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Abstract

White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For 

tract-based comparison of a population of images, a common approach is to first generate an atlas 

by averaging, after spatial normalization, all images in the population, and then perform 

tractography using the constructed atlas. The reconstructed fiber trajectories form a common 

geometry onto which diffusion properties of each individual subject can be projected based on the 

corresponding locations in the subject native space. However, in the case of high angular 

resolution diffusion imaging (HARDI), where modeling fiber crossings is an important goal, the 

above-mentioned averaging method for generating an atlas results in significant error in the 

estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons 

have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize 

subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of 

performing tractography at a population level. Our method entails determining a bipolar Watson 

distribution at each voxel location based on information given by all images in the population, 

giving us not only the local principal orientations of the fiber pathways, but also confidence levels 

of how reliable these orientations are across subjects. The distribution field is then fed as an input 

to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are 

consistent across all images in the population. We observe that the proposed method, called 

POPTRACT, results in significantly better preservation of fiber crossings, and hence yields better 

trajectory reconstruction in the atlas space.
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I. Introduction

Diffusion tensor imaging (DTI) [1] is a powerful imaging modality that allows probing into 

the intricate micro-architecture of white matter. It plays an indispensable role in 

characterizing neural pathways in vivo by means of fiber tractography, which entails 

reconstructing the trajectories of fiber paths by tracing the direction of maximal water 

diffusion. Such estimated fiber paths can subsequently be used, for instance, to investigate 

brain connectivity alterations in mental and neurological disorders [2], [3]. Tract pathology 

can be evident, as in the case of brain tumors where tracts are grossly displaced, or subtle, as 

in the case of neuropsychiatric disorders, such as schizophrenia where disruptions are 

manifested as change of diffusion properties within the tracts [4], [5].

The core assumption of DTI—Gaussianity of water diffusion—however, does not always 

hold true. This assumption implies that each imaging voxel can only be traversed by a single 

fiber bundle and, hence, it is sufficient to capture local fiber orientation by using a single 

direction vector. This can hardly be true considering the fact that current imaging 

technologies allow diffusion-weighted images to be acquired at a spatial resolution that is 

typically of the order of 2 mm, while the diameters of axon bundles considered in fiber 

tractography are of the order of 1 mm and individual physical neuronal fibers are of the 

order of 1–30 μm. Each imaging voxel hence captures water diffusion patterns that can be 

sophisticatedly heterogeneous. Modeling water diffusion using the single tensor formulation 

ignores this complexity and results in loss of information. It has in fact been shown that a 

significant fraction of the white matter (WM) voxels contain fiber bundle crossings [6], [7], 

in which case the simplistic model of DTI breaks down.

One of the methods proposed to remedy the shortcomings of DTI is high angular resolution 

diffusion imaging (HARDI) [8], where diffusion signals are acquired along a significantly 

larger number of directions than is normally employed in DTI. This allows modeling of the 

complex non-Gaussian diffusion process and construction of spherical functions with 

multiple local maxima which are potentially aligned with the underlying fiber bundle 

orientations. Accordingly, one naturally wants to extend existing DT-based tractography 

algorithms to work with HARDI data to better deal with fiber crossings and to reconstruct 

fiber trajectories that resemble more closely the anatomical fibers connecting different 

functional regions of the brain.

In this paper, we detail a tractography algorithm, called POPTRACT, that allows effective 

reconstruction of fiber trajectories in the atlas space by more faithfully preserving fiber 

crossings. Tractography in the atlas space, as was done in previous works [9]-[11], allow the 

reconstructed trajectories to form a common geometry onto which diffusion properties from 

the individual images can be projected for tract-based comparison. To this end, a common 

step involves averaging the tensors [9]-[11], the fiber orientation distributions (FODs) [12], 
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or the diffusion signals [13] after spatial normalization, resulting in an atlas on which 

tractography can be performed after determining the local fiber orientations. We will show, 

however, that this approach causes significant deviation of the estimated local orientations 

from the “true” orientations. The major reason for this is the smearing of the orientation 

profile, caused by averaging misaligned ODFs (see Fig. 1). The cumulative effect of a 

fraction of a degree of error is detrimental for tractography algorithms, which are mostly 

greedy in nature, and can result in incorrect fiber trajectories that deviate significantly from 

the true fiber bundles.

