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Abstract
We present a new diffeomorphic surface mapping algorithm under the framework of large
deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this
new algorithm reduces the complexity of the estimation of diffeomorphic transformations by
incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a
linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In
addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic
scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low
dimensional Gaussian distribution on initial momentum. This is achieved using principal
component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood
function is formulated as the conditional probability of observing surfaces given any particular
value of the initial momentum, which is modeled as a random field of vector-valued measures
characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that
maximizes a posterior distribution of the initial momentum given observable surfaces over the
eigenspace of the initial momentum. We demonstrate the stability of the initial momentum
eigenspace when altering training samples using a bootstrapping method. We then validate the
mapping accuracy and show robustness to outliers whose shape variation is not incorporated into
the shape prior.

Index Terms
Diffeomorphisms; initial momentum; surface mapping

I. Introduction
Nonlinear registration of surfaces is a complex and difficult task for which there are many
important applications in the medical field, such as studying anatomical shapes and
comparing associated functions. Evidence suggests that shape changes of brain structures
may reflect abnormalities in neurodevelopmental disorders and neurodegenerative diseases,
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such as attention deficit hyperactivity disorder (ADHD) [1], schizophrenia [2], and
Alzheimer’s disease [3]. Increasing efforts have been made to verify the relationship
between the pathology and shape variations of neuroanatomical structures, which may
potentially lead to earlier diagnosis, better treatment, and more accurately monitoring
disease progression.

There are two major challenges in surface mapping and statistical shape analysis. First, a
large number of unknown deformation parameters need to be estimated in surface mapping
problems. Their solutions are often local minima and sensitive to initial assignment of the
unknown parameters. Second, the high dimensionality of the deformation data also causes
difficulties in statistical shape learning and classification as well as atlas generation.

In recent years, researchers have spent tremendous efforts on integrating surface mapping
and shape analysis together in order to find a succinct descriptor of surface shapes for
statistical testing [4], [5]. Hugfnagel [5] developed a unified maximum a posteriori (MAP)
framework to consider surfaces as a set of points and compute a mean shape (or template)
and modes of shape variation and the nuisance parameters which leads to an optimal
adaptation of the model to the set of shapes. This approach characterizes shape variations
among all observations via a few eigenmodes, which facilitates shape classification. Both
anatomical correspondences and statistical shape testing are unbiased to the template, which
is superior to a majority of surface mapping approaches (e.g., [6]-[9]). Nevertheless, this
approach does not incorporate the geometry of surface and thus may fail to align surfaces,
such as the cortex. Fischl and others [6]-[8] took the advantage of topology of closed
surfaces and implemented surface mapping algorithms in the spherical coordinate.
Subsequently, surface parametric models [9] were developed to decompose surfaces using
Fourier or spherical harmonic representation. A finite number of coefficients associated with
these basis functions were used as shape descriptors. Additionally, a weighted spherical
harmonic representation and spherical wavelet have been developed, which can be
potentially used to conduct local shape analysis [10]-[13]. These approaches provide the
succinct representation of shapes but require the surface inflation to a unit sphere, which
may introduce area and angle distortions.

Among brain surface mapping techniques, large deformation diffeomorphic metric mapping
(LDDMM) algorithms [14]-[16] have recently received great attention. This technology
provides diffeomorphic maps—one-to-one, reversible smooth transformations that preserve
topology. The use of LDDMM for studying anatomical surface shapes implies the placement
of shapes in a metric space, provides a diffeomorphic transformation, and defines a metric
distance that can be used to quantify the similarity between two shapes. Moreover, LDDMM
provides a mechanism that allows for the reconstitution of the variations by encoding precise
variations of anatomies relative to a template surface through its initial momentum. From
the recent derivation of a conservation law of momentum, the space of initial momentum
associated with a flow of diffeomorphisms becomes an appropriate space for studying shape
via a geodesic flow since this flow acting on surfaces along the geodesic is completely
determined by the momentum at the origin of a fixed template [17], [18]. As its direct
consequence, linear statistical analysis, such as principal component analysis (PCA), has
been employed for shape classification [19].

