. Note the variance profile in (c) is plotted on log scale. (d) Profiles
of the covariance of the rebinned data. The covariance was calculated between a sinogram
bin (radial index = 169, angular index= 169) and all other sinogram bins in the same oblique
plane. For (b)–(d), the profiles were taken at the 169th angle corresponding to ϕ = π/2.
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Fig. 5.
Histograms (over sinogram bins) of the ratios of the variance for the non-TOF data, acquired
without TOF information, to that for (a) H2-weighted FORET-3D, (b) H-weighted
FORET-3D, and (c) unweighted FORET-3D. (d) Histogram of the ratios of the variance for
H-weighted to H2-weighted FORET-3D.
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Fig. 6.
ROI recovery coefficient versus ROI standard deviation trade-off curves for ROI
quantitation: (a) ROI A and (b) ROIB. ROI recovery coefficient versus voxel-wise variance
across realizations with variances averaged within ROI: (c) ROI A and (d) ROI B. The error
bars represent the standard errors estimated by a bootstrap method.
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Fig. 7.
A transverse plane of fully 3D reconstructed images from the rebinned data by (left) H2-
weighted FORET-3D, (middle) H-weighted FORET-3D and (right) from the non-TOF data
acquired without TOF information, using real phantom data. The red rectangle represents
the background ROI used to calculate the contrast to noise ratio. A 4×4 voxel ROI that
includes the lesion in the center was taken as a lesion ROI. Contrast-to-noise ratio (CNR)
values were calculated as 17.97 for H2-weighted FORET-3D (left), 16.41 for H-weighted
FORET-3D (middle) and 10.95 for the non-TOF data acquisition (right).
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