Approaches alternative to the average atlas method includes clustering based approaches 

[14], [15] and reference tract based approach [16]. Clustering based approaches aim to group 

the fibers into bundles, which can then be compared between subjects. For instance, 

O’Donnell and Westin [14] utilize spectral clustering to automatically identify white matter 

structures that are related to expected anatomies, such as the corpus callosum, uncinate 

fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata, thus making possible 

group comparison of fiber structures. Reference tract based approaches compare fibers or 

their representations based on a predefined reference tract. Clayden et al. [16], for example, 

transform the median lines of a set of fiber bundles into the space of a reference tract for 

comparison purposes.

In what follows, we will limit our discussion on average atlas based methods. We will show 

how POPTRACT can help im prove tractography accuracy, compared with an ODF-based 

average atlas approach. The average atlas is constructed by averaging the ODF fields of a 

population of subjects after spatial normalization.

A. Our Contribution

In our approach, local fiber orientation distributions are estimated by harnessing orientation 

information agglomorated from a population of diffusion-weighted images. Upon 

determining the fiber orientations from the local maxima of the ODFs [17], [18], POPTRACT 

models the orientation distribution at each voxel location by employing the bipolar Watson 

distribution [19], which captures the local mean fiber orientation and also the extent of 

orientation dispersion. We show that this orientation distribution information, when fed into 

a probabilistic tractography algorithm, allows better reconstruction of population-consistent 

fiber trajectories, compared with the average atlas approach.

In summary, the main thrust of this work is to design an effective population-based 

tractography algorithm in replacement of the conventional average atlas method to better 

exploit the power of HARDI in delineating complex orientational micro-structures. We 

discuss our approach in Section II, provide experimental results in Section III, and conclude 

the paper in Section IV.

II. Approach

The main idea of our approach is to model the orientation distribution at each voxel location 

by simultaneously considering all images in the population. Similar to the average atlas 

approach, we want to use this orientation information to reconstruct a set of fiber trajectories 
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that will form a common datum, based on which inter-subject tract-based morphometry can 

be performed. Unlike the average atlas approach, however, orientations are not estimated 

after, but prior to, averaging in the common space to avoid estimation inaccuracy caused by 

ODF smearing. The estimated orientation fields are transformed to a common atlas space 

where the maximum likelihood parameter estimates of the Watson distribution at each voxel 

location are determined. A probabilistic tractography algorithm is then used to reconstruct 

the fiber trajectories. A summary of the mathematical notations used in this paper is 

provided in Table I.

A. Modeling Local Fiber Orientations

1) Single Fiber Orientation—Assuming for a moment that the orientation fields 

computed from N diffusion-weighted images are spatially normalized to a common space 

and that each voxel location of an orientation field contains only one fiber orientation, our 

goal now is to accurately relate these orientations to an underlying model. At each voxel 

location of orientation field i ∈ {1,…,N}, the local fiber orientation is denoted by a unit 

vector vi. We model the distribution of orientations across subjects using the bipolar Watson 

distribution [19], probability density function (PDF) of which is given by [20]

(1)

The parameter μ is a unit vector called the mean orientation andκ is a positive constant 

called the concentration parameter. The Watson distribution can be thought of as a bipolar 

symmetrization of the Fisher–Von Mises distribution [20], [21]. The squared exponential in 

(1) ensures that the distribution is antipodal symmetric. The density has maxima at ±μ and 

becomes more concentrated around ±μ as κ increases. The density is also rotationally 

invariant around±μ. C(κ) is a normalizing constant to ensure that the density function 

integrates to unity over the unit sphere.

Assuming that the orientation vectors v1,…,vN are random samples from the Watson 

distribution, the maximum likelihood estimate (MLE) of μ is the eigenvector corresponding 

to the largest eigenvalue λ1 (λ1 ≥ λ2 ≥ λ3) of the symmetric positive definite matrix [22]

(2)

Matrix A is called the dyadic tensor [23]. The MLE of κ is (1–λ1)−1, asymptotically when κ 

→ ∞ [22]. When κ = 0, the distribution is uniform. As κ increases, the PDF becomes more 

concentrated about ±μ. Therefore, orientations that depart from ±μ are penalized more 

heavily when there is a strong alignment of the local fiber orientations from all subjects (see 

Fig. 2).