In this paper, we employ the conservation law of momentum and formulate a new LDDMM
surface mapping problem in a decision-theoretic framework based on Bayesian modeling,
which allows incorporating linear statistical models of the initial momentum as prior
knowledge of shapes. In particular, we first simplify the prior distribution of the initial
momentum as a join Gaussian distribution of a finite number of random variables that are
associated with the principal components of the initial momentum obtained using PCA. We
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then introduce a likelihood distribution of observable surfaces given any particular value of
the initial momentum via a random field of vector-valued measures characterizing the
geometry of surfaces. We finally maximize the log-posterior distribution of the initial
momentum given the observable surfaces, which is equivalent to seeking a finite number of
the coefficients associated with the principal components in the initial momentum
eigenspacce. Throughout this paper, we shall call this new mapping approach as principal
component based diffeomorphic surface mapping (PCDM-surface). Unlike previous
LDDMM surface mapping algorithms [14]-[16] that only solve the alignment of surfaces,
the PCDM provides both the correspondences of two surfaces and a succinct shape
descriptor using a finite number of principal component coefficients. In our experiments, we
first demonstrate the stability of the initial momentum eigenspace when altering training
samples. We then validate the mapping accuracy against small alterations of the eigenspace
and show robustness to outliers whose shape variation is not incorporated into the shape
prior.

II. Methods
In order to study anatomical shapes, we represent them using surface models, S, where S are
the elements of a set of smooth orientable surfaces, S, embedded in R3. Assume that all
elements S ∈ S are generated from a template surface, Stemp, through diffeomorphic
transformation ϕ (one-to-one, smooth forward and inverse transformation) such that S = ϕ ·
Stemp. We will introduce the principal component based diffeomorphic surface mapping
(PCDM-surface) algorithm to seek optimal ϕ under the large deformation diffeomorphic
metric mapping (LDDMM) framework. Unlike previous LDDMM algorithms where
anatomical shapes are deterministic [14]-[16], we formulate the PCDM-surface mapping
problem in a decision-theoretic framework based on Bayesian modeling where anatomical
shapes are random objects. This allows directly incorporating prior information of shapes
into the PCDM-surface mapping.

In overview, we estimate the diffeomorphic transformation, ϕ, between the template, Stemp,
and an observable surface, S, by computing the maximum a posteriori (MAP) of pStemp
(ϕ∣S). According to the Bayesian strategy, it is approximated as

(1)

where pStemp (S∣ϕ) and pStemp (ϕ) are, respectively, a likelihood function and a prior of the
diffeomorphic transformation given Stemp. In the following section, we will formulate this
problem by first reviewing a general framework of LDDMM and its conservation law of
momentum, which facilitates the construction of the prior on the diffeomorphic
transformation. We will then introduce a new empirical algorithm to compute pStemp (ϕ)
using PCA and elaborate the construction of the likelihood function, pStemp (S∣ϕ). Finally,
we will formulate the PCDM-surface problem via maximizing the posteriori of pStemp (ϕ∣S)
and detail its numeric implementation. Even the surface mapping can be simplified as a
finite dimensional case when the surface is supported by a finite number of vertices and their
triangulation, we generalize the prior distribution of the diffeomorphic transformation and
the likelihood function in the following derivation so that they can also be applied to
“infinite dimensional” observations.

