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Registration of Images with Varying Topology using
Embedded Maps

Xiaoxing Li

(ABSTRACT)

In medical images, intensity changes caused by certain pathology can change the topology

of image level-sets and are thus commonly referred to as topological changes. Topological

changes cause false deformation in existing deformable registration algorithms, which in turn

leads to unreliable observations in the clinical study that relies on the deformation fields,

such as deformation based morphometry (DBM). In this work, we develop a new deformable

registration algorithm for images with topological changes. In our proposed algorithm, 3D

images are embedded as 4D surfaces in a Riemannian space. The registration is therefore

conducted as a surface evolution, which is modeled by a diffusion process. Our algorithm

differs from existing methods in the sense that it takes an a-priori estimation of areas with

topological change as an additional input and generates dense deformation vector fields

which are free of false deformation. In particular, the output of our algorithm is composed

of a diffeomorphic deformation field and an intensity displacement which corrects intensity

difference caused by topological changes. By conducting multiple sets of experiments, we

demonstrate that our proposed algorithm is capable of accurately registering images with

considerable topological changes. More importantly, the resulting deformation field is not

impacted by topological changes, i.e., there is no false deformation.



Dedication

This work is dedicated to my parents and my dear husband.

iii



Acknowledgment

First and foremost, I would like to thank my advisor, Dr. Christopher Wyatt, for his

guidance, help and commitment throughout my study here at Virginia Tech. I have been

given great encouragement and strong support during the entire PhD study. I also would

like to thank all my committee members for their suggestions on my dissertation.

I extend great gratitude to my colleagues in the Bioimaging Systems Lab (BSL), many

others who have together created an excellent work environment here. I would specially

thank Jenny (Xiaojing) Long for all the inspiring discussions and brainstorming.

I would like to particularly thank my parents and my husband, Tao, for believing in me, and

for their encouragement and greatest support.

iv



Contents

Abstract ii

Dedication iii

Acknowledgement iv

List of Figures viii

List of Acronyms xv

1 Introduction 1

1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related work and Preliminaries 6

2.1 Deformable registration algorithms for images with topological changes . . . 7

2.2 Diffusion-based deformable registration algorithms . . . . . . . . . . . . . . . 9

2.2.1 Important physical constraints . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Demons algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Large Deformation Diffeomorphic Metric Mapping algorithms . . . . 15

v



3 Impact of topological changes on deformable registration algorithms 20

3.1 Impact of topological changes on deformable registration methods . . . . . . 21

3.2 A simple algorithm to suppress the impact of topological change through in-

painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Registration of Images with Varying Topology using Embedded Maps 30

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Registration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Choice of embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Computation of surface variation . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Diffeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.4 Registration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Register template to brain MRIs with lesions. . . . . . . . . . . . . . 42

4.4.2 Register brain MRIs of healthy subject to that of Alzheimer’s patients. 52

4.4.3 Impact of false alarm and mis-detection of lesion. . . . . . . . . . . . 54

4.4.4 Example of registering a template to a brain image with a tumor. . . 63

4.4.5 Registering images of normal topology. . . . . . . . . . . . . . . . . . 67

4.4.6 Smoothness of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.7 Comparison with in-painting. . . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusion and Future Work 79

5.1 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



A Derivation of Euler-Lagrange equation 83

B Impact of β 95

Bibliography 97

vii



List of Figures

1.1 Examples of brain MR images with local intensity change. (a): a healthy

brain. (b): a brain with MS lesion. (c): a brain with LA lesion. (d): a brain

with meningioma, one type of brain tumor. . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of topological changes to the level-sets of brain MRI under MS.

(a) and (b): a pair of synthesized brain MR T1-weighted images with and

without a simulated MS, respectively. (c) and (d): iso-contour plots of (a)

and (b), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of the Diffeomorphism. (a) Original grids, φ = Id. (b) Deformed

grid with a diffeomorphism. (c) Deformed grid with a non-diffeomorphism. . 11

2.2 Illustration of the symmetry. The registration is inverse consistent when φ−1 =

φ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Registration of simple images with topological change. (a): moving image Im

(b): fixed image If ; (c): glyph view of the deformation field generated from

diffeomorphic demons; (d): zoom-in view of (c) around the region with topo-

logical change; (e): the deformation field generated from symmetric LDDMM;

(f) zoom-in view of (e) around the region with topological change. . . . . . . 22

3.2 Illustration of our registration method. (a): total difference Difft obtained

after the coarse registration; (b): deformed I1 into the image space of Im; (c):

the edge map GM of (b); (d): the probability map P of topological changes

in Im; (e): binary label map of topological changes in Im; (f): I ′m obtained

after repairing; (g): the deformation field obtained after the fine registration;

(h): the zoom-in view of (g) around the topological change in Im. . . . . . . 24

viii



3.3 Registration results of brain MRIs with MS, using our proposed method. (a):

target image If ; (b): source image Im which contains MS and after a nonlinear

deformation from If ; (c): probability map of topological change P; (d): binary

map of detected lesion in Im; (e): an axial slice of Im; (f) and (g): the

magnitude of the deformation field at the same slice as in (e), after the coarse

and fine registrations, respectively. Inside the green boxes: regions with MS

lesions. Regions within green boxes are enlarged at the bottom. . . . . . . . 26

3.4 Samples of in-painting results of lesion segmented by FreeSurfer. (a) and (b):

each gives Axial, Sagittal and Coronal views of one in-painting example. In

both (a) and (b), the first row shows the brain MR image with severe MS

lesion. The direct in-painting repaired results are given in the second row. In

addition, the third row shows the desired lesion repair results, obtained using

our deformable registration algorithm presented next in Chapter 4. . . . . . 29

4.1 Embedding and the length element [1]. A 2D image is embedded into a

3D surface, where the third dimension is the image intensity I. The length

element ds on the embedded surface is to be computed via the metric g. . . 32

4.2 Influence of β on the deformation field. . . . . . . . . . . . . . . . . . . . . . 34

4.3 Registration Residual for the first set of registrations. (a) Sample curves

plotting the registration residual during the registration process. The solid

line plots the image L2 residual after the spatial deformation field of the

current iteration is applied on the moving image, and the solid line plots

the image L2 residual when the intensity displacement is also applied. (b)

Image L2 residuals before and after registration. The blue bars shows the L2

distance between the source and target image before deformable registration.

The red bars show the L2 residual between spatially deformed moving image

and the target images. The green bars show the L2 residual after the intensity

displacement is further applied to the target image. . . . . . . . . . . . . . 43

ix



4.4 Sample of registration results 1: from a template to subjects with lesion from

OASIS dataset. The first row shows the template image which is affinely

aligned to the target image. The second row shows the target images that

containing lesions, which are marked out with blue contours. The third row

shows the spatially deformed template image, and the last row gives the target

image after intensity displacement is applied. The fifth and sixth rows plot

the iso-contours of the moving image on top of the target image, before and

after the spatial deformation is applied, respectively. The columns show the

Axial, Sagittal and Coronal views, from left to right, respectively. . . . . . . 45

4.5 Sample of registration results 2. Subfigures are organized in the same way as

in Fig. 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Sample of registration results 3. Subfigures are organized in the same way as

in Fig. 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Sample of registration results 4. Subfigures are organized in the same way as

in Fig. 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Samples of the resulting deformation vector fields from a template to subjects

with lesion from OASIS dataset. Vector fields are shown using glyphs. Left-

most column: the template image. Second column from left: two subjects

with severe lesions. Third column from left: the spatially deformed template

image after registration. Right-most column: zoomed view of deformation

fields on top of the target image. For the first subject (upper row), zoomed

region around the first ventricle. For the second subject (lower row), zoomed

region around the lateral ventricle. . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 First example of comparing our registration result with that of diffeomorphic

demons. The first column from left shows the template image, the second

column shows the target image. The third column gives the result of our

algorithm and the right-most column gives that from diffeomorphic demons.

The first and third row shows the images in Axial and Coronal views, respec-

tively. The second and fourth row shows the glyph plot of deformation fields

in Axial and Coronal views, respectively. . . . . . . . . . . . . . . . . . . . . 50

4.10 Another example of comparing our registration result vs. diffeomorphic demons.

Subfigures are organized in the same way as in Fig. 4.9. . . . . . . . . . . . . 51

x



4.11 Registration residual for the second set of registration. (a): Sample curves

plotting the registration residual during the registration process. The solid

line plots the image L2 residual after the spatial deformation field of current

iteration is applied on the moving image, and the solid line plots the image

L2 residual when the intensity displacement is also applied. (b): Image L2

residuals before and after registration. The blue bars shows the L2 distance

between the source and target image before deformable registration. The

red bars show the L2 residual between spatially deformed moving image and

the target images. The green bars show the L2 residual after the intensity

displacement is further applied to the target image. In addition, the magenta

bars in this subfigure show the L2 residual after apply diffeomorphic demons

registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Sample of registration results 1: from a template to subjects with lesion from

ADNI dataset. The first row shows the template image which is affinely

aligned to the target image. The second row shows the target images that

contain lesions, which are highlighted with blue contours. The third row shows

the spatially deformed template image, and the last row gives the target image

after intensity displacement is applied. The fifth and sixth rows plot the iso-

contours of the moving image on top of the target image, before and after

the spatial deformation is applied, respectively. The columns show the Axial,

Sagittal and Coronal views, from left to right, respectively. . . . . . . . . . . 56

4.13 Sample of registration results 2. Subfigures are organized in the same way as

in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 Sample of registration results 3. Subfigures are organized in the same way as

in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Sample of registration results 4. Subfigures are organized in the same way as

in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.16 Sample of difference images 1. The first row shows the difference images

between the moving and target images before registration. The second row

gives the difference images between the deformed moving image and the target

image. The third row provides the difference images between the deformed

moving image and the lesion-corrected target image. . . . . . . . . . . . . . . 60

xi



4.17 Sample of difference images 2. Subfigures are organized in the same way as

in Fig. 4.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 Impact of imprecise segmentation of lesion. In both (a) and (b), the subfigures

in the upper row, from left to right, show an axial view of the moving image,

the target image, the registered moving image (after spatial deformation) us-

ing our algorithm, and the registered moving image (after spatial deformation)

using diffeomorphic demons. Also, in both (a) and (b), the left most subfigure

in the lower row indicate a region that we zoom in to visualize the deformation

field. The second and third subfigures from the left gives the glyph view of

the deformation field obtained using our method and diffeomorphic demons,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.19 Sample of registration with imprecise segmentation. (a): lesion segmentation

obtained using FreeSurfer, lesion areas are highlighted using blue contours,

with part of lesions underestimated. (b): the constructed β function. (c):

result after intensity displacement applied on the target image. (d): the

deformation field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.20 False deformation caused by the miss detection of topological change. . . . . 64

4.21 Sample registration when both moving and target image carry lesions. (a):

moving image with lesion. (b): target image with lesion. (c): deformed

moving image after spatial deformation. (d): the deformation field. . . . . . 65

4.22 Sample registration of a brain template to the MRI of a meningioma patient.

First row: a brain template, the moving image. Second row: target image,

MRI of a meningioma patient. Third and fourth row: checkerboard image

of the target and the moving image, before and after spatial deformation,

respectively. The fifth row: the intensity corrected target image after intensity

displacement. The sixth row: glyph plot of the resulting deformation field.

The 3 columns show the Axial, Sagittal and Coronal views of the same image.

Note that the length of glyph is amplified for better visualization and is not

in real pixel scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



4.23 Sample result of registering the elderly template to a young and healthy sub-

ject from OASIS. The first and second rows give the checkerboard image of the

target image and the template, before and after applying spatial deformation,

respectively. The third and fourth row plot the iso-contours of the template,

before and after registration, respectively, on top of the target image. . . . . 68

4.24 Another sample of registering the elderly template to a young and healthy

subject from OASIS. Subfigures are organized in the same way as in Fig. 4.23. 69

4.25 Sample result of registering the elderly template to a healthy elderly subject

from OASIS. Subfigures are organized in the same way as in Fig. 4.23. . . . . 70

4.26 Sample result of registering a young and healthy subject from OASIS to an-

other. Subfigures are organized in the same way as in Fig. 4.23. . . . . . . . 71

4.27 Curves plotting image L2 residuals during the registration with σprob = 0 and

σprob = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.28 Example showing the impact of smoothing kernel Kprob. (a): The first row

shows the checkerboard image of the template and target image before regis-

tration. The second and third row show the registered template after apply-

ing spatial deformation, using σprob = 0 and σprob = 1, respectively. (b): the

first row shows a zoom-in view of the region with lesion in the target image,

where the boundary of FreeSurfer lesion segmentation was marked by blue

contours. The second and third rows show the lesion-repaired target images

using σprob = 0 and σprob = 1, respectively. . . . . . . . . . . . . . . . . . . . 74

4.29 Sample registration result using our algorithm. First row: moving image.

Second: target image. Third row: spatial deformed moving image. . . . . . . 76

4.30 On the same registration experiment as in Fig. 4.29, registration result when

in-painting is used. First row: moving image after in-painting. Second: target

image after in-painting. Third row: spatial deformed moving image, i.e., after

apply the deformation field obtained using diffeomorphic demons on the in-

painted image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiii



4.31 Impact of in-painting. (a) glyph view of the deformation field obtained using

diffeomorphic demons after in-painting (left) and our algorithm (right). (b)

upper row: result when the deformation field obtained using in-painting is

applied on the original moving image; lower row: result when the deformation

field obtained using our algorithm is applied on the original moving image. . 78

5.1 Classification on dataset using whole-brain distances. Quick shift classification

result in the embedded space [2]. . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv



List of Acronyms

MRI magnetic resonance imaging

DTI diffusion tensor imaging

MS multiple sclerosis

LA leukoaraiosis

DBM deformation based morphomertry

WM white matter

GM gray matter

CSF cerebrospinal fluid

LDDMM large deformation diffeomorphic metric mapping algorithms

PDE parital differential equation

HDW high dimensional warping

xv



Chapter 1

Introduction

1.1 Background.

Deformable registration algorithms use dense vector fields to capture detailed structural

differences between anatomical brain images from magnetic resonance imaging (MRI). The

resulting deformation fields are extremely informative in subsequent clinical studies of brain

shapes, such as deformation based morphometry (DBM), both in terms of cross-subject

variation and disease progression. Therefore, the design of robust deformable registration

algorithms is regarded as an important research topic and has attracted significant research

interest [3, 4, 5, 6, 7, 8].

