
A Function for Quality Evaluation of Retinal 1 

Vessel Segmentations 2 

 3 

Manuel Emilio Gegúndez-Arias, Arturo Aquino, José Manuel Bravo, Diego Marı́n 4 
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Abstract 14 

 15 

Retinal blood vessel assessment plays an important role in the diagnosis of ophthalmic 16 

pathologies. The use of digital images for this purpose enables the application of a 17 

computerized approach and has fostered the development of multiple methods for 18 

automated vascular tree segmentation. Metrics based on contingency tables for binary 19 

classification have been widely used for evaluating the performance of these algorithms. 20 

Metrics from this family are based on the measurement of a success or failure rate in the 21 

detected pixels, obtained by means of pixel- to-pixel comparison between the automated 22 

segmentation and a manually-labeled reference image. Therefore, vessel pixels are not 23 
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considered as a part of a vascular structure with specific features. This paper contributes 24 

a function for the evaluation of global quality in retinal vessel segmentations. This 25 

function is based on the characterization of vascular structures as connected segments 26 

with measurable area and length.  Thus, its design is meant to be sensitive to anatomical 27 

vascularity features. Comparison of results between the proposed function and other 28 

general quality evaluation functions shows that this proposal renders a high matching 29 

degree with human quality perception. Therefore, it can be used to enhance quality 30 

evaluation in retinal vessel segmentations, supplementing the existing functions. On the 31 

other hand, from a general point of view, the applied concept of measuring descriptive 32 

properties may be used to design specialized functions aimed at segmentation quality 33 

evaluation in other complex structures. 34 

 35 

Index terms: Ophthalmic pathologies diagnosis, retinal vessel segmentation, image 36 

segmentation quality evaluation, quality evaluation function. 37 
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1. INTRODUCTION 49 

 50 

Digital eye-fundus images are widely used nowadays for computerized detection of ophthalmic 51 

pathologies. Specifically, blood vessel assessment through segmentation into retinal images is 52 

an important diagnosis key for automatic detection and evaluation of multiple pathologies 53 

leading to vascular anomalies. Some of the main applications reported for vessel segmentation 54 

include: location of other fundus features such as the optic disc [1]–[3] and fovea [4], reduction 55 

of the number of false positives in the detection of microaneurysms and haemorrhages [5], [6], 56 

extraction of reference vascula- ture points for image registration [7], [8], evaluation of the 57 

retinopathy of prematurity [9], arteriolar narrowing [10], [11], vessel tortuosity to characterize 58 

hypertensive retinopathy [12], vessel diameter measurement for the diagnosis of hypertension and 59 

cardiovascular diseases [13], [14], and computer-assisted laser surgery [15], [16]. 60 

As a result of this interest, many automated methods for vascular tree segmentation have been 61 

reported over the last years [9], [17]–[35]. Quality evaluation in the resulting seg- mentations is an 62 

important issue. The difficulties involved by this task have already been pointed out and discussed 63 

by Niemeijer et al. [35]. The methods of algorithmic performance on a fundus image are usually 64 

quantified by measuring metrics based on contingency tables for binary classification [36]. The 65 

most commonly-used metrics from this family are sensitivity (Se), specificity (Sp) and accuracy 66 

(Acc) [9],  [18],  [22], [24], [26]–[33], [35]. While Se and Sp metrics are the ratio of well-classified 67 

vessel and non-vessel (background) pixels, respectively, Acc is a measure that provides the ratio 68 

of total (both vessel and non-vessel) well-classified pixels (see [36] for a detailed description of 69 

these metrics). These evaluation functions provide global information on segmentation quality. 70 

They are obtained through pixel-to-pixel comparison between the automated segmentation and a 71 

reference-standard image, without taking into account that detected pixels are part of a vascular 72 

structure with specific features. This reference image is a manually-labeled image made by a 73 

medical expert. This method for quality measurement also faces the problem that human expert 74 

delineations of medical images are not exact, since the exact location of the real boundaries of the 75 



objects is unknown for experts (see Bioux et al. [37] for a comprehensive discussion on this issue). 76 