A. Diffeomorphic Anatomical Prior
1) Review: LDDMM and Conservation Law of Momentum—Given the template
Stemp, the space S is constructed as an orbit of Stemp under the group of diffeomorphic
transformations G, i.e., S = G · Stemp. The diffeomorphic transformations are introduced as
transformations of the coordinates on the background space Ω ⊂ ℝ3, i.e., G : Ω → Ω. One
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approach, proposed by [20] and adopted in this paper, is to construct diffeomorphisms ϕt ∈
G as a flow of ordinary differential equations (ODEs), where ϕt, t ∈ [0, 1] obeys the
following equation:

(2)

where Id denotes the identity map and υt are the associated velocity vector fields. The vector
fields υt are constrained to be sufficiently smooth, so that (2) is integrable and generates
diffeomorphic transformations over finite time. The smoothness is ensured by forcing υt to
lie in a smooth Hilbert space (V, ∥ · ∥V) with s-derivatives having finite integral square and
zero boundary [21], [22]. In our case, we model V as a reproducing kernel Hilbert space

with a linear operator L associated with the norm square , where 〈·, ·〉2 denotes
the L2 inner product. The group of diffeomorphisms G(V) are the solutions of (2) with the

vector fields satisfying . Thus, given the template surface Stemp ∈ S and the
observable surface S ∈ S, the geodesic ϕt, t ∈ [0,1] which lies in the manifold of
diffeomorphisms and connects Stemp and S, is defined as

A metric ρ(Stemp, S) between Stemp and S is then defined as the Riemannian length of ϕt,
computed as the integral of the norm of the vector field ∥υt∥V associated with ϕt. Based on
the fact that energy-minimizing curves coincide with constantspeed length-minimizing
curves, we can compute the length of the geodesic (the metric between Stemp and S) through
the following variational problem as:

such that

(3)

Alternatively, by using the duality isometry in Hilbert spaces, one can show that the metric ρ
can be equivalently expressed in terms of the momentum mt · mt is defined as a linear
transformation of υt through kernel kV = L−1 associated with the reproducing kernel Hilbert

space V. More precisely, kV maps υt to mt, i.e., . Therefore, for any u ∈

V, , where 〈·, ·〉2 denote the L2 inner product. Substituting kVmt = υt into
(3), the metric distance can be rewritten as

such that

(4)

One can prove that mt defined in (4) satisfies the following property at all times [17].

Conservation Law of Momentum: For all u ∈ V
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(5)

Equation (5) uniquely specifies mt as a linear form on V, given the initial momentum m0
and the evolving diffeomorphism ϕt. We see that by making a change of variables and obtain
the following expression relating mt to the initial momentum m0 and the geodesic ϕt
connecting Stemp and S

(6)

As a direct consequence of this property, given the initial momentum m0, one can generate a
unique time-dependent diffeomorphic transformation. The optimal initial momentum can be
found though minimizing ρ, where ρ is defined as

such that

(7)

where mt is constructed using (6). Hence, when the template Stemp remains fixed, the space
of the initial momentum provides a linear representation of the nonlinear diffeomorphic
shape space in which linear statistical analysis can be applied.

In the discrete case, we assume that Stemp is a triangulated mesh with n vertices,

. According to Riesz representation theorem of the Hilbert space V, the
geodesic vector fields connecting the two surfaces are

where  is the momentum vector of the lth vertex at time t. The momentum mt
is, therefore, given as a sum of Dirac measures

such that for any u ∈ V

According to the conservation law of momentum, the metric defined in (7) for the discrete
case can be expressed as
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(8)

where α(t) satisfies the dynamic systems defined by

(9)

∇1 kV denotes the gradient of kV with respect to its first variable (see proof in [17]) as a
result of the convervation law of momentum.

2) Prior Distribution of Random Diffeomorphisms—We now discuss the prior
model of random shapes that are characterized by random diffeomorphisms. From the above
discussion, it is clear that, in the discrete case, the initial momentum m0, which is fully
specified by the initial momentum vector α(0) = (αi(0), i, …, n) uniquely determines a
geodesic flow of diffeomorphisms in a shape space starting from the discrete template Stemp
(with vertices x). At time t = 1, it defines a new discrete surface, with vertices ϕ1 (xtemp).
This can be seen as a nonlinear transformation

where Sdef is the resulting deformed surface, which has the same number of vertices and the
same topology as Stemp. Since the initial momentum vectors associated with a set of shapes
are defined at Stemp, they are in a linear vector space. We are thus able to use simple linear
methods to model complex nonlinear objects like random diffeomorphisms, which is one of
the strengths of the representation using the initial momentum.