However, many brain diseases or even natural aging will result in intensity changes in certain

regions of anatomical brain images. For example, white matter multiple sclerosis (MS) lesions

appear to be dark spots in T1-weighted MR images, which are referred to as hypointensity

lesions. Leukoaraiosis (LA) lesions appear to be brighter than normal white matter in

T2-weighted images, and are referred to as hyperintensity white matter lesions. Tumors

can have different appearances in MR images; depending upon which type they belong to.

Nevertheless, they usually will appear to be much brighter than normal brain tissue when

imaged with contrast agents. In Fig. 1.1, we provide some examples of MR images with

these diseases to illustrate how they cause some local intensity changes to certain regions of

the brain image.

Ideally, medical images with the same field of view of healthy individuals contain the same

anatomical objects, whose level-sets should have the same topology, up to minor differences

1



(a) (b) (c) (d)

Figure 1.1: Examples of brain MR images with local intensity change. (a): a healthy brain.

(b): a brain with MS lesion. (c): a brain with LA lesion. (d): a brain with meningioma, one

type of brain tumor.

caused by noise. However, in the presence of intensity change caused by brain diseases, the

topology of the image level-sets will be changed (which is what we will refer to as topological

changes throughout this work.). Fig. 1.2 gives an example of such topological change, where

(a) and (b) show a pair of synthesized brain MR T1-weighted images with and without a

simulated MS, respectively, while (c) and (d) give the iso-contours of the two brain images

in (a) and (b), respectively. Note that topological changes to their respective level-sets are

clearly visible, as pointed out by the arrows in the figure.

Such topological changes can cause false deformation (refer to Sec. 3.1) in the resulting

dense vector fields from existing deformable registration algorithms [9]. For the subsequent

analysis, e.g., DBM, that relies on the dense vector fields, false deformation will be wrongly

associated with local growth or shrinkage [10]. In existing literature, the issue of suppressing

the impact of topological changes on deformable registration has been approached in three

different ways:

• Pre-processing: the lesion-affected regions are removed and the remaining regions are

filled via in-painting. Deformable registration is then performed on the repaired images.

• Blend-into-registration: the registration algorithm can be particularly designed to be-

have differently when lesion is encountered. Ideally, identified lesions shall not cause

any spatial deformation.

• Post-processing: regular deformable registration algorithms are directly applied on

2



(a) (b) (c) (d)

Figure 1.2: Illustration of topological changes to the level-sets of brain MRI under MS. (a)

and (b): a pair of synthesized brain MR T1-weighted images with and without a simulated

MS, respectively. (c) and (d): iso-contour plots of (a) and (b), respectively.

images with topological changes. False deformation is to be removed afterwards.

Of the three ways of handling topological changes, post-processing is regarded as the most

difficult for the following two reasons. First, deformation fields that are useful in clinical

analysis need to satisfy certain constraints, e.g., diffeomorphic (refer to Sec. 2.2.1). After

modifying part of the deformation field in the false-deformation-removal step following de-

formable registration, it is difficult to guarantee that such constraints are still satisfied. Sec-

ond, constraints such as diffeomorphism need to be ensured by smoothness constraints. As a

result, the impact of lesion on the deformation field is not focal, even when the lesion appears

to be focal, and can spread over a large region, depending on the image contrast. Hence,

identifying the boundary of a false deformation is very difficult, if not impossible. Due to

these concerns, the majority of methods handle false deformation for deformable registration

using the first and second categories, i.e., preprocessing and blend-into-registration. In this

work, we take the second approach and design a registration algorithm that handles topo-

logical changes naturally during the registration process. Compared with the pre-processing

methods based on in-painting, our algorithm has the following advantages:

• First, in-painting cannot repair lesions which cover regions of non-uniform intensity

profiles, such as part of both white matter (WM) and gray matter (GM). Our algo-

rithm, on the other hand, can copy the texture from the registered moving image.

As a result, our algorithm can also be used to register images with tumors and after

resection, which cannot be handled by in-painting based methods.
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• Second, in-painting is an additional pre-processing step, requiring a sophisticated algo-

rithm with high computational cost. On the other hand, our algorithm is an integrated

process which corrects the topological change (as a by-product) during registration.

1.2 Contributions

Considering the state-of-the-art of deformable registration algorithms, our contributions in

this work are summarized as follows.

First, using two state-of-the-art deformable registration algorithms, namely, diffeomorphic

demons and large deformation diffeomorphic metric mapping algorithms (LDDMM), we

specifically show the impact of topological changes on their performance and thus demon-

strate the necessity of handling topological changes. In particular, we use several simple

cases to demonstrate the false deformation issue associated with the two algorithms and

design a simple in-painting-based tool to show the possibility of removing false deformation

in the targeted brain regions. However, it is demonstrated that this simple method is not

robust enough to handle real-world data and thus not practical for clinical applications.

Second, we design a new deformable registration algorithm based on embedded maps that

is capable of accurately registering images with considerable structural differences while

suppressing the impact of topological changes on the deformable registration process. In our

proposed algorithm, 3D images are embedded as 4D surfaces in a Riemannian space. The

registration is therefore conducted as a surface evolution, which is modeled by a diffusion

process. Our algorithm differs from existing methods in the sense that it takes a priori

estimation of areas with topological change as an additional input and generates dense

deformation vector fields which are free of false deformation. In particular, the output of

our algorithm consists of a diffeomorphic deformation field and an intensity displacement

which corrects intensity difference caused by topological changes. By conducting extensive

experiments, we demonstrate that our proposed algorithm generates accurate registration

results for images with considerable topological changes caused by different pathologies.

More importantly, the resulting deformation field is not impacted by topological changes,

i.e., there is no false deformation.
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1.3 Organization of this work

The remainder of this work is organized as follows. In Chapter 2, we give a review on

existing deformable registration algorithms. We first review the currently available registra-

tion algorithms that focus on handling topological changes. Then, we review some of the

diffusion-based deformable registration algorithms that confine the output of the registra-

tion algorithm to be a diffeomorphic dense vector field. These works use similar physical

models to our algorithm and thus are used for comparison purposes. In Chapter 3, we use

experiments to deonstrate the the false deformation that caused by topological changes using

existing deformable registration algorithms and investigate the cause of the false deforma-

tion. We designed a simple in-painting-like tool to show the possibility of removing false

deformation for the targeted regions with topological changes. In Chapter 4, we present our

new deformable registration algorithm based on embedded maps. The proposed algorithm is

extensively tested on multiple sets of experiments. The registration results are compared to

other algorithms where topological changes are not specifically handled. Chapter 5 concludes

the dissertation and propose some future work.
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Chapter 2

Related work and Preliminaries

Registration refers to the process of determining a spatial transform that maps points in one

image - source (moving) image - to their homologous points of the same object in another

image - target (fixed) image [11]. Among the vast number of registration methods, such

as rigid registration and affine registration, deformable registration allows an image to be

warped with high degree of freedom. Deformable registration has been found to pick up

detailed structural differences among imaged subjects, and thus has triggered great research

interest [12, 13]. Deformable registration can be modeled in many different ways, which

lead to distinct optimization processes and result in deformation fields of different degrees

of elasticity. Over the past four decades or so, a huge number of deformable registration

methods have been proposed and investigated, many of which have further evolved into

different versions. In the past, several algorithms have been proposed to perform registra-

tion via surface labeling or marker matching [14, 15, 16], and demonstrated encouraging

registration performance. Especially, FreeSurfer [17] is a well designed surface-registration-

based pipeline, which is composed of bias-correction, skull stripping, non-linear smoothing,

gray/white matter segmentation, surface unfolding/flattening and morphing. A similar ap-

proach is High-Dimensional Image Warping (HDW) [18], where the deformation field is

parameterized as piecewise affine transformations within a finite element mesh. Incorporat-

ing smoothing constraints, the registration is modeled as a process of finding the maximum

a posterior (MAP) estimate of the parameters.

The transformations in spline-based deformable registration methods are defined by a linear

combination of a set of basis functions, including thin-plate spline (TPS), elastic body splines

(EBS), or B-splines. Among them, B-spline is the most commonly used one [19, 20, 21]. For
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B-spline-based methods, the degree of flexibility is confined by the spacing of the grid of con-

trol points. Compared with algorithms using non-parametric transformations, which rely on

a function defined on certain physical properties of images to guide the registration process,

B-spline-based methods have only limited degrees of freedom, and certain constraints, e.g.,

smoothness, can be easily imposed. However, as a trade-off, the elasticity of the deformation

is also limited and thus it may not be able to represent subtle structural changes that are

finer than the B-spline basis grid.

Aware of many different deformable registration algorithms, in this chapter, however, we only

focus our review on the methods that are closly related to our work, i.e., either using a similar

diffusion model, or trying to handle a similar problem. For a complete review on deformable

registration algorithms, we refer interested readers to survey papers [3, 4, 5, 6, 7, 8].

2.1 Deformable registration algorithms for images with

topological changes

As introduced in Chapter 1, it is very common to see medical images with topological

changes in clinical studies. The most frequently seen brain diseases that relate to topological

changes are multiple sclerosis (MS), leukoaraiosis, Alzheimer’s, meningioma etc. All these

diseases are currently attracting intense research efforts in clinical studies. Algorithms such

as deformation-based morphometry (DBM) that rely on the dense vector fields are widely

used in many large scale studies, which, however, is shown to be affected by lesion induced

false deformation [10]. Specifically, when the topology of the moving and the fixed images do

not agree, the diffusion process will attempt to shrink or expand a region with topological

change, depending on the intensity contrast, in order to minimize the intensity residual

as modeled by the objective function. However, topological changes present in brain MRI

can be caused by different pathologies. For example, the growth of tumors pushes the

surrounding tissue aside. MS and Leukoaraiosis usually cause density changes of white

matter (and density change in gray matter as well in the case of stroke), which in fact, is

independent of brain structural change. Consequently, during deformable registration, the

spatial deformation that is generated to shrink or expand the topological changes is incorrect.

As a result, we refer to the topological-change-induced deformation as false deformation. In

addition, despite the shrinked area, regions with topological change will not be completely

eliminated by spatially deforming the region. Instead, the shirnking region will persist with
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its mass condensed during the entire registration process. Thus, sources that are driving false

deformation will persist throughout the diffusion process. As a result, the energy caused by

false deformation is correlated to the length of the diffusion. The longer the diffusion process

is, the stronger the false deformation is.

In the past, in-painting was a commonly used method in DBM to remove false deforma-

tion [10, 22]. However, as we discussed in Chapter 1, these works require a reasonably

accurate segmentation of lesions and a possibly sophisticated in-painting algorithm.

A notable algorithm that models image intensity evolution is metamorphosis, proposed

in [23]. A metamorphosis is a Riemannian metric defined on the space of images to ac-

count for both geometric deformation and intensity changes. It resembles an image morph-

ing process and is a pair of curves corresponding to a spatial deformation and a template

evolution, respectively. Using the concept of metamorphosis, topological changes can be

accommodated by template evolution, i.e., intensity displacement, which leads to a smooth

diffusion even in the presence of severe topological changes. Therefore, it has been used in

facial morphing, medical image averaging [24], and brain atlas estimation [25]. However, in

metamorphosis, input images are set to be the base points of the deformation. Topological

changes will impact both spatial deformation and intensity displacement in this registration

process. As a result, false deformation is still expected to be present in the deformation, i.e.,

metamorphosis is not specially designed to solve the false deformation problem.