Therefore, differences between manual vessel segmentations performed by different specialists on 77 

the same fundus image are fairly common. To this respect, the attempts of different researches to 78 

produce more accurate reference-standard images are worth mentioning. Probabilistic adjustment 79 

of manually-segmented images to compensate possible generation-related differences is an 80 

example of this [38], [39]. 81 

This paper proposes a function based on the evaluation of measurable features describing 82 

vasculature. Specifically, this proposal enables vascular structure assessment through its 83 

characterization as connected segments with measurable area and length. Thus, this function is 84 

sensitive to vasculature features such as connectivity, area and length, and supplements widely-85 

used metrics based on contingency tables. On the other hand, this function has shown a high 86 

matching degree with human quality perception when compared to other quality evaluation 87 

functions reported in literature. Therefore, it may be considered a useful tool for performance 88 

measurement in automated methodologies for blood vessel detection when the morphology of 89 

vascular structures is taken into account. 90 

The rest of the paper is organized as follows.  Section II explains the proposed quality function 91 

for retinal vessel segmentation evaluation and shows examples of its application. Section III 92 

offers the results of an experimentation aimed at measuring the matching degree of both the 93 

proposed function and other general quality evaluation functions with human quality 94 

perception. Finally, section IV contributes the main conclusions of this work. 95 

 96 

2. FUNCTION FOR QUALITY ASSESSMENT OF RETINAL VESSEL 97 

SEGMENTATION 98 

 99 

A quality evaluation function (QEF hereafter) for vessel segmentation assessment is described 100 

in this section. More- over, the methodology applied for parameter setting, as well as evaluation 101 

examples which show some of its properties, are also contributed. 102 



A. Description 103 

The aim of this paper is to design a QEF of vessel segmentations able to measure vascular 104 

tree descriptive features. 105 

This QEF is based on three functions that evaluate connectivity, area and length in vessel 106 

segmentations with respect to their corresponding reference-standard images. Denoting S 107 

as the segmentation to be evaluated and SG as the reference image, these functions are 108 

defined within the [0,1] interval as follows: 109 

 110 

• Connectivity (C): This factor assesses the fragmentation degree between S and 111 

SG. Since the vascular tree is a connected structure, proper vascular segmentation 112 

is expected to have only a few connected components (ideally one). This factor 113 

penalizes fragmented segmentations by comparing the number of connected 114 

components in S and SG with regard to the total number of vessel pixels in SG. 115 

Mathematically: 116 

 117 

where min is the minimum function, #C (SG) and #C (S) stand for the number 118 

of connected components in SG and S, respectively, and #(SG) denotes the 119 

cardinality of SG. Note that, for the sake of simplicity, segmentation is referred to 120 

the set of vessel pixels exclusively, thus excluding the set of background pixels. 121 

• Area (A): This factor, based on the Jaccard coefficient [40], evaluates the degree 122 

of overlapping areas between S and SG and is defined as: 123 

 124 

Function δα is a morphological dilation using a disc of α pixels in radius. The 125 

introduction of this operator provides tolerance to slight differences in vessel 126 



width. The magnitude of this tolerance is controlled through α. 127 

• Length (L): This factor measures the degree of coincidence between S and SG in 128 

terms of total length and is formally expressed as: 129 

 130 

where ϕ is an homotopic keletonization [41] and δβ is a morphological dilation 131 

with a disc of β pixels in radius to reduce the impact of slight differences in vessel 132 

tracing. The value of β controls sensitivity degree to these differences. 133 

According to these features, a function f is defined to be monotonically increasing as: 134 

 135 

where 136 

 137 

Thus, f is dependent on the set of descriptive features C, A and L, presents an 138 

monotonically increasing behavior with respect to them, and takes values within the [0, 139 

1] interval. The extreme values 0 and 1 denote the worst and perfect segmentations, 140 

respectively. 141 

In this work, the product of C, A and L is proposed as a QEF for global quality assessment 142 

in retinal vessel segmentations (equation 6). This function will be referred to as CAL 143 

hereafter. 144 

 145 

Note that any function fulfilling (4) and (5) can be considered. The product of C, A and 146 

L was selected because it tends to preserve equal quality in all features. On the other hand, 147 

this choice also allows the interpretation of segmentation results from the evaluation of 148 

important vascularity features. 149 

B. Parameters Settings 150 



Before using CAL, the values of the α and β parameters defined in equations (2) and (3) 151 

must be set. Note that A and L are monotonically increasing functions with respect to 152 

their α and β parameters, respectively. Low values in these parameters would make A 153 

and L very rigorous regarding differences between images. On the contrary, high values 154 

in these parameters would make functions very tolerant to such differences, thus 155 

reducing their descriptive potential. 156 

An experimental study tried to determine the tolerance mar- gin between segmentations 157 

made by different human experts. The test set of the DRIVE database was used (see [42] 158 

for a detailed description of this retinal image database) for this purpose. This set 159 

provides in each of its 20 eye-fundus color images two manual segmentations generated 160 

by two different specialists. Thus, comparison between human observer-labeled images 161 

is possible. Since the manual images made by the first observer are commonly accepted 162 

as reference standard in literature, in our experimentation this set is considered as a 163 

reference and the set generated by the second observer is considered as segmentations 164 

to be evaluated. Taking this approach into account, for a given α parameter value, area 165 