Assume that the initial momentum vectors are random, we immediately obtain a stochastic
model for diffeomorphic transformations of the template surface. In this model, α(0) is
assumed to be a centered Gaussian distribution which is defined consistently with the metric
by choosing the covariance matrix equal to

so that the probability density function of α(0) is given by

(10)

where  and d = 3 is the dimension of the ambient space, R3.

We now simplify the probability density function of α(0) in (10) into a low dimensional
random momentum model. Assume that m0 and α(0) are respectively

(11)
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and

(12)

with a1, …, ap independent centered Gaussian variables with unit variance. , k = 1,2,…,p
are the orthonormal basis functions of the initial momentum associated with the covariance
operator, ΣV, such that

 are their corresponding orthonormal basis functions for α(0). Hence, the probability
density function of α(0) in (10) can be simplified as

(13)

where . This join distribution of a, p(a), will serve as a prior of the diffeomorphic

transformation in the PCDM-surface mapping when  and  are known. In the following

section, we will discuss an empirical approach to estimate  and  using principal
component analysis (PCA).

3) Empirical Estimation of Orthonormal Bases of the Initial Momentum via
PCA—In this section, we will discuss how to compute  and . We will first recall a
few basic facts on the covariance operator of random fields and then introduce a

computationally efficient algorithm to empirically calculate  using PCA. For the sake of
simplicity, we restrict to a finite dimensional representation. However, most of the following
discussion applies to “infinite dimensional” observations.

Assume that m0 is a random momentum, which, in our paper, is a linear form on vector
fields. As mentioned earlier, if

and it associates to each random field υ in V, then the scalar m0(υ) = ⌦m0, υ〉2 defined by

which is a linear form on υ. The covariance operator of m0 is a bilinear form over random
fields, defined by

(14)
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where E[·] is the expectation with respect to the distribution of m0. When m0 is represented

using  as given in (11), Γ can be approximated as

(15)

Our objective is to seek optimal  such that the difference |Γ(υ, υ) − ΓG(υ, υ)| achieves its
supremum over all υ’s with unit norm. Certainly, the result of this problem depends on the
choice made for the norm of υ. It is natural in our situation is to use ∥υ∥V, the same as the
norm that is involved in the geodesic equation.

We next show that this problem can be empirically solved using PCA given a training set of

the initial momenta, denoted as . They are defined at a fixed template

surface Stemp with vertices . In this case,  is associated to the vector
momentum α(k) so that

(16)

A typical situation leading to such observations is when N surfaces {S(1),…, S(N)} are

observed, the momentum  provides a deformed template  which is a close
approximation of S(k). One can compute an empirical covariance, Γ, given in (14) as

(17)

which can be easily seen as the covariance of the finitely generated random momentum

where a1, …, aN are uncorrelated centered random variables with unit variance.

The goal of PCA is to seek the optimal  such that ΓG (υ, w) in (15) is the approximation
of Γ̂(υ, w) in (17) for any given υ, w where ∥υ∥V = ∥w∥V = 1. Assume

, we have

and
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Introducing the matrix U such that , Γ̂ can be rewritten as

This implies that, if the N by N matrix U is diagonalized in the form of

with gj*gj = 1. It can be shown that when , k = 1,2,…, p, ΓG(υ, w) in
(15) is the approximation of Γ̂(υ, w) in (17). This leads to the simple and computationally
efficient algorithm to compute the orthonormal basis functions of the initial momentum,
which is described in Algorithm 1. In the rest of the paper, we shall refer the orthonormal
basis functions as principal components (PCs) and their space as the eigenspace of the initial
momentum.