Alternatively, some registration algorithms use pre-computed pathology models to handle

topological changes [26]. However, the pre-computed model has limited application to spe-

cific pathology types, e.g., a certain type of tumor. Note that brain resections or the pres-

ence of neurosurgical instruments can also be regarded as topological changes in general.

Several works are developed to register brain images with resections by matching subvol-

umes [27, 28], landmarks [29] or segmentation surfaces [30]. In addition, the Expectation-

Maximization (EM) framework has been used for a joint estimation of resection region and

registration [31, 32]. These works rely on local features, and in most cases, their registra-

tion results have limited dimensionality rather than a dense deformation field, due to the

computational complexity of EM. The work by Risholm et al. [29] uses anisotropic diffusion

instead of Gaussian smoothing in a registration framework that generates a deformation

field that is free of the impact from resections. In their work, the anisotropic diffusion is

regulated by diffusion sinks, where it is permitted into the area (resection area) but not out.

In general, compared to resection, other topological changes can occur in many regions of a

brain image. For instance, brain images of MS patients can contain many small regions with
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hypointensity. Each region then needs to be modeled as a separate diffusion sink, which will

induce heavy computational load to the registration process. The registration algorithm by

Cuzol et al. [33] models the topological change using a brightness variation model. However,

with the additional luminance change function, the registration needs to be solved with a

generalized conjugated gradient process, which is not as stable as a strict gradient descent

process, and does not guarantee convergence to a true local minimum.

We need to point out that, there are other commonly seen intensity non-uniformities on

medical images, such as bias and noise. Bias is typically of low frequency and spread over

the entire image. Noise, on the other hand, is high frequency and possibly non-stationary.

Improved performance in many medical image processing tasks, including registration, is

linked to improved bias and noise correction. As a result, bias and noise has been studied

in previous work [34, 35] and can be included in the preprocessing of clinical data. In our

work, unless segmented in the label map, bias and noise are not regarded as topological

changes. In fact, this segmentation will be very hard, especially for bias. However, as will

be introduced in Chapter 4, during the registration process, if the moving and target images

are well aligned and the diffusion is not terminated, the intensity difference caused by bias

and noise will be corrected to a certain extent.

2.2 Diffusion-based deformable registration algorithms

In this section, we introduce some important constraints in deformable registration, i.e., dif-

feomorphism and symmetry. Their physical meaning and mathematical forms are explained

in detail. Then we study two families of state-of-the-art deformable registration algorithms,

i.e., diffeomorphic demons and LDDMM.

2.2.1 Important physical constraints

In deformable registration, only a subgroup of all deformation fields is regarded as realis-

tic and useful. In other words, certain constraints are crucial and need to be satisfied in

the deformation fields obtained from deformable registration algorithms. The first one is

Diffeomorphism. Mathematically, a diffeomorphism has the following definition [36, 37, 38]:
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Diffeomorphism: given two manifolds M and N , a bijective map f from M to

N is called a diffeomorphism if both

f : M → N

and its inverse

f−1 : N →M

are differentiable (if these functions are r times continuously differentiable, f is

called a Cr-diffeomorphism).

Two manifolds M and N are diffeomorphic if there is a smooth bijective map f

from M to N with a smooth inverse. They are Cr diffeomorphic if there is an

r times continuously differentiable bijective map between them whose inverse is

also r times continuously differentiable.

Diffeomorphism is an important physical constraint in image registration. From an anatom-

ical perspective, a diffeomorphism ensures that there is no tearing or folding of the physical

space. For an image, it prevents the image from folding the grid over itself and thus de-

stroying neighborhood structure. Also, a diffeomorphism guarantees the smoothness of the

deformation field by eliminating spikes, which leads to a stable PDE evolution in diffusion-

based methods. Fig. 2.1 gives an example to demonstrate the warping results of an image

grid by a diffeomorphic and a non-diffeomorphic vector field. The original image grid in 2-D

is given in Fig. 2.1(a). After deforming with a vector field that is diffeomorphic, although the

image grid has been distorted, as shown in Fig. 2.1(b), all the pixels stay in the same order

in both the horizontal and the vertical directions as in the original grid. On the other hand,

as shown in Fig. 2.1(c), when the image grid is deformed with a deformation field that is not

diffeomorphic, then the order of the pixels in the horizontal axis has been broken, and thus

the grid folds over itself. Furthermore, for the folded area, the spatial grid and the image

intensity form a one-to-many mapping, which violates the fundamental physical formation

of an image.

It is well known that diffeomorphisms do not form a vector space, but only a Lie group [13]. A

Lie group is a group which is also a differentiable manifold, with the property that the group

operations are compatible with the smooth structure. Lie groups are smooth manifolds and

are studied using differential calculus. In discrete applications, smoothing is always needed to

ensure the diffeomorphism, such examples will be given later when we examine two existing

algorithms in Sec. 2.2.2 and Sec. 2.2.3.
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(a) (b) (c)

Figure 2.1: Illustration of the Diffeomorphism. (a) Original grids, φ = Id. (b) Deformed

grid with a diffeomorphism. (c) Deformed grid with a non-diffeomorphism.

The second constraint is called symmetry. In deformable registration, symmetry refers to

the notion that the resulting deformation remains the same when the moving and the fixed

images are swapped. In terms of practical implementation, symmetry can refer to symmetric

gradient or inverse consistency. Symmetric gradient is imposed on each individual updating,

and does not guarantee symmetry on the final deformation field. Inverse consistency, on the

other hand, ensures strictly the same output regardless of the order of the moving and the

fixed image. Inverse consistency is illustrated in Fig. 2.2.

To understand Fig. 2.2, it is important to be aware of the existence of registration residual.

During the registration process, ideally, if the moving and the fixed images, denoted by Im

and If respectively, only differ in terms of structural changes, the resulting spatial deforma-

tion φ is capable of perfectly aligning the two images, i.e., ||Im− If ◦φ||L2 = 0. However, the

intensity profile of the moving and target images are typically not identical. Even in cases

where the two input images have the same intensity profile, during the registration process

certain physical constraints, such as smoothness or diffeomorphism, are usually imposed on

the underlying deformation fields. As a result, the spatial deformation may not be able to

perfectly align them, leading to certain residuals, measured as the intensity distance between

the deformed moving image and the target image. Another source of such residual is the nu-

merical errors from the interpolation scheme used in sub-pixel level computation. Formally,

image residual refers to the intensity difference between the fixed and the registered moving

images: r0 = ||If − Im ◦ φ||L2, and r1 = ||Im − If ◦ φ−1||L2 in Fig. 2.2.

Then we get back to the concept of the inverse consistency constraint: the order of source

and target images can be flipped and still result in the same deformation field, i.e., φ′ = φ−1;
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Figure 2.2: Illustration of the symmetry. The registration is inverse consistent when φ−1 = φ′.

φ′−1 = φ; r1 = r′0 and r0 = r′1.

Inverse consistency can be ensured by modifying the registration objective as

Einverse consistent =
1

2
(E(If , Im ◦ φ) + E(Im, If ◦ φ−1)), (2.1)

which is important when the deformation field is used as a metric between the two images.

Despite the power of regularizing deformation in image registration, the diffeomorphism

and symmetry constraints cause or enhance errors when registering images with topological

changes, since there will be no diffeomorphism which can align them. First, as we discussed,

smoothing of the deformation field is always required to ensure a diffeomorphism. Therefore,

the impact of topological changes on the deformation field will not be confined to the region

of topological change. Rather, it will spread its impact over an enlarged neighborhood.

Second, when the symmetry constraint is used in registration, topological changes will cause

false deformation, regardless of whether they originate from the moving or the fixed images.

2.2.2 Demons algorithms

Thirion’s demons algorithm [39] models the image-to-image matching as a diffusion process,

which is analogous to Maxwell’s demons, based on local image characteristics. The resulting

force for evolving the deformation has the same form as optical flow equations, and can be
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solved using gradient descent.

Given a moving image Im and a fixed image If , the demons energy is defined as

E(c, s) =
1

σ2
i

Sim(If , Im ◦ c) +
1

σ2
x

dist(s, c)2 +
1

σ2
T

Reg(s), (2.2)

where s represents the function of the transformation, and c is a vector field on the image grid

that realizes the transformation s. The first term Sim(If , Im◦c) models the similarity between

the deformed moving and the fixed images, and is sometimes referred to as the faithfulness.

Reg(s) is the regularization constraint that can be imposed on the transformation, which is

usually used to ensure the smoothness of s. dist(s,c) is the term that guarantees the quality

of the realization c. The scalars σ2
i , σ

2
x and σ2

T balance the relative weights of the three

terms.

For medical images, the L2 distance is the most common choice for Sim(If , Im ◦ c) between
images of the same modality. Other metrics, for example, mutual information [40] can be

used to register images of different modalities. Limited by the Cartesian grid of images, the

actual transformation s can be only computed with the fixed resolution of vector field c,

where the sub-pixel level forces are obtained by interpolation. Moreover, under a gradient

descent framework, s is updated incrementally by an update field u at each iteration. Thus

in practice the demons optimization of the energy functional becomes the following updating

rule:

u = argmin
u

Es = ||If − Im ◦ (s+ u)||2 + σ2
i

σ2
x

||u||2. (2.3)

Based on (2.3), the demons algorithm pipeline can be written as follows:

Algorithm: Demons registration:

• Initialize the spatial transformation s in the form of a vector field, (usually If and Im

are already affine registered, and s is initialized as the identity.)

• Iteration till convergence

1. Based on current s, compute update field using

u = −If − Im ◦ s
||J ||2 + σ2

i

σ2
x

J (J is a function of the image gradients) (2.4)

2. If choose fluid-like regularization, u← K1 ∗ u, where K1 is a Gaussian smoothing

convolution kernel.

3. s← s+ u
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4. If choose diffusion-like regularization, s← K2∗s, where K2 is a Gaussian smooth-

ing convolution kernel.

In (2.4), if σ2
i is set to the estimated value of image noise, controlling σ2

x can regularize the

maximum update step. J is the image gradient that indicates the direction of optical flow.

In the original Thirion’s rule, it is only related to the gradient of the fixed image:

J = −∇If . (2.5)

Another form of J is defined in the Gauss-Newton method, where the gradient of the warped

moving image is used

J = −∇(Im ◦ s). (2.6)

The concept of demons registration provides a mathematical framework for non-parametric

registrations, and has quickly become popular. Over the past decade, researchers have

modified the demons algorithm by imposing various constraints to render it anatomically

more realistic and mathematically more stable [13, 41]. Such constraints include symmetry

and diffeomorphism.

As discussed in Sec. 2.2.1, there is no straightforward method to ensure diffeomorphism in the

normal registration formulation, since diffeomorphisms do not form a vector space, but only

a Lie group [13]. As an alternative, optimization can be performed on a Lie group, which is

the space of diffeomorphisms [42, 43]. Therefore, registration results are diffeomorphic when

the Lie algebra is applied during the optimization, which avoids the typical routine of adding

constraints into the objective. Specifically, in the diffeomorphic demons algorithm [13], an

intrinsic updating step using the classic Newton-Raphson method is applied, given by,

s← s ◦ exp(u), (2.7)

instead of using the updating rule in (2.4). Here, ◦ is composition operation, and exp is

the vector field exponential. The vector field exponential can be efficiently computed for

diffeomorphisms through compositions [44]:

Algorithm: Fast computation of Vector Field Exponentials:

• choose N such that 2−Nu is close enough to 0, e.g., max||2−Nu|| ≤ 0.5;

• Perform an explicit first order integration: v(p)← 2−Nu(p) for all pixels;

• Do N recursive squaring of v : v ← v ◦ v.
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In order to make the inverse transform directly available, which is necessary for subsequent

computations and analysis in many cases, the log-domain demons algorithm [41] has been

recently proposed. This algorithm adopts the Baker-Campbell-Hausdorff (BCH) formula [45]

to update the transformations as the log of composed exponentials:

v ← log(exp(v) ◦ exp(u)). (2.8)

Using this updating rule, both the forward and the inverse transformation are immediately

accessible:

s = exp(v) and s−1 = exp(−v). (2.9)

To further render the log-domain demons algorithm symmetric, the demons energy function

has been modified by symmetrizing the positions of the moving and the fixed images:

S = argmin
s

(E(If , Im, s) + E(If , Im, s
−1)), (2.10)

where E stands for the typical demons energy given in (2.3). To solve this optimization,

a forward and a backward update, uforw and uback, are computed independently, and the

resulting updating rule in the symmetric log-domain demons algorithm [41] can be written

as an average of the forward and backward updates:

v ← 1

2
K2 ∗ (log(exp(v) ◦ exp(K1 ∗ uforw))− log(exp(−v) ◦ exp(K1 ∗ uback))), (2.11)

where K1 and K2 are the fluid-like and diffusion-like smoothing convolution kernels, respec-

tively, and are the same as those used in the original demons algorithm.