A was obtained in the last 15 of the 20 images segmented manually by the second 166 

observer. These 15 values of A were then averaged to obtain a mean value linked to the 167 

selected α value. The same procedure was applied for length L and parameter β. The A 168 

and L values corresponding to the manual segmentations of the first five fundus images 169 

in the DRIVE database test set were not considered in average calculations. These five 170 

manual segmentations are part of the set of images used in the experimentation of this 171 

paper, section III. In this section, vessel segmentation evaluations of CAL and other 172 

QEFs are compared. Therefore, to avoid bias in the obtained results, these manual 173 

segmentations were excluded in this process of CAL-parameter setting. 174 

Figure 1, image (a), shows the evolution of the mean values of A and L as functions of 175 



their α and β parameters, re- spectively. Figure 1, image (b), presents the forward-176 

difference functions of A and L. Our aim is finding the value of α and β from which 177 

increase in functions A and L is low and almost constant. This fact can be observed to 178 

occur independently for both functions when α and β are equal to 2. Therefore, for all 179 

the experimentation described hereafter, α and β values were set to 2. 180 

C. Application Examples 181 

This subsection contributes examples of different cases of CAL-assessed vessel 182 

segmentation. These examples illustrate and highlight certain outstanding properties of 183 

this QEF. On the other hand, the results provided by sensitivity (Se), specificity (Sp) and 184 

accuracy (Acc) are also presented as a reference of the evaluations rendered by other 185 

commonly-used metrics. 186 

1) Dependence on vascular tree structure features: The images used in this example 187 

are shown in Figure 2. Three synthetic segmentations were generated from 188 

manual vessel segmentation in image (a) according to the following criteria: 189 

• Figure 2, image (b): Firstly, N true vessel pixels from wider vessels are 190 

labeled as background; secondly, N true background pixels located at the 191 

edges of narrower vessels are labeled as vessel. 192 

• Figure 2, image (c): Firstly, N true vessel pixels from thinner vessels are 193 

labeled as background; secondly, N true background pixels located at the 194 

edges of wider vessels are labeled as vessel. 195 

• Figure 2, image (d): Firstly, N true vessel pixels from thinner vessels are 196 

labeled as background; secondly, N true random background pixels are 197 

labeled as vessel. 198 

The functions C, A, L, and CAL, expressed in equations (1), (2), (3), and (6), 199 

respectively, were calculated for images (b), (c) and (d), taking image (a) as 200 



reference standard. The obtained values are presented, together with the evaluations 201 

provided by Se, Sp and Acc, in TABLE I. Se, Sp and Acc can be observed to indicate 202 

equal quality for these three segmentations (the images were generated with this 203 

purpose). However, CAL quality evaluations show differences between tested 204 

images. Image (b) is very similar to reference image (a), since both images were 205 

generated to have only small differences at vessel edges. This results in the 206 

maximum possible CAL value, because all of its functions are 1.0 (A is also 1 due 207 

to the morphological dilation applied in its formulation). Although image (c) keeps 208 

all vessel pixels connected (C = 1.0), it presents narrow vessels shorter than in image 209 

(a). This fact is specially observable in the L value (0.8372). On the other hand, 210 

image (d) contains many isolated noisy pixels that result in the lowest CAL value 211 

(0.5286), because the whole set of measured features (connectivity, area and length) 212 

have been penalized. Therefore, CAL evaluates some vascular tree features in 213 

segmented images and thus enables interpreting its results within this framework. 214 

2) Tolerance to small tracing differences in expert-labeled images: Quality assessment 215 

of automated vessel segmentations is usually performed by mathematical evaluation 216 

of the distortion between these segmentations and reference- standard images. These 217 

images are manually performed by human observers, thus including a subjective 218 

factor in their generation. Consequently, differences between expert-labeled images 219 

generated by different observers on the same image are fairly common, especially 220 

when tracing vessel borders or narrow vessels. As an example, Figure 3, image (c), 221 

shows coincidence (colored gray) and disagreement (colored black) in vessel tracing 222 

between two manual segmentations (images (a) and (b)) of a single fundus image. 223 

Therefore, these human- made images cannot be considered absolute ground truths 224 