Algorithm 1 (PCA on the initial momentum)—Given a set of N observations,

,

1.
Calculate matrix , where U is a N × N matrix.

2. Find matrix G such that U = G*ΛG, where Λ is a diagonal matrix.

3.
Define PCs .

B. Likelihood Model
We now develop a likelihood model that provides a conditional distribution for the observed
surface S given the deformed one Sdef. We follow the surface representation introduced in
previous studies [14], [16], [23], in which a surface is characterized by vector-valued
measure that integrates against vector fields. More precisely, a piecewise smooth surface S
⊂ R3 defines a vector-valued measure in the form of

(18)

where nx is the normal of the surface defined at x and dx is the surface measure. The vector-
valued measure μS quantifies the flux of the vector field through the surface. We formulate
the conditional distribution of S given Sdef in terms of a distribution over linear forms over
vector fields, which include vector-valued measures. Assume μS and μSdef to be vector-
valued measures, respectively, associated with S and Sdef. We model the conditional
distribution of μS given μSdef as
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where ζ is a centered Gaussian random field on the space of vector-valued measures,
independent from μSdef. The distribution of ζ is characterized by its covariance bilinear
form, defined by

where υ, w are vector fields in a Hilbert space of W with reproducing kernel kW. We

associate Γζ with . This leads to formally define the “log-likelihood” of ζ to be

In the discrete case, the expression ⌦ζ, kWζ〉2 can be approximated as follows when ζ =
μS − μSdef and S and Sdef are triangulated. Let F denote the set of faces (triangles) that form
S and Fdef the set of faces for Sdef. For a positively ordered face f = (xf1, xf2, xf3), we let nf =
(1/2)(xf1 − xf2) × (xf3 − xf1) and cf = (1/3)(xf1 + xf2 + xf3), where × denotes the cross
product; nf is the (unnormalized) oriented normal to the face and cf its center. Following
[14] and [23], we approximate μS by the vector-valued measure located at the center of each
triangle face (that we still denote μS)

with a similar expression for μSdef. This implies that the log-likelihood function can be
written as

(19)

C. Principal Component Based Diffeomorphic Surface Mapping
From the above development, the log posterior distribution in (1) can be written as a sum of
the log-prior distribution of the initial momentum and the log-likelihood function, i.e.,

(20)

where  is constructed through the geodesic shooting equation in (9) when the initial

momentum . We denote (a1, a2,…, ap) as a that characterizes the
deformation from Stemp to Sa. We thus associate this log-posterior distribution with a
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variational problem of diffeomorphic surface mapping to seek optimal a associated with ,
k = 1, 2, …, p. These coefficients characterize the anatomical variation of S relative to Stemp.

In the discrete case, where Stemp and S are triangulated with respective set of faces Ftemp and
F, each face being associated to 3-tuple of points, f = (xf1, xf2, xf3) the deformed surface is
Sa assumed to be triangulated by

We write the variational problem in the form of

(21)

Lemma 2.1—The Euler–Lagrange equation associated with the vairational problem in (21)
is given by

where ρ = (ρ1, …, ρn) is n vectors in ℝ3 representing the gradient of the log-likelihood

((19)) with respect to . , where  is the

oriented edge opposed to  in f and w = kW (μSa − μS). × denotes as cross product. Denote

.  at t = 0 is obtained by solving the ODE system, shown in (22) at the
bottom of the page, with conditions of η1

x = ρ and η1
α = 0 at t = 1.

This lemma can be proven by following the derivation given in [15].

D. Numerical Implementation

Given a training set of the initial momentum, , we first apply Algorithm

1 to compute PCs, , k = 1, 2, …, p. Assume S to be a new observed surface, we seek

optimal  to minimize J in (21) using a conjugate gradient routine described in
Algorithm 2 such that Stemp can be aligned to S.

(22)

Algorithm 2 (PCDM algorithm)—Initialize, ak, k = 1, 2, …, p. In each iteration the
functional J, and its gradient are updated in the following steps:
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1.
Compute .

2. Compute trajectory xt based on the geodesic shooting equation in (9) with initial
conditions x0 = xtemp and αo.

3. Calculate J.

4.

Compute .