2.2.3 Large Deformation Diffeomorphic Metric Mapping algorithms

A diffeomorphism is typically ensured by smoothing the deformation vector field. However,

over-smoothing can destroy the correspondence between image details and increase registra-

tion error. To theoretically regulate the amount of smoothing on the deformation field, the

works by Dupuis [46] and Trouvé [47] provide a theory on the minimal amount of smooth-

ness required to ensure the field to be continuous and at least one time differentiable, i.e.,

C1-diffeomorphic. Using this theory, the Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) method has been proposed [48], which is capable of finding the geodesic

path in the space of diffeomorphisms, between images that correspond to each other via

large deformation fields.
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In the work by Beg et al. [12], a complete LDDMM algorithm and its implementation has

been provided. The LDDMM algorithm solves for a geodesic deformation path φt connecting

the moving image Im and the fixed image If , where it starts from Im at time t = 0 and arrives

at If when t = 1. This path can be computed as φ1 = φ0 +
∫ 1

0
vtdt where vt is the velocity

vector field of φt. Using this formulation, the cost function of LDDMM has the form:

v̂ = arg min
vt(φt)=φ̇t

E(v)
.
=

∫ 1

0

||vt||2V dt+
1

σ2
||If ◦ φv

1,0 − Im||2L2 . (2.12)

In (2.12), the first term models the cost of the length of the deformation, in the form of

an appropriate Sobolev space V which ensures enough smoothness of the velocity field.

This Sobolev norm can be converted into an L2 norm using a differential operator L =

(−α∆+ γ)αIn×n (α > 1.5 in 3-D space):

||f ||V = ||Lf ||L2
. (2.13)

The second term in (2.12) reflects the data faithfulness with the deformation field φ, measured

in the L2 space.

The variation of (2.12) with respect to an arbitrary perturbation h on the velocity deforma-

tion field is chosen to be computed in Sobolev space V , using Fréchet derivative for stability,

giving the Euler-Lagrange equation:

∂hE(v̂) =

∫ 1

0

〈

2v̂t −K

(

2

σ2
|Dφv̂

t,1|∇J0
t (J

0
t − J1

t )

)

, ht

〉

V

dt = 0, (2.14)

where K is the self-adjoint operator: K(L†L) = Id, and |Dφ| is the Jacobian determinant

of deformation field φ:

|Dφ| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂φ1

∂x1

∂φ1

∂x2
. . . ∂φ1

∂xn

∂φ2

∂x1

∂φ2

∂x2
. . . ∂φ2

∂xn

. . .
∂φm

∂x1

∂φm

∂x2
. . . ∂φm

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.15)

Since h is a random perturbation, the unique solution to (2.15) is given by

(∇v̂Et)V = 2v̂t −K(
2

σ2
|Dφv̂

t,1|∇J0
t (J

0
t − J1

t )) (2.16)

The LDDMM algorithm can be summarized as follows:

Algorithm LDDMM: Initialize at iteration k = 0: (when N = 20, δt = 1/N = 1/20)
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• vktj = 0;

• ∇vktj
Etj = 0;

• φtj ,0 = Id;

• φtj ,T = Id;

• K = 0.

Iteration k+1.

1. Calculate the new estimate of velocity at each time interval:

vk+1
tj

= vktj − ǫ∇vktj
Etj . (2.17)

2. Reparametrize the velocity field to be a constant speed after every 10 iterations

st =
T

∫ T

0
||vt||V dt

∫ t

0

||vt||V dt (2.18)

ḣt =
1

˙sht

, ṽt = ḣtvht
(2.19)

* an additional step: Compute all K.

3. Calculate for j = N − 1 to j = 0 the mapping φk+1
tj+1,T

(y) using:

φ
vk+1

tj ,T (y) = φvk+1

tj+1,T
(y + κ) (2.20)

4. Calculate for j = 0 to j = N − 1 the mapping φk+1
tj+1,0

(y) using:

φ
vk+1

tj ,0 (y) = φvk+1

tj−1,0
(y − κ) (2.21)

5. Calculate for j = N − 1 to j = 0 the image J0
tj
= Im ◦ φk+1

tj ,0
.

6. Calculate for j = 0 to j = N − 1 the image J1
tj
= If ◦ φk+1

tj ,T
.

7. Calculate for j = 0 to j = N − 1 the gradient of the image ∇J0
tj
= [∂J

0

∂x
∂J0

∂y
]′.

8. Calculate for j = 0 to j = N − 1 the Jacobian of the transformation |Dφtj |.
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9. Calculate for j = 0 to j = N − 1 the gradient ∇vk+1E for vk+1 using

(∇vk+1Et)V = 2vk+1
t −K(

2

σ2
|Dφvk+1

t,1 |∇J0
t (J

0
t − J1

t )) (2.22)

10. Calculate the norm of the new gradient||∇vk+1E||, Stop if below the threshold.

||∇vk+1E|| =
N−1
∑

j=1

||∇vk+1

j
E||. (2.23)

11. Calculate the new energy using

E(vk+1) =

N−1
∑

j=0

||vk+1
tj
||2V δt +

1

N1N2N3

∑

y∈Ω

|J0
T (y)− JT

T (y)|2. (2.24)

12. Re-iterate k = k + 1, until maximum iteration reached.

Post Processing and gather results:

1. Compute the final velocity field v̂:

v̂ = arg inf
v∈L2([0,1],V )

E(v)
.
=

∫ 1

0

||vt||2V dt+
1

σ2
||Im ◦ φv

1,0 − If ||2L2 (2.25)

2. Calculate length of the path on the manifold (geodesic distance):

Length(Id, φvk

T ) =
N−1
∑

j=0

||vktj ||V δt. (2.26)

Note that in the LDDMM algorithm, the operator L requires special attention to ensure

a diffeomorphism, which is also chosen to be implemented in the Fourier domain for easy

computation. It is given by

L = −α∇2 + γI; where∇2 =
∂2

∂2x
+

∂2

∂2y
.
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For image registration, L, the self-adjoint operator chosen to be of the Cauchy-Navier type

and implemented as a discrete kernel:

L = −α







0 1 0

1 −4 1

0 1 0






+ γ







0 0 0

0 1 0

0 0 0






=







0 −α 0

−α 4 + γ −α
0 −α 0






(2.27)

Thus, the kernel K can be constructed as: K = (L†L)−1. Since L = L†, K = (L2)−1. The

Fourier transform can then be taken on both sides in: A2(K)F (K) = G(K). As a result,

F (K) = G(K)/A2(K), where

• G(K) is the Fast Fourier transform (FFT) of g, which is a complex conjugate image;

• A(K) is the FFT of L. We first create a zero real image L̃ of size a × b, then tile

the kernel form of L at the center of L̃. Take FFT of L̃ and obtain A(K), which is a

complex conjugate image;

• F (K) is the Fourier transform of f . F (K) is obtained by complex number division of

F (K)x,y =
G(K)x,y

A(K)x,y×A(K)x,y
. F (K) is a complex conjugate image;

• f is obtained by taking iFFT of F (K), which is a real image.

Although demonstrating a solid mathematical foundation, the original LDDMM algorithm

in [12] is proven to be highly space- and time-consuming, when the discretized time variable

t is sufficiently fine (usually around 20 intervals). To deal with this problem, the stationary

parameterization framework [44] has been proposed to modify the original LDDMM algo-

rithm into stationary LDDMM [49, 50], where the LDDMM registration algorithm has been

greatly accelerated, without compromising its performance. Note that certain versions of

LDDMM algorithm require prior information on the anatomy of the imaged object. For

instance, DARTEL [50] requires segmentation of the entire brain as part of the inputs.
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Chapter 3

Impact of topological changes on

deformable registration algorithms

In order to register images with topological changes, it is important to take two facts into

consideration. First, given a pair of source and target images, if they differ from each other

in terms of both structural and topological changes, the two types of differences will cause

deformation simultaneously. Second, since the space of images and the space of their possible

deformations are both of extremely high dimension, diffusion-based methods have been the

most commonly used method in searching for the optimal registration [39, 12, 13, 41]. Due

to these two facts, if not handled properly, all discrepancies between the pair of images,

including topological changes, will drive the gradient descent process when searching for

the registration solution. If this is the case, the resulting registration will be a mixture of

deformations caused by image structural differences and intensity differences. In this chapter,

we take the diffeomorphic demons and the LDDMM algorithms as examples to demonstrate

the impact of topological changes on deformable registration. We also design a simple in-

painting-based tool as a pilot study to show the possibility of removing false deformation in

targeted regions.

20



3.1 Impact of topological changes on deformable reg-

istration methods

Among state-of-the-art registration algorithms, e.g., demons [13, 41] and LDDMM [12, 49],

the evolution of the deformation field is achieved by the minimization of an objective energy

function, as described in Chapter 2. This minimization is performed using gradient descent,

an iterative process that is driven by a PDE. In these works, inverse consistency (the resulting

deformation field will remain the same if the source and the target images are swapped)

and diffeomorphism (both the deformation field and its inverse field are continuous and

differentiable) are the two commonly imposed constraints. With these two constraints, the

energy function of demons is defined as [51],

Edemons= Sim(If , Im, φ) +
1

σ2
T

Reg(φ); (3.1)

and that of LDDMM is given by [51],

ELDDMM= SimL2(If , Im, φ) +

∫ 1

0

||vt||2Vdt. (3.2)

Note that, in both equations, the first term is a symmetric image similarity measure, given by

Sim(If , Im, φ) =
1
2
(Sim(If , Im◦φ−1)+Sim(Im, If ◦φ)), which ensures the inverse consistency.

The second term is a regularization term to ensure the diffeomorphism. In these two works,

diffeomorphism is realized differently. Specifically, in demons, a Gaussian kernel is used

on the deformation field or the update of the deformation field, resulting in diffusion-like

or fluid-like regularization, respectively, and a deformation field composition is used in the

updating rule. In LDDMM, diffeomorphism is achieved by confining the deformation within

a Lie group of diffeomorphisms using a differential operator L.

When registering images of healthy subjects, both inverse consistency and diffeomorphism

are important constraints to ensure that the results of the registration algorithm are math-

ematically stable and physically realistic. However, both of them interact with topological

changes and thus cause problems during the registration process. Fig. 3.1 gives a simple

example to illustrate the problem. Suppose a pair of 2-D images, Im (Fig. 3.1(a)) and If

(Fig. 3.1(b)), are to be co-registered. Clearly, Im carries a topological change with much

lower intensity. The glyph views of the registration results using diffeomorphic demons1 are

1The implementation is from http://www.insight-journal.org/browse/ publication/644, by Vercauteren

et al..
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(a) (b)

(c) (d) (e) (f)

Figure 3.1: Registration of simple images with topological change. (a): moving image Im (b):

fixed image If ; (c): glyph view of the deformation field generated from diffeomorphic demons;

(d): zoom-in view of (c) around the region with topological change; (e): the deformation

field generated from symmetric LDDMM; (f) zoom-in view of (e) around the region with

topological change.

shown in Fig. 3.1(c) and (d), and those using symmetric LDDMM2 are given in Fig. 3.1(e)

and (f). Note that a similar experiment has been conducted with HDW, which also demon-

strates the same problem as discovered here: “pathology is ... case where the validity of

the registration is compromised” [18]. These results demonstrate that with the symmetric

intensity similarity measure, the intensity difference caused by topological changes forces the

local neighborhood to deform in both algorithms. Note that these local deformations are

toward the inside of the associated topological change, following the direction of the gradi-

ent. Therefore, they are not related to the pathological nature of the topological change,

i.e., false deformations. Furthermore, given a diffeomorphism, the smoothing operations

generally spread false deformation over an enlarged neighborhood.

2This is our implementation of the algorithm by Beg et al.[12], with the symmetric image similarity

measure in (3.2).
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3.2 A simple algorithm to suppress the impact of topo-

logical change through in-painting

As discussed earlier, it is not practical to model the growth of a topological change without

the prior knowledge of its pathological nature. Instead, a more general approach is to

separate the regions affected by topological changes, and perform the registration without

the impact from these regions. Therefore, the result of a registration algorithm designed

in such a fashion reveals only structural changes, while a segmentation label map, as a

by-product, is used to isolate the possible locations of the topological changes for further

clinical study. To achieve this, we proposed a two-round registration method that can be

incorporated onto any currently available iterative PDE-driven registration methods. In the

following, we take symmetric LDDMM as an example to illustrate our proposed method. The

proposed method does not interfere with the execution of the registration process, so using

other registration algorithms, e.g., diffeomorphic demons, will not change the conclusion we

draw here. In addition, because the registration algorithm we use is inverse consistent, we

assume the source image Im is the one that contains topological change in the following

discussion. In other words, the same operation can be performed on the target image If , if it

is the one that contains topological change, by simply exchanging the forward and backward

deformations.

We use simple 2-D images Im and If shown in Fig. 3.1 (a) and (b), respectively, as inputs

to explain the above algorithm. The first round of registration takes the original input

images. Thus, due to the presence of topological changes, we expect that the registration

algorithm will not converge to the point where the energy gradient decreases to a sufficiently

small value. Instead, we force the registration to terminate when the energy gradient stops

decreasing. Because of this, we refer to this round of registration as coarse registration.