[37]. A QEF for evaluating retinal vessel segmentation quality should minimize the 225 



impact of this fact. 226 

In this example, the influence of slight variations in vessel tracing on CAL is 227 

analyzed. Figure 3, image (d), shows automated-vessel segmentation on the fundus 228 

image whose expert-labeled images are shown in Figure 3. Segmentation was 229 

generated by the recently-published approach by Marín et al. [18]. Segmentation 230 

quality was measured by CAL taking images (a) and (b) as reference standards. The 231 

results are contributed in TABLE II (Individual Measures). Sp, Se and Acc values 232 

are also shown as a reference of evaluations by other metrics. CAL values can be 233 

observed to be very close, thus indicating the low dependence of this QEF on the 234 

expert- labeled image taken as reference. The same calculations were completed for 235 

each of the 20 fundus images available in the test set of the DRIVE database. The 236 

mean and standard deviation (std) of the QEFs are also shown in TABLE II 237 

(Averaged Measures). CAL averages for both reference standards differ in a small 238 

amount, thus corroborating the tolerance of CAL to differences in expert-labeled 239 

images. The same conclusions can be drawn for the Acc metric. However, their 240 

different scales should be taken into account when comparing both QEFs: while 241 

CAL varies from 0 to 1 for a black or background image (no vessel pixel detected) 242 

and the perfect segmentation, respectively, Acc varies within a smaller range. The 243 

average Acc of a null vessel-detected image measured with respect to the 20 244 

manually-segmented images of the DRIVE test set was 0.8727 and 0.8774 for both 245 

sets of labeled images, respectively. 246 

3) Correspondence with human perception: The first example shown in this section can 247 

be considered as an indicator of the existing correlation between CAL and human 248 

quality evaluations. Going back to the images of Figure 2, 20 human observers1 were 249 

 
1 1Lecturers at departments of Mathematics as well as Electronic, Computer Science and Automatic Engineering, from the 

University of Huelva, Spain. 



asked to rank quality of images (b), (c) and (d) with respect to the reference standard 250 

image (a). All of them qualified image (b) as the best segmentation. This may be 251 

explained by the fact that segmentation of image (b) preserves most of the vessels 252 

present in reference-standard image (a) (only with some slight differences in vessel 253 

width). On the other hand, segmentation in image (c) was considered more valuable 254 

than segmentation in image (d). Although both segmentations detected a similar 255 

amount of vascularity, noise in segmentation (d) degrades the visual perception of 256 

quality more than deficiencies in (c). As shown by the values in TABLE I, this 257 

interpretation matches CAL-rendered quality evaluation results. 258 

3. EXPERIMENTATION 259 

This last above-presented example seems to suggest that CAL-computed vessel 260 

segmentation evaluations are correlated with human-perceived quality. Next, this QEF is 261 

compared from this perspective to commonly-used metrics (Se, Sp and Acc) and other 262 

general QEFs that, to the best of our knowledge, have not been extensively used in retinal 263 

vessel segmentation. The aim is the subjective evaluation of the behavior of these 264 

functions in terms of correspondence with human perception. This section is divided into 265 

three subsections. The first subsection briefly describes the QEFs used in this 266 

experimentation, while the second presents the procedure and materials used. The third 267 

subsection firstly introduces the comparison methodologies applied to measure matching 268 

between the analyzed QEFs and human perception. Finally, the obtained results are 269 

contributed and discussed. 270 

A. Description of the New QEFs Evaluated in this Section 271 

The following general QEFs are included in the metrics evaluation study presented in this 272 

section: the Jaccard [40], Dice [43] and Kappa [44] coefficients, the average symmetric 273 

contour distance, the root mean square symmetric contour distance, and the maximum 274 



symmetric contour distance. The last three mentioned QEFs are 2-D adaptations of the 275 

average symmetric surface distance [45], the root mean square symmetric surface distance 276 