2) Extension to Multiple Fiber Orientations—Denoting the maximum number of 

possible orientations as Ω, we now denote the set of orientation vectors at each voxel 

location as , where D = 1,…,Ω. In the case where there is less than D orientations, the 

surplus orientation vectors are simply set to nil. For DTI, Ω is limited to 1. For HARDI, 
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however, the representation models used often allows more than one fiber orientations; 

hence Ω ≥ 1. During the course of a typical diffusion-weighted experiment, the average 

displacement of water molecules is expected to be of the order of 10 μm. Because it is not 

likely that water molecules will be able to visit regions of the sample separatedby more than 

a few tens of microns over the time scale of the diffusion time, we can assume that there is 

effectively no exchange between spatially distinct fiber bundles. We therefore estimate the 

parameters of the PDF for each compartment independently. That is, for the Dth 

compartment, we estimate μ[D] and κ[D] using . For consistency, this is done 

after orientation sorting, as discussed next.

3) Orientation Sorting—When noise is present in diffusion-weighted images, ordering of 

the orientation vectors, especially in multi-orientation voxels, can be inconsistent. This 

results in a sorting bias [23], severity of which increases as the signal-to-noise ratio (SNR) 

decreases. To alleviate this problem, region-based sorting has been found to be effective 

[23]. Accordingly, we assume that the orientation field within a small neighborhood 

surrounding a point location is relatively homogenous and sort the orientations of the voxels 

in this neighborhood in tandem to ensure ordering consistency and reduce sorting bias. 

Specifically, for a particular spatial location, orientations in its neighborhood , are sorted 

to maximize cost function

(3)

where ρ[D](x) is the value of the ODF sampled at orientation v[D](x). For each voxel location 

x ∈ , orientation vector v[D](x) is swapped with v[D+1](x) to gauge if the value of the cost 

function is reduced. If yes, the swap is maintained; otherwise, it is reverted. This is iterated 

until the global minimum of (3) is obtained. An illustration is given in Fig. 3.

4) Spatial Interpolation—In the process of transforming the orientation fields to the 

common space, interpolation is inevitable. For instance, the widely used trilinear 

interpolation involves computing, at a point location, a linear weighted average of eight 

neighboring voxels. However, interpolation, when done improperly, often results in 

information loss. To avoid this, we map all the eight neighboring voxels, linearly weighted 

by their distance to the point of interest, to the corresponding location in the common space 

and employ all of them for PDF parameter estimation.

B. Reconstructing Fiber Trajectories

A white matter fiber can be modeled as a finite-length path parameterized by a train of unit 

length vectors (see Fig. 4). We use the following notation for such a path: 

. We further assume that the fiber path can be traced by tracking the 

trajectory of a particle travelling in an orientation field. Each particle is endowed with an 

initial speed in an appropriate direction. It then moves with constant speed to position p(t) 

according to
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(4)

where s is the step length. At each point in space, vector v(t) is drawn from distribution

(5)

where the set of parameters for the Watson distributions are collectively denoted as 

. Equation (5) is in fact the Watson distribution 

discussed in Section II-A. It is, however, now dependent on the prior orientation vector v(t-1) 

in determining which orientation compartment D(t) = 1,…,Ω to follow in the case where a 

voxel contains multiple orientations. Assuming that the Watson distribution is not directly 

dependent on v(t-1) but only on D(t), we can simplify f(v(t) |v(t-1), θ(t), D(t)) to become f(v(t) |

θ(t), D(t). Specifically,

(6)

and

(7)

where ϕ is the maximum allowed turning angle and  is defined as

(8)

with  being the value of the ODF at the voxel location determined by p(t), sampled at 

orientation v[D]. The tracing is stopped if the trajectory reaches a voxel with orientation 
coherence [24]

(9)

falling below a predefined threshold β0, or simply when the brain boundary is encountered. 

The λ’s are the eigenvalues of the dyadic tensor at each voxel location. Perfect alignment of 

the orientations in compartment D results in β[D] = 1 and an uniform distribution of 

orientations results in β[D] = 0.
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An interpolation problem arises in the tracking process because orientation information is 

located on a discrete grid, whereas the tracked paths are not limited to such restriction. The 

probabilistic tractography framework allows us to employ the probabilistic interpolation 

method suggested by Behrens et al. [25], which utilizes the orientation information at a grid 

point chosen at random based on the distance to the current point location.