We can examine how image dissimilarity drops over iterations to model the evolution of

the coarse registration process. Specifically, we compute an absolute image residual Diffk

at iteration k, and sum up these image residuals from all the iterations during the coarse

registration process to obtain a total difference Difft as shown in Fig. 3.2(a). Note that, all the

absolute image residuals are in the image space of the target image If , we thus need to back

propagate them into the image space of Im by applying their corresponding deformation φk.

From Fig. 3.2(a), we can clearly observe that regions with intensity disagreement between Im

and If , which are due to structural differences, gradually shrink as the registration process

proceeds. Hence, these regions appear only in some of the Diffks and consequently have a low
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Illustration of our registration method. (a): total difference Difft obtained after

the coarse registration; (b): deformed I1 into the image space of Im; (c): the edge map

GM of (b); (d): the probability map P of topological changes in Im; (e): binary label map

of topological changes in Im; (f): I ′m obtained after repairing; (g): the deformation field

obtained after the fine registration; (h): the zoom-in view of (g) around the topological

change in Im.

intensity in Difft. On the other hand, those intensity disagreements caused by topological

changes persist throughout the deformation process and thus accumulate in Difft. Other

sources of image disagreement that also get accumulated during the registration process

include the interpolation error and local mismatch caused by smoothness constraints. These

disagreements happen to the regions along object edges in If . To eliminate them, we deform

If into the image space of Im in Fig. 3.2(b) and compute its edge map GM = 1−∇(If ◦φn)∗K
given in Fig. 3.2(c), where K is a Gaussian smoothing kernel with a variance that is enough

to spread the edge over the mismatched band. By performing a pixel-wise multiplication ⊗
between the normalized Difft and GM, we obtain a probability map P shown in Fig.3.2(d) of

the topological changes in Im. We threshold P (a threshold of 0.5 is used in both our 2-D and

3-D registration examples), followed by 1 to 2 rounds of 8-neighborhood dilation, to obtain

a binary label map (blue region in Fig. 3.2(e)) which indicates the topological change in

I0. The region corresponding to the topological change is then replaced by an interpolation
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of the intensity of pixels in its neighborhood. This operation therefore provides us with a

repaired image I ′m given by Fig. 3.2(f). I ′m and If are then taken as inputs to the deformable

registration algorithm with normal stopping criteria, which generates the final deformation

fields φ and φ−1. The resulting φ is shown in Fig. 3.2(g) and (h). By comparing these results

to those in Fig. 3.1(c)-(e), we observe that the false deformation caused by the topological

change has been eliminated.

3.3 Results

Our proposed method can be summarized in the following algorithm:

Algorithm: repairing lesion in deformable registration:

Initialize total difference Difft = 0

Coarse registration iteration k:

• compute gradient of energy function: ∇E;

• update deformation field and its inverse: φk and φ−1
k ;

• compute absolute image difference:

Diffk = |Im ◦ φ−1
k − If | ;

• back propagate Diffk and update total difference:

Difft+ = Diffk ◦ φk ;

• update energy function: E;

Coarse registration is forced to terminate with a loose stopping criteria after n iterations

with the resulting deformation fields φn and φ−1
n ;

Coarse registration post-processing : repair Im

• compute gradient magnitude of deformed target image:

GM = 1−∇(If ◦ φn) ∗K
• normalize GM and Difft to [0, 1];

• compute probability map of topological changes:

P = Difft ⊗GM ;
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(a)

(b)

(c)

(d)

(e) (f) (g)

Figure 3.3: Registration results of brain MRIs with MS, using our proposed method. (a):

target image If ; (b): source image Im which contains MS and after a nonlinear deformation

from If ; (c): probability map of topological change P; (d): binary map of detected lesion in

Im; (e): an axial slice of Im; (f) and (g): the magnitude of the deformation field at the same

slice as in (e), after the coarse and fine registrations, respectively. Inside the green boxes:

regions with MS lesions. Regions within green boxes are enlarged at the bottom.
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• threshold P followed by a slight dilation, to obtain a binary label map of topo-

logical changes;

• segmented topological changes are interpolated using the intensity values of their

neighborhood, leading to a repaired version of the input image I ′m .

Fine registration replace Im by its repaired version I ′m to re-perform registration with

normal stopping criteria, and output deformation field φ and φ−1.

This in-painting-based simple method is used to register two 3-D image volumes, where

one of them carries simulated MS lesions. These image volumes are obtained from the

McConnell Brain Imaging Center Simulated Brain Database [52]. The Axial, Coronal and

Sagittal views of the healthy image volume are shown in Fig. 3.3(a), and we use it as the

target image If . To generate source image I0, simulated MS lesion is introduced into If [52],

followed by a nonlinear 3-D shape distortion, to simulate brain structural change. Im is

shown in Fig. 3.3(b).

We perform a coarse registration to obtain the total difference Difft, which is then multiplied

by the edge map of deformed If to obtain the probability map of lesion P, as shown in

Fig. 3.3(c). P is then thresholded at the mid-level, i.e., 0.5, and dilated for two rounds to

obtain a binary label map of possible lesions in Im. This label map is shown as blue contours

in Fig. 3.3(d). From Fig. 3.3(d), we notice that our method is able to identify major MS

lesions in I0. However, several lesions, which have smaller intensity differences from the white

matter, are not successfully identified (can be seen from the axial image). We repair the

identified lesion regions via interpolating the intensity of their local neighborhoods, and re-

register the images to obtain a final deformation field. Fig. 3.3(e)-(g) provides a comparison

between the registration fields before and after lesion-repairing, where the regions within the

green boxes are enlarged at the bottom-right corners for better visualization. Fig. 3.3(f) and

(g) are color coded magnitude of the deformation fields after the coarse and fine registrations,

respectively, and they are of the same image slice as in Fig. 3.3(e). We can observe that the

regions inside the green and red boxes in Fig. 3.3(f) contain false deformation caused by the

lesions, whereas these false deformations are successfully removed from the deformation field

of the fine registration, as shown in Fig. 3.3(g).

This simple method, as well as its registration results, demonstrates that it is necessary

to specially handle topological changes in deformable registration algorithms. Despite the

efficacy of our proposed method, two major aspects require some improvement. First, the

simple in-painting used above requires a relatively accurate segmentation of lesion. However,
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clinical data usually have poorly defined lesion boundaries, where a precise segmentation can

be difficult to obtain. Second, in practical situations, lesion can cover anatomical regions with

different intensity, for example, MS lesion usually covers areas where white matter appears to

be darker and joins the ventricle. In these cases, in-painting will cause a noticeable artifact.

These sharp boundaries and artifacts are essentially the same as topological changes, which

will cause false deformation in the registration. To illustrate this, two samples of simple

in-painting results of lesion segmented by FreeSurfer are given in Fig. 3.4 (a) and (b). In

both subfigures, the first row shows the brain MR image with a severe lesion. The direct

in-painting repaired result is given in the second row, where the artifacts are noticeable alone

the lesion segmentation boundaries. In addition, merely for comparison purposes, in the third

row we include the desired lesion repair results, which are obtained using our deformable

registration algorithm that will be discussed in Chapter 4. From these figures, the lesion

repair result is apparently improved by using our deformable registration algorithm.
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(a)

(b)

Figure 3.4: Samples of in-painting results of lesion segmented by FreeSurfer. (a) and (b):

each gives Axial, Sagittal and Coronal views of one in-painting example. In both (a) and

(b), the first row shows the brain MR image with severe MS lesion. The direct in-painting

repaired results are given in the second row. In addition, the third row shows the desired

lesion repair results, obtained using our deformable registration algorithm presented next in

Chapter 4.
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Chapter 4

Registration of Images with Varying

Topology using Embedded Maps

In this chapter, we describe a new registration method to handle topological changes by

suppressing their impact on the deformable registration process for brain MRI. Specifically,

images in R
3 Euclidian space are embedded as surfaces in an R

4 Riemannian space. The

registration process is then conducted as surface deformation, where the first three dimen-

sions of the resulting deformation field correspond to the spatial grid deformation in the

R
3 Euclidian space, and the 4th dimension corresponds to the intensity displacement. The

contribution includes two aspects. First, compared with metamorphosis, our embedding

models the two types of deformation in a metamorphosis, i.e., a spatial deformation and a

template evolution, with a single partial differential equation (PDE) evolution in a higher

dimensional space. This guarantees a smooth convergence of the diffusion to a local mini-

mum (refer to Sec. 4.2.2). Second and more importantly, by carefully choosing a scale-space

in the embedding, we are able to control the distribution of the deformation energy in a

way that topological changes are mainly attributed to intensity displacement, while brain

structural changes are mostly captured by spatial grid deformation. In doing so, topological

changes will not impact the spatial deformation and thus false deformation is effectively sup-

pressed (refer to Sec. 4.2.1). The resulting spatial deformation is a diffemorphism, evolved

using the intrinsic update step, as proposed in [13].
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4.1 Preliminaries

Our algorithm is derived from the Sochen-Kimmel-Malladi general non-linear diffusion [1],

by choosing a particular embedding for our specific problem. The surface evolution follows

the Euler-Lagrange equation that minimizes the surface weight measured by the Polyakov

functional. Specifically, an image manifold (Σ, g) in R
3 is embedded as an R

4 feature-space

manifold (M,h), where g and h are the positive definite symmetric bilinear forms defined on

Σ and M , respectively. In Riemannian geometry, g and h are called metrics, which defines

an inner product on the corresponding manifold and are used to measure distances on the

surfaces. In the embedding, the map X : Σ→M is chosen as

X = [x, y, z, I(x, y, z)], (4.1)

where x, y, z are the local image Cartesian coordinates in R
3, and I(x, y, z) is the intensity of

the pixel at (x, y, z). A exemplar embedding from a 2D image manifold to a 3D feature-space

manifold is illustrated in Fig. 4.1.

We have the freedom of choosing a particular metric h on the embedded surface M to achieve

a desired surface weight measurement (refer to Sec 4.2). Based on the chosen map X and

h, the metric g on the image manifold Σ can be uniquely constructed. This is called the

pullback procedure, and is given in the following,

gµν = hij∂µX
i∂νX

j. (4.2)

Note that (4.2) uses Einstein summation convention, with µ, ν ∈ {x, y, z}, i, j ∈ {x, y, z, I}
in our embedding. The summation convention will be used in all our equations from now

on. In (4.2), gµν represents the (µ, ν)th element of g and hij stands for the (i, j)th element

of h, where both g and h are in matrix form.

Using the above definitions, the weight of the map X : Σ→M is calculated as:

S[X i, gµν , hij ] =

∫

dmσ
√
ggµν∂µX

i∂νX
jhij , (4.3)

where gµν is the (µ, ν) element of g−1,
√
g is the square root of the metric g’s determinant,

and m is the dimension of Σ. This equation is referred to as the Polyakov functional in Rie-

mannian geometry. The variation of the Polyakov functional with respect to the embedding

can be found by the Euler-Lagrange equation,

− 1

2
√
g
hij δS

δX l
=

1√
g
∂µ(
√
ggµν∂νX

k) + Γk
ij∂µX

i∂µX
jgµν , (4.4)
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a b

Figure 4.1: Embedding and the length element [1]. A 2D image is embedded into a 3D

surface, where the third dimension is the image intensity I. The length element ds on the

embedded surface is to be computed via the metric g.

where Γk
ij , k, i, j ∈ {x, y, z, I} are the elements in the Levi-Civita connection. In Riemannian

geometry, a connection describes how the frame is changed infinitesimally on the manifold.

A connection is said to be metric compatible if the covariant derivatives of the metric on the

manifold vanish. Thus, the definition of the Levi-Civita connection is given by [1]:

The fundamental theorem of Riemannian geometry: on a Riemannian

manifold (M, g) there exists a unique symmetric connection which is compatible

with the metric g. This connection is called the Levi-Civita Connection and

the components are given by the following expression:

Γi
jk =

1

2
hil(∂jhlk + ∂khjl − ∂lhjk). (4.5)

Note that, in Equation (4.4) the factor multiplied before δS
δXl is to simplify the mathemat-

ical expression and does not change the minimization solution. Equation (4.4) defines the

gradient descent direction that minimizes the Polyakov functional, following which the em-

bedded surface shrinks its area most rapidly. Therefore, (4.4) is referred to as the minimal
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surface flow. It has been shown that many image processing tasks can be accomplished via

minimizing the Polyakov functional, e.g., image smoothing and segmentation [1].

4.2 Registration method

In this chapter, we describe a new registration algorithm in the same spirit, i.e., via the

minimization of the Polyakov Functional. This algorithm differs from existing methods in

the sense that it uses a segmentation of the topological changes as an input and is capable

of registering brain MRI, while eliminating the false deformation. The following describes

the three major components of the proposed algorithm and then summarizes them into a

registration algorithm.