[45], and the maximum symmetric surface distance [46], respectively, as they were 277 

originally defined for quality evaluation in 3-D segmentations. 278 

In order to compare these QEFs with CAL under the same conditions, their original 279 

formulations were modified to introduce tolerance on spatial overlap. This tolerance 280 

was implemented according to the same approach used in CAL (i.e., performing 281 

morphological dilations on the evaluated segmentations). Note that if the value of disc 282 

radius in such dilations is set to 0, the QEFs formulation described below corresponds 283 

to their original versions. Next, the mathematical formulation of each QEF evaluating a 284 

vessel segmentation, denoted by S, with respect to its corresponding reference-standard 285 

image, denoted by SG, is contributed. 286 

1) Jaccard coefficient: The Jaccard coefficient is defined as the ratio between the 287 

intersection and union of both images: 288 

 289 

where δγ is a morphological dilation using a disc of γ pixels in radius. This 290 

operator is introduced in the modified versions of the following QEFs described 291 

below. 292 

2) Dice coefficient: The Dice coefficient is defined as the size of the intersection of 293 

the two images divided by their average size: 294 

 295 

3) Kappa Coefficient: This coefficient can be expressed as: 296 

 297 

where Pr(a) is the relative observed agreement and Pr(e) is the hypothetical 298 



probability of chance agreement, both calculated using segmentation S and 299 

reference standard SG. 300 

4) Average Symmetric Contour Distance: It is based on the edge points of S and SG. 301 

For each edge point of S, the Euclidean distance to the nearest edge point of SG is 302 

calculated. In order to provide symmetry, the same process is applied for each 303 

edge point of SG. Average symmetric contour distance is then defined as the 304 

average of all stored distances (0 for perfect segmentation). 305 

Let P (S) denote the set of edge points of S. The shortest distance of an arbitrary 306 

point p to P(S) is defined as 307 where 

denotes the Euclidean distance. Average symmetric contour distance is then 308 

given by 309 

 310 

5) Root Mean Square Symmetric Contour Distance: It is also based on contour 311 

distances, as it is calculated as the average symmetric contour distance described 312 

above. However, Euclidean distances between edge points are now squared before 313 

storing. The root of averaged squared distances then yields the root mean square 314 

symmetric contour distance (0 for a perfect segmentation): 315 

 316 

6) Maximum Symmetric Contour Distance: It is also known as Hausdorff distance 317 

and determined similarly to the two previous QEFs. Differences between both sets 318 

of edge points are determined using Euclidean distances, and the maximum value 319 



yields the maximum symmetric 320 

 321 

With the aim of comparing the range of distances ASDγ, RMSDγ and MSDγ to the 322 

remaining QEFs considered in this study (range [0, 1], 1 corresponding to perfect 323 

segmentation), these distance measures were normalized according to the following 324 

equation: 325 

 326 

B. Procedure and Material 327 

The procedure applied in this study was aimed at comparing the matching degree of 328 

certain QEFs with human perception and can be summarized as follows. Different vessel 329 

segmentations of the first five eye-fundus images from the DRIVE database test set were 330 

selected. Then, 20 human observers (see footnote 1, page 4) were asked to score quality 331 

between the segmentations and the reference standards. In this process, the original color 332 

retinal images were also shown to the observers. Thus, they could overlay the 333 

segmentations on the color image and check segmentation goodness of fit. Scores were 334 

real numbers within the [0, 10] interval, where 0 and 10 denote the worst and best quality 335 

cases, respectively. A subjective human perception of quality can be then obtained. In 336 

addition to this, the values of the QEFs under study were also calculated for the same 337 

images. Thus, human- and functions-provided evaluations are compared to measure the 338 

correspondence degree between them through some statistical approach. 339 

As an example, Figure 4 shows the set of vessel segmentations corresponding to one of 340 

the five fundus images (marked O in Figure 4) used for experimentation. The reference- 341 

standard image (marked G) is the corresponding image hand- labeled by the first observer. 342 



The remaining images can be divided into two sets: a set of synthetic images (marked S) 343 

and a set of real algorithm images (marked M). The set of synthetic images is composed 344 

by 5 segmentations (images S1-S5) created by distorting G with the aim of disposing of 345 

varied-quality images. On the other hand, the set of real algorithm images is composed 346 

by the image manually labeled by the second observer (image M1) and 8 segmentations 347 

generated by real vessel segmentation algorithms present in literature (images M2-M9). 348 

Concretely, these images were rendered by the following methods: Niemeijer et al., 2004 349 

[35] (image M2), Staal et al., 2004 [28] (image M3), Zana and Klein, 2001 [21] (image 350 

M4), Soares et al., 2006 [29] (image M5), Chaudhuri et al., 1989 [23] (image M6), Jiang 351 

and Mojon, 2003 [33] (image M7) and M. E. Martínez-Pérez et al., 1999 [34] (image M8) 352 

and Marín et al., 2011 [18](image M 9). The images were downloaded from 353 

www.isi.uu.nl/Research/Databases, except those taken from the methodologies by Soares 354 

et al., 2006 [29] and Marín et al., 2011 [18], that were provided by the authors. 355 