C. Summary—PopTract

After spatial normalization of the orientation fields to a common space [see Section III-B3], 

the steps involved in modeling the local fiber orientations and reconstructing the fiber 

trajectories are summarized as follows.

1) For each voxel location in the common space, estimate, for each orientation 

compartment D, the Watson distribution parameters μ[D] and κ[D].

2) Compute the coherence maps, β[D], D = 1,…,Ω, based on (9).

3) Decide on the seed voxel(s), maximum allowed turning angle ϕ, step length s, 

coherence threshold β0, and number of trajectories Γ to initiate from each seed.

4) Initialize tracking at each seed and proceed in an orientation given by the 

Watson distribution.

5) At each location, compute the PDF (5), draw a random orientation, and proceed 

in the orientation.

6) Go to Step 5 unless β < β0 or if the boundary of the brain is encountered.

7) Go to Step 4 and initialize another tract until the number of required trajectories 

Γ is fulfilled.

III. Results

We demonstrate in this section the effectiveness of the proposed method. We first present 

evaluation results using synthesized data, followed by results using in vivo adult and infant 

data.

A. Synthesized Dataset

To evaluate the effectiveness of the proposed method in preserving fiber crossings and in 

correctly estimating the orientations, we synthesized an 8 × 8 image (Camino [26]; two-

tensor model) with each voxel containing a crossing with two orientations—one vertical and 

one horizontal. To simulate inter-subject variability, we perturbed the synthesized diffusion-

weighted signal by applying random rotation matrices (angles: 15°, 30°, 45°, 60°) and 

adding isotropic complex Gaussian noise (SNR = 2, 4, 8, 16) to each voxel. The ODF at 

each voxel is then computed using Camino [26]. Samples of the ground truth and perturbed 

ODFs are shown in Fig. 5. We applied these perturbations 10 times to the no-noise image 

and then used the resultant images to attempt to recover the “true” population-based 

orientations. The orientations are determined by locating the local maxima of the ODF. We 

show, for qualitative evaluation, the results for the case of angle = 45° and SNR = 16 in Fig. 

6. It can be observed that the average atlas method [Fig. 6(b)], generated by averaging the 
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ODFs, resulted in loss of fiber crossings and significant deviation in the estimated 

orientations. The proposed method [Fig. 6(c)] gave more consistent results.

For quantitative evaluation, we measured the orientational discrepency (OD) of the 

estimated orientations with respect to the ground truth orientations. Assuming that U(x) is 

the set of ground truth orientations at voxel location x and V(x) is the corresponding set of 

estimated orientations, OD is defined as

(10)

where dθ(u, v) gives the angle difference between u and, i.e.,

(11)

The absolute value is taken since diffusion is assumed to be antipodal symmetric. In cases of 

multiple local maxima, the term

(12)

returns the angle difference between u with an orientation v in V that is most closely aligned 

with itself. Evaluating the OD between the estimated orientations with the ground truth 

under different rotation angles and SNRs, the results, shown in Fig. 7, indicate that the 

proposed method is capable of estimating orientations which are closer to the ground truth, 

with improvement especially prominent when the angles of rotation is large. Fig. 8 is 

another rendition of Fig. 7, showing the relationship between the OD values with respect to 

different SNRs. The average atlas method seems not to benefit very much from the increase 

of SNR when the perturbation angle is large. In contrast, the proposed method shows a 

consistent decrease in orientation estimation error in all cases.

B. In Vivo Dataset

1) Materials—Diffusion-weighted images were acquired for 14 adult subjects using a 

Siemens 3T TIM Trio MR Scanner with an EPI sequence. Diffusion gradients were applied 

in 120 noncollinear directions with diffusion weighting b = 2000 s/mm2, flip angle = 90°, 

repetition time (TR) = 12 400 ms and echo time (TE) = 116 ms. The imaging matrix was 

128 × 128 with a rectangular FOV of 256 × 256 mm2. Eighty contiguous slices with a slice 

thickness of 2 mm covered the whole brain. Data postprocessing includes brain skull 

removal, motion correction, and eddy current correction using algorithms developed and 

distributed as part of the FMRIB Software Library (FSL) package [27].