5. Calculate vectors η0
α by backward solving the ODE system in (22) with conditions

of η1
x = ρ and η1

α = 0 at t = 1.

6.
Compute gradient . When J decreases smaller than a certain
threshold, ε, the iteration stops.

All time-dependent variables are evaluated on a uniform grid t1 = 0,…, tT = 1 and a
predictor/corrector centered Euler scheme was used to solve the ODE systems in (9) and
(22). The complexity of each iteration is of order N2. To speed up computations when N is
large, all convolutions by kernels kV and kW are accelerated with fast Gaussian Transform
[24] when kV and kW are chosen as Gaussian kernels, which reduces the complexity to N
log (N).

III. Results
The use of the PCDM-Surface algorithm was demonstrated in examples of mapping the
brain subcortical structures, including hippocampus, amygdala, thalamus, caudate, putamen,
and globus pallidus. The MRI scans of 166 healthy subjects (age: 25–85 years) were
selected from the open access series of imaging studies (OASIS) database [25] as a training
set. The subcortical structures were first labeled in individualMRimages using FreeSurfer
[26]. Their surfaces were then constructed by injecting the subcortical template surfaces
through the diffeomorphic deformation obtained using the large deformation diffeomorphic
metric image mapping (LDDMM-image) [27].

The template used in this study was generated based on manual subcortical labels of forty
subjects via the diffeomorphic template generation algorithm [28]. The initial momenta
encoding shape variations of individual subcortical surfaces relative to the template surface
were computed via the LDDMM surface mapping [15]. We employed Algorithm 1 to
compute the eigenspace of the initial momentum based on this training data.

Fig. 1 illustrates the first four principal components (PCs), , k = 1, 2, 3, 4, on the
subcortical template surface in the lateral and medial views. For visualization purpose, the
contribution of each PC to the hippocampal shape variations is shown in Fig. 2. The surfaces
in Fig. 2 are generated via the geodesic shooting of (9) when the hippocampal template

surface and the initial momenta of  or , a > 0 were given as initial conditions. For
instance, Fig. 2(a) and (b) shows the hippocampal surfaces whose deformation variations are

respectively deviated from the hippocampal template by  and . Regions with
outward deformation are colored in red; regions with inward deformation are colored in
blue. Fig. 2 indicates that the first PC encodes the outward and inward deformations of the
hippocampal shape in the lateral–medial direction and the second and third PCs respectively
encode those in the superior–inferior and the anterior–posterior directions. Fig. 3 shows the
cumulative contribute of each PC to the subcortical shape variation among the 166 subjects,
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indicating that the first 22 PCs contribute 95% of the total shape variations in the training
set.

A. Stability of the Eigenspace
Since the eigenspace of the initial momentum was constructed using the data-driven PCA
approach, it is altered when training samples are changed. In order to evaluate the stability
of the eigenspaces with respect to changes in the composition of the training samples, we
calculated a set of principal canonical angles and the chordal distance between two
eigenspaces with respect to the metric defined in (8) [29]. Considering two eigenspaces with

respective generative families  and . We
applied a singular value decomposition (SVD) algorithm [30] for computing cosines of
principal angles. The reduced SVD of 〈Ψ, kV Ψ̃〉2 is

where U and V are unitary matrices. Then the principal angles and chordal distance can be,

respectively, computed as θi = arccos(σi), i = 1, 2, …, p, and . The
larger θp and dp, the more unstable the eigenspace with rank p.

In our experiment, we employed a bootstrapping procedure for randomly extracting a
sample of 166 subcortical surfaces from the training set for 10 000 times. In each sample, a
new eigenspace was computed. The principal angles between the new eigenspace and the
eigenspace based on the entire training set are computed. Fig. 4(a) shows the mean and
standard deviation of the first 22 principal angles among all 10 000 bootstrapped samples.
This indicates that the first 10 principal angles are less than 10° and account for 85% of the
shape variations among the 166 subjects (see Fig. 3). As illustrated in Fig. 4(b), the chordal
distance between the two eigenspaces constructed by the first 10 PCs is less than 0.30. Thus,
the eigenspace constructed by the first 10 PCs were used in the PCDM-surface algorithm
throughout the rest of the experiments in this paper.