The results of this survey are summarized in TABLE III. This table shows the averages 356 

(HO̅̅ ̅̅ ) and standard deviations (HOσ) of the scores divided by 10 (largest possible score) 357 

given by the 20 human observers for each image of both synthetic and real algorithms 358 

sets. Moreover, CAL, sensitivity (Se), specificity (Sp) and accuracy (Acc), as well as the 359 

metrics presented in the previous subsection for γ values 0 and 2, were also calculated for 360 

the segmentations of each selected fundus image. Their averaged values are shown in the 361 

last rows in TABLE III. 362 

C. Comparison Methodologies and Results 363 

The dataset of human-perceived and QEF-computed quality evaluation in TABLE III was 364 

analyzed according to the following statistical methodologies: 365 

1) Consistence-based methodology: This methodology, proposed by Paglieroni (see 366 

[47] for a comprehensive description), consists on evaluating disparity between 367 



human-perceived and QEF-computed quality. It computes two measures of 368 

inconsistency: mean inconsistency, denoted by ∆R1, and standard inconsistency, 369 

denoted by ∆R2. Both measures reflect rank disparity in units from 0 to n−1, n 370 

being the number of segmentations. Value 0 denotes perfect matching between 371 

perceived and computed quality. It is important to point out that, while ∆R2 is only 372 

sensitive to changes in the or- der of the compared scores, ∆R1 is also sensitive to 373 

the real distance between the compared scores. Therefore, this measure provides 374 

further sensitivity to differences than ∆R2. 375 

1. Correlation-based methodology: This is based on statistical correlation between 376 

subjective and objective quality evaluation. The random variables selected to 377 

represent the subjective and objective evaluation are, respectively, the average of 378 

human observer scores (defined above and denoted by HO̅̅ ̅̅ ) and the average of 379 

QEF-generated scores (denoted by S̅QEF ). For n segmentations, n samples of each 380 

variable can be obtained and the correlation between both datasets can be 381 

calculated as: 382 

 383 

is the covariance of HO̅̅ ̅̅  and where σ denotes standard deviation and 384 

S̅QEF. Correlation ρ measures the linear relationship of both variables, which in this 385 

case is an indicator of the similarity degree of the behavior of subjective and 386 

objective evaluation. 387 

TABLE IV shows the values of ∆R1, ∆R2 and ρ for the QEFs in TABLE III. All sets of 388 

synthetic and real algorithm images were jointly considered. Regarding the set of tested 389 

QEFs, CAL is observed to render the lowest ∆R1 and ∆R2-values, J2 providing the second 390 

lowest value in both inconsistency measures. To this respect, note that J2 is an equivalent 391 



metric to the A-area function in CAL expressed in equation (2). Regarding correlation ρ, 392 

CAL is the best- correlated QEF with human scores, followed again by J2. This 393 

connection between CAL and human quality evaluations can be visually checked in 394 

Figure 5. This figure represents human- averaged scores HO̅̅ ̅̅  and averaged CAL-rendered 395 

measures for each of the considered images. This representation includes evaluations of 396 

other representative QEFs to compare the behavior of different functions. 397 

Therefore, the analysis of the results provided by the matching degree indicators used in 398 

this experimentation concludes that CAL provides the best correspondence with human 399 

perception when compared to the remaining tested QEFs. 400 

4. CONCLUSIONS 401 

Blood vessel segmentation in retinal digital images plays an important role in the 402 

computerized detection of different ophthalmic pathologies leading to vascular 403 

anomalies. This applicability has led to the publication of numerous automated methods 404 

designed for this purpose over last years. As far as our understanding, most quality 405 

evaluation functions (QEFs) applied for measuring the performance of these methods do 406 

not consider vascularity as a tree-like connected structure with specific anatomical 407 

features. They are based on the individual pixel-to-pixel comparison of the resulting 408 

segmentation with an image labeled by a medical expert (reference-standard image). This 409 

paper proposes a function for vessel segmentation assessment based on vascular tree 410 

descriptive features with the aim of supplementing the existing QEFs. Specifically, this 411 

new proposed function, denoted by CAL, evaluates vessel connectivity, area and length 412 

in a segmented image in comparison with those in a reference-standard image. 413 

Section II focused on the description of CAL, as well as on examples of its evaluation on 414 

different vessel-segmented images. These examples show evidence that CAL is sensitive 415 

to the anatomical features under evaluation (connectivity, area and length), thus allowing 416 



the interpretation of results from this point of view. In addition, they also suggest that 417 