4.2.1 Choice of embedding

To establish a registration objective, we define the metric h to have the following form,

h =











φ 0 0 0

0 φ 0 0

0 0 φ 0

0 0 0 βφ











, (4.6)

where φ is a positive function that influences the shape of a harmonic map, i.e., it changes

the physical meaning of a minimal weight of the surface. φ provides us with the flexibility of

adjusting the path of diffusion, similar to the geodesic surfaces [53], and enables the minimal

surface flow to achieve the desired objective. β defines the scale-space of the embedding,

which is the relative magnitude between feature and space, i.e., image intensity and image

spatial Cartesian grid.

Taking inspiration from geodesic active contours [54], we note that for a specific choice of

metric, the Polyakov action measures the area of the surface in the space M. This gives us

the freedom to use the target image of the registration to define the metric and thus influence

the shape of the harmonic map. In this work, we choose φ = (Im − If )
2, where Im and If

are the moving and the fixed (target) images, respectively. The squared image difference

given by φ is the most commonly used error measurement in intensity-based registration

works. The difference is, in this work φ is not directly minimized; instead, φ is used to

modulate the metric h. Intuitively, within a specific infinitesimal region on the embedded
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a b

Figure 4.2: Influence of β on the deformation field.

surface, if the value of φ function decrease its value, the distance measure within this region

will decrease, and the surface area measure will also decrease. Thus the physical meaning of

the Polyakov function is no longer same as the commonly used surface area in the Euclidian

space. Especially, when the moving and the fixed images are perfectly aligned, φ will have

minimal-value everywhere and the surface area measured by the Polyakov functional will

achieve its minimal value. In other words, during the diffusion, the surface area is attracted

by a potential well formed by φ, and our particular choice of φ transforms the Polyakov

functional into a registration objective.

The factor β defines the relative magnitude between the feature and the geometric space. The

choice of β impacts the distribution of the deformation energy. This is illustrated in Fig. 4.2,

where we use red and blue curves to represent surface cut profiles of a moving and a target

image, respectively and the arrows denote gradient directions of evolving from the moving

image to the target image. In Fig. 4.2(a), β is set to a small value, and thus image intensity

weight less in the pullback. When the moving image is evolved to the target image, the

gradient direction will be better aligned with the intensity axis, and the deformation energy

will be concentrated on intensity displacement. Alternatively as shown in Fig. 4.2(b), if

β is set to a large value, the gradient direction evolving the moving image to the target

image will be better aligned with the spatial grid axis, and the deformation energy will be

more distributed to the spatial deformation. Based on this intuition, if we have a function

p(x, y, z), whose value indicates the probability that point (x, y, z) lies within topological
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changes, we can construct the function β in the following form,

β(x, y, z) =
1

p(x, y, z) + ǫ
, (4.7)

where ǫ is a small positive value to avoid the ill-condition of division-by-zero. With this func-

tion, for image regions without topological change, p(x, y, z) will have small values and β

will have large values accordingly. Then the deformation in these regions will mainly concen-

trate on spatial grid to capture the structural difference between the moving and the target

images. On the other hand, for image regions that do have topological change, p(x, y, z) will

have large values and β will thus have small values. Then intensity displacement will be

favored during the registration process to correct the appearance of topological changes in

these regions.

4.2.2 Computation of surface variation

Using the map given in (4.1) and the chosen h, we can obtain the metric g through the

pullback procedure,

g = φ







1 + βI2x βIxIy βIxIz

βIxIy 1 + βI2y βIyIz

βIxIz βIxIz 1 + βI2z






. (4.8)

Then, the gradient direction that minimizes surface area is given by the Euler-Lagrange

equation (4.4). We take the gradient descent approach to obtain the equation for surface

variation,
∂X

∂t
=

φ2

√
g
∂µ(
√
ggµν∂νX

k) + φ2Γk
ij∂µX

i∂µX
jgµν . (4.9)

Here, t is the time variable that represents a step in the diffusion process. Note that in (4.9),

the Euler-Lagrange equation is multiplied by φ2 which is a positive function and will not

affect the solution of the minimization.

Combining all the above definitions, we can obtain the registration updating rule:

∂X

∂t
= S1











−βIx
−βIy
−βIz
1











+ S2











Ix

Iy

Iz

I2x + I2y + I2z











+ S3











−βIx
−βIy
−βIz
1











, (4.10)
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where,

S1 =
φ

κ2
[(1 + βI2y + βI2z )Ixx + (1 + βI2x + βI2z )Iyy + (1 + βI2x + βI2y )Izz]

− 2φβ

κ2
(IxIyIxy + IxIzIxz + IyIzIyz) +

3

2κ
(φxβIx + φyβIy + φzβIz − φI),

S2 =−
φI

2κ
,

S3 =−
φ

2κβ
(βxIx + βyIy + βzIz)(1 + κ),

κ =1 + βI2x + βI2y + βI2z ,

Note that in (4.10), we intentionally assemble all the terms that are related to the partial

derivatives of β in S3. The first three dimensions in (4.10) define the spatial grid defor-

mation, i.e., the structural differences between the moving and the target images. The

4th dimension in (4.10) defines the intensity displacement, which is mainly concentrated on

the pre-identified topological changes. The detailed derivation of (4.10) can be found in Ap-

pendix A. We want to emphasize that when using (4.10), the distribution of the deformation

energy in the intensity displacement and the spatial grid deformation can be directly con-

trolled by the function β. This is the major reason that false deformation can be eliminated

from our resulting deformation field. To better understand this, if we set β to extreme values

of +∞ and 0, we can obtain the following two equations (for details refer to Appendix B),

lim
β→+∞

∂X

∂t
= [IxH IyH IzH 0]′ , (4.11)

where

H =−
φIx[(I

2
y+I

2
z )Ixx+(I

2
x+I

2
z )Iyy+(I

2
x+I

2
y )Izz−2(IxIyIxy+IxIzIxz+IyIzIyz)]

(I2x + I2y + I2z )
2

− 3Ix(φxIx + φyIy + φzIz)

2(I2x + I2y + I2z )

and

lim
β→0

∂X

∂t
= [IxT IyT IzT ∞]′ , (4.12)

where

T =φIIx − 2φIx(βxIx + βyIy + βzIz).

It is easy to observe that (4.11) and (4.12) agree with our expectation (refer to Sec. 4.2.1)

that when β has very large values, the spatial grid deformation should contain the most
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energy, whereas when β has very small values, the intensity displacement should dominate

the deformation energy. Note that we do not require a precise lesion segmentation to form a

proper β function. It can be based on any estimated probability function p(x, y, z). In real

applications, p(x, y, z) can be constructed from some lesion-likelihood measurements, or a

smoothed version of a rough lesion segmentation, given by

p
.
= Kprob ∗ L, (4.13)

where Kprob is a Gaussian kernel and L is the segmentation label map for lesions. In most

cases, after intensity displacement, the spatial deformation of lesion-affected areas will be

filled by the interpolation of the deformation from their neighborhood, due to the smoothness

constraints of the deformation field. Thus, when we construct β from a smoothed rough lesion

segmentation, slightly over- or under-segmentation is well tolerated.

4.2.3 Diffeomorphism

Most state-of-the-art registration algorithms constrain the resulting deformation field to be

in the group of diffeomorphisms [13, 12]. As described in Chapter 2, a diffeomorphism is

a Lie group of invertible and differentiable bijective mappings. A dense deformation field

that is diffeomorphic indicates no tearing or folding in the physical space after deformation.

Constraining the evolution of deformation field within the group of diffeomorphism also

ensures a stable diffusion process by avoiding spikes when solving the associated PDE. A

subtle difference in our registration is that, only the first three dimensions of the surface

evolution represent spatial grid deformation, and thus are required to be diffeomorphic.

The 4th dimension, however, is the intensity displacement that is expected to capture high

frequency variations and should not be confined in the group of diffeomorphisms1.

Clearly, in our method, adding explicit constraints only to the first three dimensions of the

deformation is mathematically difficult. Instead, as proposed in the work of diffeomorphic

1Ideally, the intensity displacement is expected to have certain smoothness to ensure a smooth PDE

evolution. In the algorithm step 5, note that there is a Gaussian kernel directly applied on the update of

intensity displacement. In all the experiments, a very small Gaussian kernel with σint = 0.4 for Kint, was

used and always results in a stable diffusion. However, diffeomorphism is too strong for this smoothness

constraint. Imagine that, there are two pixels, left and right. If the input image has a smaller intensity

on the left pixel, diffeomorphism essentially ensures that after intensity displacement, the left pixel cannot

change to a larger intensity compared to the right pixel, i.e., maintaining the “ordering” of the intensities.

Our algorithm does allow the flexibility of changing intensities and thus the diffeomorphism does not apply

to intensity displacement.

37



demons [13], spatial deformation can be directly performed in the Lie group of diffeomor-

phisms. Thus, the registration results are diffeomorphic when the Lie algebra is applied

during the optimization, avoiding the typical routine of adding constraints into the objec-

tive. Following this idea, we adopt the intrinsic updating rule:

s← s ◦ exp(u) (4.14)

for the evolution of the spatial deformation field. Here, s is the overall spatial deformation

and u contains the first three components of the surface evolution (4.10): u = [∂X
1

∂t
∂X2

∂t
∂X3

∂t
]′.

The intensity displacement, on the other hand, is directly accumulated as follows

∆← ∆+ δ, (4.15)

where ∆ is the overall intensity displacement, and δ is the last component of the surface

evolution (4.10): δ = ∂X4

∂t
. After applying intensity displacement ∆ on the target image If ,

given by

I t+∆t
f = I tf +∆, (4.16)

where t is the time variable, the intensity difference caused by topological changes will be

eliminated. As a result, we refer to this step as intensity correction.

4.2.4 Registration algorithm

To summarize, we have the following registration algorithm:

Algorithm (Image Registration using Embedded Maps):

• Initialization:

1. set the image with normal topology as moving image Im;

2. set the image with topological change as fixed image If ;

3. construct β using the binary label map of topological change, L (4.13) (4.7);

4. set deformation field s = Id and intensity displacement ∆ = 0.

• iteration t:

1. compute the update for surface evolution (4.10): u = [∂X
1

∂t
∂X2

∂t
∂X3

∂t
]T and δ = ∂X4

∂t
;

2. apply fluid regularization on u : u← Kfluid ∗ u;
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3. update deformation field: s← s ◦ exp(u);
4. apply diffusion regularization on s : s← Kdiff ∗ s;
5. update intensity displacement ∆← ∆+Kint ∗ δ;
6. apply spatial deformation I t+1

m = s(I tm);

7. apply intensity dispalcement I t+1
f = I tf +∆;

8. compute new total error: TotalError = Σ|I t+1
m − I t+1

f |2;
9. if (TotalError < threshold || t = maxIteration) break;

Note that u and δ are both normalized and multiplied by a chosen step size as in typical

registration methods. Following the convention in diffeomorphic demons, the step size for

spatial deformation is set to a constant of 2 pixels, and the step size of intensity displacement

can be set to
maximum image intensity

number of iterations
.

4.3 Implementation details

The proposed algorithm is implemented using the C++ image processing library Insight

Toolkit (ITK) [11]. The implementation includes the following list of files:

• REMRegistration.cxx

• ExponentialDeformationFieldImageFilter.h

• ExponentialDeformationFieldImageFilter.txx

• GaussianSmoothingVectorFieldFilterByD.h

• GaussianSmoothingVectorFieldFilterByD.txx

• CMakeLists.txt

After collecting all the inputs, the source and target pass through an optional smoothing

step, where smoothing will result in low SNR but lose of image information to a certain

extent. This smoothing step is not suggested in most applications. Then the source image

is histogram matched to the target image.
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Before entering the registration loop, several intermediate variables are initialized, including

u, δ, s, ∆, warped moving image and β. Then, within each iteration, we first update φ

function via calling the itkSquaredDifferenceImageFilter. The first and second order partial

derivatives of I, β and φ are computed using the itkGradientRecursiveGaussianImageFilter

and the itkHessianRecursiveGaussianImageFilter. The surface variation is then computed

using (4.10).

The fluid regularization and the diffusion regularization are implemented using Gaussian

smoothing GaussianSmoothingVectorFieldFilterByD. Then, both u and δ are normalized

and multiplied by the chosen step sizes. To map u into the Lie group of diffeomorphisms,

we used the ExponentialDeformationFieldImageFilter, which is originally included in the

diffeomorphic demons package and was edited for our application. The update of the defor-

mation field given in (4.14) is implemented by spatially warping the deformation field s by

u using itkWarpImageFilter and then incorporate u using itkAddImageFilter. The intensity

displacement is applied also using itkAddImageFilter.

After the update, image L2 residual is re-computed for the current iteration and φ function

is updated. This process repeats until the maximum iteration is reached.

The arguments and their common values of our deformable registration algorithm are listed

as follows:

1. argv[1] source image (healthy subject/template)

2. argv[2] target image (image with topological change)

3. argv[3] lesion probability map

• binary lesion segmentation smoothed using Gaussian kernel of variance 1 works

for most cases.