B. Registration Accuracy
We validated the mapping accuracy of the PCDM-surface algorithm for the hippocampus
when small alterations of the prior law were considered. This was done in a leave-one-out
fashion. During each mapping, 165 out of total 166 hippocampal surfaces were selected as
training sets and used to compute the eigenspace of the initial momentum. Then, the
remaining one hippocampus was considered as a new observable surface which the
hippocampal template surface is registered to. We repeated this for 166 times.

We computed a surface distance graph defined as the percentage of vertices on the deformed
template surface having the distance to subject’s surface less than d mm. Since the surface
distance is not used in our mapping functional J and the hippocampal shape is globular, it is
a reasonable measure for quantifying the accuracy of the mapping. Fig. 5 shows the surface
distance graphs for individual hippocampal surfaces (grey lines) and their average (black
line), which indicates in average about 95% of the vertices on the deformed template
surfaces have the distance to the subject’s surface less than 1 mm, the resolution of the MR
images.
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C. Robustness of the PCDM-Surface Algorithm to Unseen Shapes
We tested the robustness of the PCDM-surface algorithm using 10 hippocampal surfaces of
patients with Alzheimer’s disease (AD) (age: 71.1 ± 3.2; MMSE: 19.8 ± 3.7) when the 166
healthy subjects were used to compute the eigenspace. We chose this example because it is
well known that effects of healthy aging and AD processes on the hippocampus are distinct
as suggested by literature [31]. Beyond the aging effects on the hippocampal volume
reduction, hippocampal shape compression is particularly observed in the subiculum (the
inferior aspect of the hippocampus) and then in CA1 (the lateral aspect of the hippocampus)
during the AD progression. We thus expected that the hippocampal shapes of AD patients
cannot be fully characterized by the eigenspace obtained from the healthy population no
matter regardless the size of training samples. Hence, our example showing here can
demonstrate the robustness of the PCDM-surface algorithm to unseen shapes.

Fig. 6 illustrates the mean surface distance graphs between the template surface and the
patients’ surfaces before (black) and after the PCDM mapping (red). This indicates that in
average about 95% of the vertices on the deformed template surfaces have the distance to
the surfaces of the 10 AD patients less than 1 mm, while only 70% of the vertices on the
template surface have the distance to the surfaces of the AD patients less than 1 mm. We
perform a one-sided Kolmogorov–Smirnov (KS) test on the surface distance graph and
hypothesize that there is no difference in the distance measure before or after the PCDM
mapping against the alternative that the mapping significantly improved the hippocampal
alignment. The distribution of KS statistics is empirically estimated using the permutation-
based resampling approach. The resampling was performed by randomly labeling the
surface distance graph as obtained from before or after the surface mapping. The KS statistic
was recomputed for each resampled dataset. By repeating this process ten thousand times, an
empirical null distribution of the KS statistic was constructed, and the p-value was computed
as a percentage of the KS statistics greater than the KS value from the original dataset. The
KS test revealed that the distance between the deformed template and the surfaces of the AD
patients was significantly smaller than that before the mapping (p < 0.0001), suggesting the
robustness of the PCDM-surface algorithm for the cases when anatomies were not included
for constructing the eigenspace of the initial momenta.

We also compared these PCDM-surface mapping results with those obtained using the
previous LDDMM-surface mapping algorithm [15]. The green curve in Fig. 6 shows the
average surface distance graph between the surfaces of the AD patients and the template
surface deformed by the LDDMM-surface algorithm [15]. The KS test suggested that the
performance of the PCDM-surface mapping is comparable to that of the LDDMM-surface
mapping [15] (p = 0.9) even though the anatomies of the AD patients were not incorporated
in the training samples.