CAL presents tolerance to small tracing differences in reference- standard images, as well 418 

as correspondence with human perception. With the aim of analyzing CAL behavior from 419 

this perspective, a comparison between CAL-provided values and human subjective 420 

evaluations was carried out on different vessel segmentations of five eye-fundus images. 421 

Other general QEFs were also included in the comparison. This experimentation is 422 

explained in detail in Section III. Two methodologies based on consistency assessment 423 

and statistical correlation respectively, were applied to measure correspondence between 424 

QEF-computed and human-perceived quality evaluations. The results obtained with both 425 

methodologies conclude that CAL renders a higher matching degree with human quality 426 

per- ception than the remaining tested QEFs. Anyway, it is worth mentioning that some 427 

others of these QEFs such as J and ASD also seem to correspond reasonably well to the 428 

quality assessment of human observers. 429 

Due to these properties, the QEF proposed in this paper can be used as a good supplement 430 

of the information provided by other QEFs. However, it is important to notice that this 431 

proposal was designed for segmentation quality measurement in a specific structure 432 

(retinal vascular tree) and is not therefore applicable to general cases. Anyway, the 433 

applied concept of measuring descriptive features may be useful to design other 434 

specialized QEFs aimed at enhancing segmentation quality assessment of other complex 435 

shapes. 436 
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Figures 592 

 593 
(a) 594 

 595 

 596 
(b) 597 

Fig. 1. Study to determine optimal α and β values: (a) Evolutions of A and L mean values as functions 598 

of their α and β parameters; (b) Forward differences of A and L as functions of their α and β parameters. 599 

 600 

 601 

Fig. 2. Images used to show the dependence of CAL on vascularity features: (a) Reference-standard image; 602 

(b)-(d) Images created by distorting (a). 603 

 604 



 605 

Fig. 3. Images used to show the tolerance of CAL to small tracing differences in expert labeled images: (a) 606 

and (b) Labeled images generated by two different human experts; (c) Composition of (a) and (b) showing 607 

coincidence (gray) and disagreement (black); (d) Segmentation produced by an automated method. 608 

 609 

 610 

 611 

 612 

 613 

 614 



 615 

Fig. 4. Set of images corresponding to one of the five eye-fundus images used in the experimentation: O 616 

and G are the original and reference-standard images, respectively, while S1-S5 are vessel synthetic 617 

segmentations, and M1-M9 are segmentations provided by real algorithms. 618 

 619 



 620 

Fig. 5. Averages of human scores (𝐻𝑂̅̅ ̅̅ ) and CAL- and other QEF-computed evaluations for the whole set 621 

of synthetic and real algorithm images 622 
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Tables 641 

TABLE I 642 

QUALITY VALUES FOR THE VESSEL SEGMENTATIONS SHOWN IN 643 

IMAGES (B), (C) AND (D) OF FIGURE 2 TAKING IMAGE (A) AS 644 

REFERENCE STANDARD. 645 

Image Se Sp Acc C A L CAL 

(b) 0.9134 0.9758 0.9681 1.0 1.0 1.0 1.0 

(c) 0.9134 0.9758 0.9681 1.0 0.8812 0.8372 0.7377 

(d) 0.9134 0.9758 0.9681 0.8868 0.8181 0.7286 0.5286 

 646 

TABLE II 647 

“INDIVIDUAL MEASURES”: QUALITY VALUES FOR THE VESSEL 648 

SEGMENTATION SHOWN IN IMAGE (D) OF FIGURE 3 TAKING IMAGES (A) AND 649 

(B) AS REFERENCE STANDARDS (DENOTED BY RS1 AND RS2). “AVERAGED 650 

MEASURES”: AVERAGED QUALITY VALUES OF 20 AUTOMATED 651 

SEGMENTATIONS COMPUTED FOR THE TEST SET OF THE 652 

DRIVE DATABASE. 653 

 654 

 Individual 

Measures 

Averaged Measures (std) 

 RS1 RS2 RS1 RS2 

Se 0.7032 0.7386 0.7077 

(0.0628) 

0.7399 

(0.0701) Sp 0.9855 0.9857 0.9801 

(0.0104) 

0.9809 

(0.0106) Acc 0.9479 0.9543 0.9452 

(0.0064) 

0.9510 

(0.0081) C 0.9992 0.9993 0.9990 

(0.0005) 

0.9990 

(0.0005) A 0.8610 0.8548 0.8405 

(0.0413) 

0.8506 

(0.0577) L 0.7728 0.7836 0.7919 

(0.0498) 