2) Orientation Estimation—The local maxima of an ODF reflect local fiber orientations. 

In our case, the orientations were computed with Camino [26] by locating the peaks of the 

ODFs using Powell’s algorithm on a set of sample points generated by randomly rotating a 

unit icosahedron 1000 times. We limited the maximum number of orientations for each 

voxel to two. This choice is guided by several previous studies [28]-[30], where the 

estimation of two orientations is generally deemed as stable.
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3) Spatial Normalization and Orientation Transformation—For spatial 

normalization, we employed an algorithm called SPherical Harmonic Elastic REgistration 
(SPHERE) [31]. SPHERE hierarchically extracts orientation information from HARDI data 

for structural alignment. The image volumes were first registered using robust, relatively 

direction invariant features derived from the ODF, and the alignment was then further 

refined using spherical harmonic (SH) representation with gradually increasing orders. This 

progression from nondirectional, single-directional to multi-directional representation 

provided a systematic means of extracting directional information given by diffusion-

weighted imaging. Coupled with a template-subject-consistent soft-correspondence-

matching scheme, this approach gave robust and accurate alignment of HARDI data. One 

image was selected, out of the 14 images, as the template onto which 13 other images were 

registered. The estimated transformations were used to map the respective orientation fields 

to a common space. When transforming the orientations, they were reoriented using v′ = 

Fv/||Fv||, where F is a local affine transform matrix computed from the image transformation 

map. For generating the average atlas, transformation of the ODF was performed based on a 

method similar to that proposed by Rafflet et al. [32], where we approximated the ODF 

using a number of weighted point spread functions (PSFs), reoriented these PSFs 

individually, and then recomposed the reoriented PSFs to obtain the transformed ODF. The 

same exact set of deformation fields, as applied to the orientation fields, were used to align 

the ODF fields. The average ODF at each voxel was then used to estimate the local fiber 

orientations.

4) Fiber Crossings—Similar to the results shown for the synthesized data (Fig. 6), 

significant loss of fiber crossings can be observed in the case of the in vivo data when the 

average atlas method is used for estimating the orientations (Fig. 9). For better 

understanding of the extent of the loss of crossings, we quantified the crossings in the 

regions given in Table II. These regions of interest (ROI) have been shown in [33], [34] to be 

traversed by crossing fibers. Guided by [35], these ROIs were drawn using ITK-SNAP [36] 

on the colored fractional anisotropy (FA) image of the template, and were then warped to the 

subject native spaces for quantification of crossings. For each voxel in these ROIs, we 

computed the ratio of the ODF value of the second orientation to the sum of ODF values of 

the first and second orientations as a measure of the relative strength of the second 

orientation. This gave us a better idea of how well the crossings were preserved. The results, 

as shown in Fig. 10, indicate that significantly better preservation of crossings can be 

observed in the left and right corona radiata and cingulum bundle regions compared with the 

average atlas method.

5) Tractography—For evaluation, we considered the following frequently studied fiber 

bundles.

• The forceps minor, also known as the anterior forceps, is a fiber bundle that 

connects the lateral and medial surfaces of the frontal lobes and crosses the midline 

via the genu of the corpus callosum.
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• The forceps major, also known as the posterior forceps, is a fiber bundle that 

connects the occipital lobes and crosses the midline via the splenium of the corpus 

callosum.

• The cingulum is a medial associative bundle that runs within the cingulate gyrus all 

around the corpus callosum. It contains fibers of different lengths, the longest of 

which runs from the anterior temporal gyrus to the orbitofrontal cortex. The short 

U-shaped fibers connect the medial frontal, parietal, occipital, and temporal lobes 

and different portions of the cingulate cortex [37].

• The corticospinal tract is a collection of axons that travel between the cerebral 

cortex of the brain and the spinal cord.

To test whether these fiber bundles were preserved by the proposed method, we performed 

tractography based on seeds placed at the points where the midline crosses the genu and 

splenium of the corpus callosum, in the cingulate white matter, and in the cerebral peduncle. 