IV. Conclusion
We introduce a diffeomorphic metric mapping algorithm that directly incorporates the
empirical shape prior model of the initial momentum in the LDDMM framework, which has
never been done before. We provide a simple and effective algorithm for computing the
shape prior model using PCA and a gradient descent algorithm that estimates a set of
coefficients associated with the eigenfunctions of the initial momentum defined at the
template coordinates. Unlike previous LDDMM algorithms [14], [15], the PCDM-surface
mapping reduces the dimensionality of diffeomorphic deformation and thus directly
provides the succinct representation of shapes for shape classification and atlas estimation.
Moreover, our experiments demonstrate that the method is not sensitive to the eigenspace
constructed based on the training set but robust against shape variations that are not
observed in the training set.
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In this paper, we optimize the set of coefficients associated with the PCs of the initial
momentum using the gradient descent, which is similar to that in [15] with the additional
computation of the inner product between the PCs and ηt

α. Thus, the computational cost of
the PCDM algorithm proposed in this paper is the same as previous LDDMM algorithms
[15]. However, our approach using a shape prior potentially leads to a future fast
computation algorithm for the diffeomorphic mapping. As mentioned in the experiments,
only few scalar coefficients need to be estimated given the eigenspace of the initial
momentum. This gives opportunities to employ Monte Carlo or brute-force search methods
for seeking optimal coefficients associated with shape eigenfunctions and thus speed up the
optimization of the diffeomorphic mapping, which cannot be accomplished in the previous
diffeomorphic mapping algorithms [14]-[16]. We will employ different numerical schemes
for future research.

We notice a potential limitation of our work, that is, the PCDM-surface mapping algorithm
is a template dependent approach. In our discussion of both methodology and results, we
consider that the template is known and fixed. According to the conservation law of
momentum, the initial momenta of individual shapes must be defined in a fixed template
coordinate such that they can be in a linear space to facilitate the computation of their
eigenspace using PCA. Nevertheless, this is also one of the strengths for representing
random shapes using initial momenta, which allows using simple linear statistical methods
to model complex nonlinear diffeomorphisms. Due to this fact, we chose the averaged shape
computed based on the manual labeled subcortical structures of forty subjects as template in
our experiments [28]. Our template is centered among the training samples in terms of its
diffeomorphic metric distance to the training samples (see more discussion in [28]), which
gives a reasonable starting point for the PCDM-surface mapping algorithm. Further
investigation of the influences of the template on the eigenspace of the initial momentum
and the surface mapping accuracy is needed.
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Fig. 1.
Panels (a)–(d), respectively, show the first four principal components of the initial
momentum on the template surface of the subcortical structures. The lateral and medial
views are, respectively, illustrated on the left and right sidesof each panel.
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Fig. 2.
Three rows show geodesic shooting of the initial momentum using the first three principal

components, ± , k = 1, 2, 3, a > 0, respectively. The left and right columns in each row

represent hippocampal shapes synthesized at −20  and 20 , respectively. Regions with
outward and inward deformations are, respectively, colored in red and blue.
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Fig. 3.
The cumulative distribution of shape variations contributed by the first 22 principal
components.
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Fig. 4.
Panels (a) and (b), respectively, show the first 22 principal angles and the chordal distance
between the eigenspace of the 166 training sets and those computed based on the boot-
strapped samples. The solid and dashed curves, respectively, represents the mean and
standard deviation among all 10 000 boot-strapped samples.
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Fig. 5.
Surface distance graphs are shown to quantify the percentage of vertices on the deformed
template surface having the distance to subject’s surface less than d mm. Grey lines are the
surface distance graphs of individual hippocampal surfaces. Black line represents the surface
distance graph averaged among all 166 hippocampal surfaces.
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Fig. 6.
Surface distance graphs are shown to quantify the percentage of vertices on the deformed
template surface having the distance to subject’s surface less than d mm. Black, green, and
red curves are the average surface distance graphs across 10 Alzheimer’s disease patients
before and after the LDDMM-surface and PCDM mappings, respectively.
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