4. argv[4] Boolen: smooth input image

• 0 not to smooth

• 1 smooth

5. argv[5] float: sigma for fluid-like regularization

• 0.8 when template used as source image

• 1.2 when healthy subject is used as source image.
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6. agrv[6] float: sigma for diffusion-like regularization

• 0.8 when template used as source image

• 1.2 when healthy subject is used as source image.

7. argv[7] float: step Size for spatial deformation

• 2 works for almost all cases, same as in diffeomorphic demons

8. argv[8] float: step Size for intensity displacement

• 0 for healthy to healthy registration

• 0.05 for template to subject

• 0.01 for subject to subject.

9. agrv[9] float: epsilon 0.02

10. agrv[10] int: number of iterations

• 30 for template to subject

• 100 for subject to subject.

11. argv[11] output prefix

In the following, we list a set of sample arguments used to generate the results in Sec. 4.3.

• Sample arguments for Sec. 4.4.1:

./REMrederive OASISelderlyTemplate.nrrd OASIS img0027.nrrd

Oasis 0027 lesionMap.nii 0 0.8 0.8 2 0.05 0.02 30 templateToOASIS0027Reg

• Sample arguments for Sec. 4.4.2:

./REMrederive Oasissubj 0116.nrrd ADNI brain0023.nrrd

ADNI lesionMap 0023.nrrd 0 1.2 1.2 2 0.01 0.02 100 OASIS0116ToADNI0023Reg

• Sample arguments for Sec. 4.4.5:

./REMrederive Oasis subj 0050.nrrd Oasis subj 0034.nrrd

allZero lesionMap.nrrd 0 1.2 1.2 2 0 0.02 100OASIS0050ToOASIS0034Reg

./REMrederive OASISelderlyTemplate.nrrd Oasis subj 0034.nrrd

allZero lesionMap.nrrd 0 0.8 0.8 2 0 0.02 30 templateToOASIS0034Reg
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4.4 Experiments and results

In this section, the registration algorithm is tested using multiple sets of experiments. The re-

sulting deformation fields are compared with those obtained using diffeomorphic demons [13],

where topological changes are not specially handled. Additional results are given to demon-

strate the impact of false alarm and mis-detection of lesion in the construction of β. Exper-

iments are also conducted for cases that are currently modeled, e.g., both moving and fixed

images contain topological changes, to show the advantages as well as the limitations of the

algorithm.

4.4.1 Register template to brain MRIs with lesions.

In the first set of experiments, we register a brain template to a set of 20 brain MR images

with lesions. The template was constructed for one of our early studies [55], which is obtained

by aligning and averaging a set of 130 MR images for healthy elderly subjects (age above

58) from the OASIS dataset [56]. The testing set of 20 brain MR images with lesion were

also from the OASIS dataset, but none of them were used in the template construction.

The template is affine registered to the target images before applying our deformable registra-

tion algorithm using the Slicer3 [57] Fast Affine Registration Module. Compared to MR im-

ages of individual subjects, brain templates are very smooth. As a result, in the experiments,

we use small Gaussian kernels for the smoothing of deformation fields: σfluid = σdiff = 0.82

for Kfluid and Kdiff . Lesions are segmented using the FreeSurfer tool [17] (segmented with

the label white matter hypointensity lesion), and β is then constructed with σprob = 1 for

Kprob in (4.13); ǫ = 0.01 in (4.7). Other parameters are set as follows: σprob = 1 for Kprob

in (4.13); ǫ = 0.01 in (4.7) and σint = 0.4 for Kint. In all of the 20 registration experiments,

the image residual stops dropping and begins oscillating 3 within 15-25 iterations, so we

terminate all the registrations at the 30th iteration. Sample curves plotting the registration

residual during the registration process are shown in Fig. 4.3(a), where the solid line plots

image L2 residual after the spatial deformation field of the current iteration is applied to the

moving image, and the dashed line plots image L2 residual after the intensity displacement

is additionally applied. From these curves, we observe a smooth diffusion process both on

2All the parameter settings through this chapter are in pixel scale.
3Residual oscillation is a commonly seen phenomenon in gradient descent based searching. The reason

mainly attributes to the over-shooting and back-and-forth searching when the current solution is close to

the true local minimum.
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Figure 4.3: Registration Residual for the first set of registrations. (a) Sample curves plotting

the registration residual during the registration process. The solid line plots the image L2

residual after the spatial deformation field of the current iteration is applied on the moving

image, and the solid line plots the image L2 residual when the intensity displacement is also

applied. (b) Image L2 residuals before and after registration. The blue bars shows the L2

distance between the source and target image before deformable registration. The red bars

show the L2 residual between spatially deformed moving image and the target images. The

green bars show the L2 residual after the intensity displacement is further applied to the

target image.
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the evolution of spatial deformation and on that of the intensity displacement. The image

L2 residuals before and after registration for all the 20 experiments are shown in Fig. 4.3(b).

The blue bar shows the L2 residual between the moving and the target images before our

deformable registration. The red bar shows the L2 residual between the spatially-deformed

moving image and the target image, where we can see a significant drop of residual values

compared to the corresponding blue bar. We also observe a further drop of residual values

on the green bars, which are the L2 residuals after the intensity displacement is applied to

the target image, in addition to spatial deformation. In other words, the green bar shows

the registration residual after removing the contribution from the intensity difference caused

by topological change.

Some samples of the registration results are given in Fig. 4.4 to Fig. 4.7. Fig. 4.4 to Fig. 4.7

each shows the result of one registration experiment, where the first row shows the checker-

board image of the template and the target image. The second row shows the checkerboard

image of the target image and the registered template, i.e., after spatial deformation. The tar-

get images all contain lesions, which are segmented using the FreeSurfer tool [17] (segmented

with the label white matter hypointensity lesion), and marked out using blue contours, as

shown in the third rows. The fourth rows give the target images after intensity displacement

is applied. The fifth and sixth rows in Fig. 4.4 to Fig. 4.7 plot the iso-contours of the mov-

ing image on top of the target image, before and after the spatial deformation is applied,

respectively. These iso-contour plots help to better visualize the alignment of cortical gray

matter (GM) and white matter (WM). The three columns in Fig. 4.4 to Fig. 4.7 show the

Axial, Sagittal and Coronal views of each volume, respectively. For all the cases, we can

see that the anatomical structures of the template are well aligned with those on the target

images and the intensity within lesions in the target image is corrected to become that of

healthy white matter.

Fig. 4.8 provides some samples of the resulting deformation vector fields using a glyph

view4. The template image (the left-most column) is registered to two subjects with severe

lesions (the second column). After the registration, the template image is deformed to align

with the subjects, as shown in the third column. In the last column, we show a zoomed view

where the deformation fields are plotted as glyph fields on top of the target image. For the

first subject (the upper row), we focus on the lesions around the first ventricle, and for the

second subject (the lower row), we focus on the lesion around the lateral ventricle. From

4Note that the arrows in the glyph plot are only for illustration, and vector may not be length to scale,

to improve visualization. This applies to all the following glyph plots.
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Figure 4.4: Sample of registration results 1: from a template to subjects with lesion from

OASIS dataset. The first row shows the template image which is affinely aligned to the

target image. The second row shows the target images that containing lesions, which are

marked out with blue contours. The third row shows the spatially deformed template image,

and the last row gives the target image after intensity displacement is applied. The fifth and

sixth rows plot the iso-contours of the moving image on top of the target image, before and

after the spatial deformation is applied, respectively. The columns show the Axial, Sagittal

and Coronal views, from left to right, respectively.
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Figure 4.5: Sample of registration results 2. Subfigures are organized in the same way as in

Fig. 4.4.
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Figure 4.6: Sample of registration results 3. Subfigures are organized in the same way as in

Fig. 4.4.

47



Figure 4.7: Sample of registration results 4. Subfigures are organized in the same way as in

Fig. 4.4.
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Figure 4.8: Samples of the resulting deformation vector fields from a template to subjects

with lesion from OASIS dataset. Vector fields are shown using glyphs. Left-most column: the

template image. Second column from left: two subjects with severe lesions. Third column

from left: the spatially deformed template image after registration. Right-most column:

zoomed view of deformation fields on top of the target image. For the first subject (upper

row), zoomed region around the first ventricle. For the second subject (lower row), zoomed

region around the lateral ventricle.

both cases, we found no false deformation around the lesion areas.

For comparison purposes, we also used the diffeomorphic demons algorithm to conduct these

experiments. However, in all the experiments, diffeomorphic demons is not successful in the

sense that the algorithm converges to the results that completely shrink the areas of white

matter into a spike. This has been seen in our previous study when the smoothness of the

moving and the target images differ significantly. In Fig. 4.9 and Fig. 4.10, we provide a

comparison of the registration results when our algorithm is set to the same configuration

as diffeomorphic demons: no smoothing on both the moving and the target images, σfluid =

σdiff = 0.8 for Kfluid and Kdiff . Three resolutions are used in the diffeomorphic demons

registration, where 50, 50 and 200 iterations are performed in each resolution, respectively.

In Fig. 4.9 and Fig. 4.10, the first column from left shows the template image, the second

column shows the target image, the third column gives the result of our algorithm and the

fourth column gives that of diffeomorphic demons. The first and third rows show the images

in Axial and Coronal views, respectively. The second and fourth rows show the glyph plots

of deformation fields in Axial and Coronal views, respectively. From these examples, we find

that our algorithm converges to reasonable results, whereas diffeomorphic demons does not.
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Figure 4.9: First example of comparing our registration result with that of diffeomorphic

demons. The first column from left shows the template image, the second column shows

the target image. The third column gives the result of our algorithm and the right-most

column gives that from diffeomorphic demons. The first and third row shows the images in

Axial and Coronal views, respectively. The second and fourth row shows the glyph plot of

deformation fields in Axial and Coronal views, respectively.
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Figure 4.10: Another example of comparing our registration result vs. diffeomorphic demons.

Subfigures are organized in the same way as in Fig. 4.9.
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4.4.2 Register brain MRIs of healthy subject to that of Alzheimer’s

patients.

In this set of experiments, we register the brain MR image of an age 77 healthy female

from OASIS dataset to a set of 20 brain MR images with lesions in the Alzheimer’s disease

Neuroimaging Initiative (ADNI) dataset5. The images from the ADNI dataset are skull-

stripped using the FSL (BET) tool [58].

In these experiments, because we are conducting subject-to-subject registration, the moving

image is noisier and sharper compared to the template image used in Sec. 4.4.1.A. As a

result, we use larger Gaussian kernels for the smoothing of deformation fields, compared

with those used in the previous set of experiments. Specifically, we use σfluid = σdiff = 0.8

for Kfluid and Kdiff , respectively. Other parameters are: σprob = 1 for Kprob in (4.13);

ǫ = 0.02 in (4.7) and σint = 0.4 for Kint. In the registration experiments, the moving image

was first affinely registered to the target images, again using the Slicer3 [57] Fast Affine

Registration Module. Then, when applying our deformable registration algorithm, the image

residual stopped dropping and started oscillating after 50-80 iterations, so we terminate the

registration for all experiments at the 100th iteration. Sample curves plotting the registration

residual during the registration process for one of the experiments are shown in Fig. 4.11(b),

with the same configuration as that used in Fig. 4.11(a). The image L2 residuals before and

after registration for all the 20 experiments are shown in Fig. 4.11(b), in the same fashion

as used in Fig. 4.3(b). Samples of registration results are shown in Fig. 4.12 - Fig. 4.15.

The subfigures are organized in the same fashion as in Fig. 4.4. We can see that in all the

cases, the moving images are spatially deformed and well aligned with the target images,

and the lesions in the target images are corrected after the intensity displacement is applied.

As an alternative visualization, in Fig. 4.16 and Fig. 4.17, we provide the difference images

between the moving and target images, before and after registration. The first rows show

5Data used in this chapter are selected from the Alzheimer’s disease Neuroimaging Initiative (ADNI)

database (http://www. loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute

on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 mil-

lion, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial mag-

netic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild cognitive impair-

ment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical trials.
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the difference images between the moving and target images before registration. The second

rows give the difference images between the deformed moving image and the target image.

The third rows provide the difference images between the deformed moving image and the

lesion-corrected target image. We observe from these results, that the image differences

caused by structural shape variation are removed after spatial deformation, and the image

differences caused by lesion are further removed after applying intensity correction.

For comparison purposes, we again used diffeomorphic demons algorithm [13] to perform the

same set of registration experiments. Three resolutions are used in the diffeomorphic demons

registration, where 50, 50 and 200 iterations are performed in each resolution, respectively6.

The variances used in the smoothing Gaussian kernel for fluid and diffusion regularization

are both set to 1.2, the same as in our algorithm. In Fig. 4.11(b), we also use magenta bars to

show the registration residual after applying diffeomorphic demons registration. We can see

that in all cases, the residuals after applying diffeomorphic demons have values in between

the residuals before and after intensity displacements (the red and green bars, respectively).