0.7996 

(0.0599) CAL 0.6648 0.6694 0.6665 

(0.0703) 

0.6824 

(0.0922) 



TABLE III 655 

AVERAGED DATASET OF QUALITY EVALUATION 656 

FROM HUMAN PERCEPTION AND ALL 657 

CONSIDERED QEFS. 658 

 659 

 Set of Synthetic Images Set of Real Algorithm Images 

 S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6 M7 M8 M9 

𝐻𝑂̅̅̅̅̅ 0.709 0.461 0.903 0.449 0.105 0.869 0.605 0.651 0.486 0.604 0.130 0.358 0.575 0.556 

HOσ 0.097 0.112 0.067 0.121 0.071 0.060 0.140 0.143 0.191 0.150 0.084 0.165 0.141 0.160 

𝑆𝑒̅̅ ̅ 0.918 0.918 0.919 0.813 0.242 0.778 0.685 0.716 0.663 0.715 0.291 0.666 0.765 0.729 

𝑆𝑝̅̅ ̅ 0.987 0.987 0.987 1.000 1.000 0.974 0.982 0.981 0.972 0.981 0.996 0.961 0.964 0.980 

𝐴𝑐𝑐̅̅ ̅̅ ̅ 0.977 0.977 0.977 0.974 0.894 0.947 0.941 0.944 0.930 0.944 0.897 0.920 0.936 0.945 

𝐾𝑎𝑝𝑝𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.906 0.906 0.906 0.882 0.352 0.772 0.729 0.748 0.675 0.749 0.396 0.652 0.733 0.755 

𝐶𝐴𝐿̅̅ ̅̅ ̅̅  0.849 0.681 1.000 0.631 0.393 0.881 0.716 0.775 0.654 0.771 0.340 0.635 0.715 0.733 

𝐽0̅ 0.849 0.849 0.849 0.814 0.241 0.670 0.615 0.637 0.554 0.639 0.274 0.536 0.625 0.646 

𝐽2̅ 0.929 0.873 1.000 0.821 0.642 0.947 0.854 0.893 0.827 0.893 0.545 0.799 0.859 0.876 

𝐷0̅̅ ̅ 0.919 0.919 0.919 0.897 0.386 0.802 0.761 0.777 0.708 0.779 0.424 0.697 0.769 0.785 

𝐷2̅̅ ̅ 0.995 0.944 0.925 0.906 0.969 0.881 0.946 0.917 0.943 0.919 0.847 0.962 0.946 0.939 

𝑁(𝐴𝑆𝐷0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.404 0.498 0.768 0.182 0.089 0.486 0.310 0.387 0.283 0.358 0.104 0.220 0.297 0.300 

𝑁(𝐴𝑆𝐷2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.437 0.508 0.999 0.183 0.097 0.652 0.370 0.480 0.349 0.440 0.113 0.255 0.350 0.419 

𝑁(𝑅𝑆𝑀𝐷0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.160 0.240 0.643 0.079 0.053 0.276 0.155 0.205 0.152 0.182 0.061 0.113 0.146 0.147 

𝑁(𝑅𝑆𝑀𝐷2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.161 0.240 0.941 0.079 0.053 0.286 0.156 0.209 0.154 0.185 0.061 0.114 0.147 0.149 

𝑁(𝑀𝑆𝐷0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.021 0.025 0.205 0.014 0.011 0.030 0.019 0.026 0.019 0.023 0.012 0.016 0.019 0.021 

𝑁(𝑀𝑆𝐷2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.021 0.025 0.205 0.014 0.011 0.030 0.019 0.026 0.019 0.023 0.012 0.016 0.019 0.021 

 660 

 661 

 662 

 663 



TABLE IV 664 

RESULTS OF CONSISTENCE AND CORRELATION-665 

BASED METHODOLOGIES FOR THE WHOLE SET 666 

OF ANALYZED QEFS. 667 

 668 

 Se Sp Acc Kappa CAL J0 J2 D0 D2 ASD0 ASD2 RMSD0 RMSD2 MSD0 MSD2 

∆R1 1.000 1.623 0.979 1.023 0.363 0.984 0.695 1.048 1.322 0.747 0.752 1.180 1.367 1.615 1.615 

∆R2 2.571 5.429 2.429 2.429 0.857 2.714 1.000 2.429 4.857 1.429 1.429 1.429 1.429 1.429 1.429 

ρ 0.799 -0.336 0.711 0.776 0.977 0.178 0.937 0.964 0.752 0.937 0.784 0.039 0.848 0.870 0.726 

 669 