The tractography parameters used were ϕ = 70°, β0 = 0.1, s = 1 mm, and ϕ = 3000. An 

identical set of parameters was used for the average atlas method. We note here that we are 

not targeting the forceps minor, forceps major, cingulum, and corticospinal tract exclusively; 

we reconstruct all fiber trajectories that are connected to the seeds and hence may result in 

extra fibers that do not belong to the intended fiber bundles. The results, shown in Fig. 11, 

indicate that the average atlas method results in premature termination of the fiber bundles. 

Specifically, in Fig. 11(a), we find that POPTRACT, as opposed to the average atlas method, not 

only reconstructed the full forceps minor, with both frontal extensions of the fiber bundles 

intact, but also part of the anterior thalamic radiations. In Fig. 11(b), POPTRACT shows a more 

complete reconstruction of the forceps major, posterior thalamic radiations, and tapetum. 

Similar conclusion can be made from Fig. 11(c), where POPTRACT shows a complete 

reconstruction of the cingulum bundle and the U-shaped fibers connecting the medial 

frontal, parietal, occipital and temporal lobes. Fig. 11(d) shows that the corticospinal tract 

reconstructed by POPTRACT extends deeper into the cerebral cortex, as indicated by the more 

yellowish color as the tract approaches the cortex, compared with the greenish color given 

by the average atlas method. It can therefore be concluded that POPTRACT yields superior 

performance when compared with the average atlas method, producing a more accurate 

reconstruction of the fiber trajectories, which are more consistent with our anatomical 

knowledge of the bundles.

C. Infant Dataset

We show, as an application, how our method can be used to increase the reliability of the 

reconstructed fiber trajectories. For this purpose, we utilized a set of diffusion-weighted 

images acquired from a number of infants. We note that, images of newborns, unlike their 

one-/two-year-old or adult counterparts, are known to be of lower image quality in terms of 

SNR and resolution [38]-[40]. The fractional anisotropy [41] of their diffusion tensor images 

are also typically low, suggesting high uncertainty in orientation estimation. Our aim in this 

section is to demonstrate how the relatively higher level of noise affects tractography and 

how this is ameliorated using POPTRACT.
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1) Materials—Diffusion-weighted images of 10 infants were acquired at two time points: 

one month and one year after birth. Diffusion gradients were applied in 42 noncollinear 

directions with diffusion weighting b = 1000 s/mm2, repetition time (TR) = 7680 ms and 

echo time (TE) = 82 ms. The scans covered the whole brain with a resolution of 2 × 2 × 2 

mm3. Data postprocessing and orientation estimation steps similar to those described in 

Section III-B were performed for this dataset.

2) Longitudinal Spatial Normalization—To reduce alignment error caused by direct 

registration of the relatively low-quality newborn (one month time point) images, we 

employed a longitudinal registration strategy where the images of the newborns were first 

registered to their respective one year time point images. In this stage, only a small amount 

of deformation is required since intra-subject structural changes are generally much smaller 

compared with inter-subject variations. The estimated longitudinal deformations fields were 

then combined with the inter-subject deformations estimated using the one year time point 

images. Using the combined deformation fields, all the orientation fields of the newborn 

images were mapped to a common space, where tractography was then performed.

3) Tractography—Fig. 12(a) and (d) and Fig. 13(a) and (d) indicate that tractography 

using the template images alone falls short in terms of consistency since local fiber 

orientations in the newborn images might not be as reliable as in adult subjects. Fig. 12(a), 

for example, indicates that the forceps major tracked based on the template image alone at 

the one month time point is very noisy with spurious fibers that do not match well with our 

anatomical understanding of the fiber bundle [37], [42], [43]. In contrast, by using 

information gathered simultaneously from the 10 images, improved tractography results can 

be obtained [see Fig. 12(c)]. Note that with POPTRACT the reconstructed forceps major matches 

well across age, i.e., between the one month and one year time points, and with that of the 

adult subjects [see right panel of Fig. 11(b)]. With increased fiber maturation, a longer 

extension of the reconstructed fiber tracjectories in the anterior–posterior direction can be 

observed. It can also be observed that, with growth (i.e., fiber organization, membrane 

proliferation, and myelination [44]), more branching fibers can be detected by POPTRACT. This 

is clear in Fig. 12(f), where we can see that the fibers extend more lateral-wise into the 

cortical regions from the major bundle. The average atlas method, however, does not show a 

significant increase in branching fibers [compare Fig. 12(b) with (e)]. We also note that, due 

to maturation, fiber tracking in the one year time point template image becomes more 

reliable, as can be seen from Fig. 12(d), where the reconstructed forceps major seems quite 

reasonable. In this case, POPTRACT gives results which resemble more closely to that of the 

template image, compared with the average atlas method. Fig. 13 shows that considering 

simultaneous information from all images also gives a more complete reconstruction of the 

cingulum bundle with longer extensions to the anterior portion of the brain and also more U-

shaped fibers connecting different brain cortical regions.
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IV. Discussion

A. Diffusion Manifold

With better methods for estimating the average, such as by considering the proper manifold 

of the diffusion profiles, the performance of the average atlas method can perhaps be 

improved. For instance, averaging using log-Euclidean metrics [45] has been proved to be 

more effective in the case of DTI. Proper identification of the diffusion manifold is also a 

determining factor in the accurate interpolation of diffusion profiles since interpolation can 

be formulated as a convex combination problem in the manifold. The accuracy of the final 

constructed average atlas is also influenced by the choice of diffusion profile 

retransformation methods [32], [46], [47].

POPTRACT avoids direct averaging, interpolation and retrans-formation of the diffusion profiles. 

Instead, all these processes are combined in a unified framework via the estimated 

orientations. Of note, modeling orientation information using the Watson distribution 

inherently considers the manifold of the orientations. The geodesic distance between two 

orientations is captured via their squared scalar product, which decreases monotonically 

with the increase of the angle difference within the range of [0°,90°]. This allows POPTRACT to 

increase the SNR of the orientation information without indiscriminately averaging out 

useful information.

B. Deterministic Tractography

Probabilistic tractography can be computationally prohibitive, especially in studies involving 

whole brain connectivity [2], [3]. In these studies, whole brain seeding is often performed 

and probabilistic tractography will results in an intractably massive number of fibers. Our 

framework can be easily adapted to function deterministically so as to meet the need of such 

situations. This can be done by setting κ → ∞ for all voxels and redefining (7) as

(13)

With this formulation, only one fiber trajectory is initiated for each seed and computation 

can be kept to a manageable level.

C. Groupwise Spatial Normalization

The registration methods employed in this current work is pairwise by nature. For unbiased 

atlas construction, groupwise registration methods can be employed [48]-[52]. Bias related 

to the template selection can be avoided by considering the population of images 

simultaneously when performing registration. Our future work would entail evaluating how 

POPTRACT can be improved with the use of groupwise registration. The current lack of which, 

however, does not affect the conclusion of this paper.
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D. Advantages and Disadvantages

POPTRACT allows more accurate estimation of local fiber orientations for better reconstruction 

of fiber trajectories at a population level. But as with the average atlas based approaches in 

general, POPTRACT has a tendency of reconstructing trajectories that are common to all 

individuals but diminishes meaningful anatomical differences between individuals. If one is 

interested in characterizing the differences in connection topology between individuals, the 

clustering or reference tract based approaches mentioned in the introduction might be more 

suitable choices.

E. Concluding Remarks

We have presented a tractography algorithm, called POPTRACT, that is more effective in 

preserving fiber crossings and is more accurate in estimating local fiber orientations. POPTRACT 

results in more reasonable reconstruction of the fiber trajectories that are in closer agreement 

with known fiber bundles.
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Fig. 1. 
Smearing of the ODF. (a) The original ODF. (b) The ODF resulting from the averaging out-

of-alignment ODFs simulated by perturbing the original ODF with slight random rotations.
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Fig. 2. 
The Watson distribution is more concentrated around the mean orientation μ when k has a 

larger value: (a) κ = 4, typical for a gray matter voxel, (b)κ = 15, typical for a voxel in the 

corpus callosum. Dark red indicates high probability values and dark blue indicates 

otherwise.
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Fig. 3. 
Orientation sorting. Note that, prior to sorting, the ordering of some of the red orientations 

and blue orientations is inconsistent. This is resolved by using the sorting algorithm 

described in Section II-A3. (a) Before sorting. (b) After sorting.
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Fig. 4. 
Fiber path is represented by a train of vectors, v(t), with step length s.
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Fig. 5. 
Synthesized ODFs perturbed with noise at different SNR levels. (a) Ground Truth, (b) SNR 

= 16, (c) SNR = 8, (d) SNR = 4, (e) SNR = 2.
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Fig. 6. 
Estimation of population-based orientations using different schemes. (a) Ground truth. (b) 

Average atlas. (c) POPTRACT.
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Fig. 7. 
Orientational dicrepancy between the estimated orientations and the ground truth 

orientations under different rotation angles and signal-to-noise ratios. Each bar indicates the 

mean value, and the error bar indicates the corresponding standard error. The asterisks (*) 

mark differences that are statistically significant (paired t-test, p = 0.05).
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Fig. 8. 
Orientational dicrepancy between the estimated orientations and the ground truth 

orientations under different rotation angles and signal-to-noise ratios. Each bar indicates the 

mean value, and the error bar indicates the corresponding standard error. The asterisks (*) 

mark differences that are statistically significant (paired t-test, p < 0.05).
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Fig. 9. 
Fiber crossings. A significant loss of crossings can be observed for the average atlas method. 

(a) Template. (b) Average atlas. (c) POPTRACT.
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Fig. 10. 
ODF ratios. Higher values indicate greater relative strength of the second orientation. Each 

bar indicates the mean value, and the error bar indicates the corresponding standard error. 

Error bars are shown only for “individual images,” since it is the only case where 

measurement variability can be computed based on a number of images.
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Fig. 11. 
Fiber trajectory reconstruction of the (a) forceps minor, (b) forceps major, (c) cingulum 

bundle, and (d) corticospinal tract. The results given by the average atlas method and 

POPTRACT are shown on the left and right, respectively. The coloring indicates the probability 

of finding a fiber at a specific spatial location. Dark red indicates a high probability that a 

particular location is traversed by fibers; dark blue indicates otherwise.
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Fig. 12. 
Fiber trajectory reconstruction of the forceps major of the infants at the one month (a)–(c) 

and one year (d)–(f) time points. The coloring indicates the probability of finding a fiber at a 

specific spatial location. Dark red indicates a high probability that a particular location is 

traversed by fibers, and dark blue indicates otherwise. (a) Template (one month). (b) 

Average atlas (one month). (c) POPTRACT (one month). (d) Template (one year). (e) Average 

atlas (one year). (f) POPTRACT(one year).
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Fig. 13. 
Fiber trajectory reconstruction of the cingulum bundle of the infants at the (a)–(c) one month 

and (d)–(f) one year time points. The coloring indicates the probability of finding a fiber at a 

specific spatial location. Dark red indicates a high probability that a particular location is 

traversed by fibers, and dark blue indicates otherwise. (a) Template (one month). (b) 

Average atlas (one month). (c) POPTRACT (one month). (d) Template (one year). (e) Average 

atlas (one year). (f) POPTRACT (one year).
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TABLE I

Summary of Notations

Notation Description

u, v General orientation vectors

v i An orientation vector at a particular voxel location of the orientation field of subject i

vi
D

A vector representing the D-th orientation at a particular voxel location of the orientation field of subject i

p (t) The t-th point on a fiber trajectory

D (t) Orientation compartment index corresponding to position p(t)

ρ[D](x) The ODF value sampled at orientation vi
D

 at voxel location x

v (t) Local tract orientation corresponding to position p(t)

μ Mean orientation of a Watson distribution

κ Concentration parameter of a Watson distribution

μ t
D t The D-th mean orientation corresponding to location p(t)

κ t
D t The D-th concentration parameter corresponding to location p(t)

λ1, λ2, λ3 Eigenvalues of a dyadic tensor; λ1 ≥ λ2 ≥ λ3

N Number of subjects
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TABLE II

ROIs for Quantification of Fiber Crossings

Abbreviation Description

CR-R Corona Radiata (Right)

CR-L Corona Radiata (Left)

OR-R Optic Radiation (Right)

OR-L Optic Radiation (Left)

CB-R Cingulum Bundle (Right)

CB-L Cingulum Bundle (Left)

SLF-R Superior Longitudinal Fasciculus (Right)

SLF-L Superior Longitudinal Fasciculus (Left)
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