It is intuitive to understand that, in diffeomorphic demons, part of the spatial deformation

is contributed to local deformation that attempts to minimize the error caused by intensity

difference of lesions. This will in turn cause false deformation.

Now we demonstrate the efficacy of our algorithm in eliminating false deformation. Fig. 4.18

(a) and (b) show the registration results using our proposed algorithm and diffeomorphic

demons. In both (a) and (b), the sub-figures in the upper row, from left to right, show

an axial view of the moving image, the target image, the registered moving image (after

spatial deformation) using our algorithm, and the registered moving image (after spatial

deformation) using diffeomorphic demons. In both cases, we find that the diffeomorphic

demons algorithm tries to deform the lateral ventricle into the white matter areas with

lesions, which leads to an incorrect registration result. In contrast, these errors are not seen

in our registration results. Furthermore, in both (a) and (b), the left most sub-figure in the

lower row shows a zoomed region in order to visualize the deformation field. The second and

third sub-figures in both lower rows of (a) and (b) give the glyph view of the deformation

field obtained using our method and diffeomorphic demons, respectively. For diffeomorphic

demons, we observed a dense deformation energy concentration (abnormally long vectors)

around the lesion-affected areas in the resulting deformation field, which is obviously false

deformation. On the other hand, such false deformation is successfully removed in the

6Such multiple resolutions scheme can also be applied to our algorithm with helps to prevent convergence

to local minimums. However, this scheme is currently not yet implemented.
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results obtained using our algorithm. We need to emphasize that, despite the advantages

of our algorithm shown by these results, our algorithm does take lesion segmentation as an

additional input which is important prior knowledge.

4.4.3 Impact of false alarm and mis-detection of lesion.

To eliminate false deformation, our registration method relies on an a-priori lesion estima-

tion. However, the lesion segmentation obtained from automatic segmentation tools may

contain errors, either poor segmentation or false alarm/min-detection. Here, we provide

some examples to demonstrate the impact of these errors on our algorithm.

As explained in Sec. 4.2.2, β is a function of a smoothed lesion segmentation. Fig. 4.19 shows

such a case in our second set of experiments (Sec. 4.4.2). From Fig. 4.19 (a), we notice that

FreeSurfer underestimates the lesion-affected areas (inside the blue contours), especially the

lesion region to the left of the ventricle. Fig. 4.19 (b) shows the smoothing effect during the

construction of the p(x, y, z) function. All the lesions in the target image are successfully

removed after intensity displacement, as shown in Fig. 4.19 (c). Finally, in Fig. 4.19 (d), we

can see that the deformation field is not affected by the presence of a lesion, i.e., no false

deformation is observed.

However, if a lesion-affected area is completely mis-detected, the registration performance

will be affected. An example is shown in Fig. 4.20(a), which gives the Coronal view of a

moving image, a target image, and a registered moving image after applying the spatial

deformation, from left to right, respectively. We find that the skull stripping of the target

image obtained from FSL (BET) is not perfect, where some extracranial tissue was kept as

part of the brain. This tissue is not part of the brain, and does not have a matching anatomy

structure in the moving image. Thus, it can be regarded as a topological change. In fact,

such errors are commonly seen in large scale studies. Fig. 4.20(b) shows the deformation

field around this area, where we observe some false deformation. Ideally, if this area was

modeled in β, it would be corrected by intensity displacement and should not cause any

spatial deformation.

Underestimation or even mis-detection is common in automatic lesion segmentation algo-

rithms, due to the minor intensity differences of some lesions. However, it is relatively

uncommon to see false alarms during lesion detection, since it is expected that there always

exists some intensity difference. Thus, we do not have results to show the impact of false
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Figure 4.11: Registration residual for the second set of registration. (a): Sample curves

plotting the registration residual during the registration process. The solid line plots the

image L2 residual after the spatial deformation field of current iteration is applied on the

moving image, and the solid line plots the image L2 residual when the intensity displacement

is also applied. (b): Image L2 residuals before and after registration. The blue bars shows

the L2 distance between the source and target image before deformable registration. The red

bars show the L2 residual between spatially deformed moving image and the target images.

The green bars show the L2 residual after the intensity displacement is further applied to

the target image. In addition, the magenta bars in this subfigure show the L2 residual after

apply diffeomorphic demons registration.
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Figure 4.12: Sample of registration results 1: from a template to subjects with lesion from

ADNI dataset. The first row shows the template image which is affinely aligned to the target

image. The second row shows the target images that contain lesions, which are highlighted

with blue contours. The third row shows the spatially deformed template image, and the

last row gives the target image after intensity displacement is applied. The fifth and sixth

rows plot the iso-contours of the moving image on top of the target image, before and after

the spatial deformation is applied, respectively. The columns show the Axial, Sagittal and

Coronal views, from left to right, respectively.
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Figure 4.13: Sample of registration results 2. Subfigures are organized in the same way as

in Fig. 4.12.
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Figure 4.14: Sample of registration results 3. Subfigures are organized in the same way as

in Fig. 4.12.
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Figure 4.15: Sample of registration results 4. Subfigures are organized in the same way as

in Fig. 4.12.
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Figure 4.16: Sample of difference images 1. The first row shows the difference images between

the moving and target images before registration. The second row gives the difference images

between the deformed moving image and the target image. The third row provides the

difference images between the deformed moving image and the lesion-corrected target image.
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Figure 4.17: Sample of difference images 2. Subfigures are organized in the same way as in

Fig. 4.16.
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(a)

(b)

Figure 4.18: Impact of imprecise segmentation of lesion. In both (a) and (b), the subfigures

in the upper row, from left to right, show an axial view of the moving image, the target

image, the registered moving image (after spatial deformation) using our algorithm, and the

registered moving image (after spatial deformation) using diffeomorphic demons. Also, in

both (a) and (b), the left most subfigure in the lower row indicate a region that we zoom in

to visualize the deformation field. The second and third subfigures from the left gives the

glyph view of the deformation field obtained using our method and diffeomorphic demons,

respectively.

62



(a) (b) (c) (d)

Figure 4.19: Sample of registration with imprecise segmentation. (a): lesion segmentation

obtained using FreeSurfer, lesion areas are highlighted using blue contours, with part of

lesions underestimated. (b): the constructed β function. (c): result after intensity displace-

ment applied on the target image. (d): the deformation field.

alarm of lesion detection in the two sets of experiments here. However, even with false alarm,

we still expect our registration algorithm to perform normally. Imagine that if the intensities

of certain region on the moving and the target images are very close, φ will have small values

for these regions and no spatial deformation or intensity displacement will be exerted, even

though p(x, y, z) has large values.

Finally, we point out that the current version of our algorithm only deals with lesions in

the target image and a normal anatomy of the moving image is expected. Fig. 4.21 shows

the registration results when both the moving image (Fig. 4.21 (a)) and the target image

(Fig. 4.21 (b)) have lesions (from the ADNI dataset). Only the lesion segmentation for the

target image is modeled in β. We can observe that around the left side of lateral ventricle,

the deformed moving image (Fig. 4.21 (c)) is not well aligned with the target image after

registration, where false deformation can be observed, as shown in Fig. 4.21 (d).

4.4.4 Example of registering a template to a brain image with a

tumor.

In this experiment, we register a brain MR image template, as shown in the first row of

Fig. 4.22, to a target image that carries a brain tumor of considerable size, as shown in

the second row of Fig. 4.22. The template image was constructed using 233 healthy young

subjects (mean age 34.58) from OASIS dataset in our previous study [55]. The brain image

with tumor was taken for a patient with a meningioma and is available in the testing data
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(a)

(b)

Figure 4.20: False deformation caused by the miss detection of topological change.
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(a) (b) (c) (d)

Figure 4.21: Sample registration when both moving and target image carry lesions. (a):

moving image with lesion. (b): target image with lesion. (c): deformed moving image after

spatial deformation. (d): the deformation field.

distributed within the Slicer3 [57] package. It was skull-stripped using the FSL (BET)

tool[58]. As shown in the second row of Fig. 4.22, instead of a precise segmentation of the

tumor, our interface allows a physician to draw 3 profile lines on the target image to indicate

the location and size of the tumor (with orange line), which gives us an ellipsoid containing

the tumor region (blue contours).

The third row of Fig. 4.22 gives the checkerboard image of the target image and the template;

where the fourth row gives the checkerboard image of the target images and the registered

template, after applying spatial deformation. We find that after registration, the template

is well aligned with the target image. The fifth row shows the target image after applying

intensity displacement, where we see the intensity of the tumor region is replaced by that of

the co-aligned template image7. This step essentially provides us with a “tumor-repaired”

version of the target image, which is an estimation of the brain anatomy had the tumor not

existed. We notice that in the target image, the growth of tumor pushes the surrounding

tissue aside and squeezes the ventricle. After intensity correction, the healthy tissue is moved

back to the normal location and the ventricle is lifted. In the sixth row, we plot the resulting

7Note that in the checkerboard images in the third and fourth rows, the target image appears to be much

darker compared to the template. The appearances of the target image before and after intensity correction,

as shown in the second and fifth rows, are also very different. This is due to the fact that the target image

has a very different intensity profile because of the bright tumor. As a result, the contrast of the whole image

is not good, where CSF appears to be dark and not really visible. However, if we pay some close attention,

it is easy to notice that major features, such as the separation between gray matter and white matter and

the boundary of ventricle are all well aligned after the deformable registration. Also, as shown in the fifth

row, after the intensity of the tumor region is repaired, brain regions other than the tumor can be visualized

with a proper intensity contrast.
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Figure 4.22: Sample registration of a brain template to the MRI of a meningioma patient.

First row: a brain template, the moving image. Second row: target image, MRI of a

meningioma patient. Third and fourth row: checkerboard image of the target and the

moving image, before and after spatial deformation, respectively. The fifth row: the intensity

corrected target image after intensity displacement. The sixth row: glyph plot of the resulting

deformation field. The 3 columns show the Axial, Sagittal and Coronal views of the same

image. Note that the length of glyph is amplified for better visualization and is not in real

pixel scale.
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deformation field using glyphs. Clearly, the tumor does not induce any false deformation,

despite the strong intensity gradient between the tumor region and the surrounding healthy

tissue. In view of these results, we believe that the proposed algorithm might also be used

to register images of resections as well.

4.4.5 Registering images of normal topology.

We need to point out that although our algorithm is motivated by the need for accurately

registering images with topological changes, our algorithm can also be used to register images

of normal topology, i.e., those without topological changes. The spatial deformation, in this

case, contains all the deformation energy by setting the lesion probability map p(x, y, z) to

zero everywhere and does not allow the intensity to deform.

In Fig. 4.23 to Fig. 4.26 we give 4 examples using our registration algorithm, where both

the moving and the target images have normal topology. In Fig. 4.23 to Fig. 4.26, the

three columns give the Axial, Sagittal and Coronal views of the images. The first shows

the checkerboard image of the target image and the template; and the second row shows

the checkerboard image of the target image and the deformed template, i.e., after applying

spatial deformation to the template. The third and fourth rows plot the iso-contours of the

moving image before and after applying the spatial deformation, on top of the target image.

Fig. 4.23 and Fig. 4.24 each shows the result of registering an elderly brain template, the

same as used in Sec. 4.4.1, to a young and healthy subject from the OASIS dataset (age

27 and 21). Note that the brains of young subjects are of significant structural difference

from the elderly template, which is particularly noticeable in terms of the ventricle sizes. In

both cases the algorithm converges to very good alignments. Fig. 4.25 shows the results of

registering the elderly brain template to an elderly healthy subject in OASIS, the same as

used in Sec. 4.4.2. Fig. 4.26 shows the result of registering the image of the subject used in

Fig. 4.23(b) to the subject used in Fig. 4.24(a). In all the cases, no intensity displacement

was allowed, and thus the spatial deformation carries all the deformation energy.

The parameters used in template-to-subject registrations, i.e., Fig. 4.23 to Fig. 4.25 are set

the same as used in Sec. 4.4.1 and those used in subject-to-subject registration, i.e., Fig. 4.26,

are set the same as in Sec. 4.4.2.
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Figure 4.23: Sample result of registering the elderly template to a young and healthy subject

from OASIS. The first and second rows give the checkerboard image of the target image and

the template, before and after applying spatial deformation, respectively. The third and

fourth row plot the iso-contours of the template, before and after registration, respectively,

on top of the target image.
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Figure 4.24: Another sample of registering the elderly template to a young and healthy

subject from OASIS. Subfigures are organized in the same way as in Fig. 4.23.
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Figure 4.25: Sample result of registering the elderly template to a healthy elderly subject

from OASIS. Subfigures are organized in the same way as in Fig. 4.23.
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Figure 4.26: Sample result of registering a young and healthy subject from OASIS to another.

Subfigures are organized in the same way as in Fig. 4.23.
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4.4.6 Smoothness of β.

In (4.13), we used a Gaussian kernel to construct the probability map by slightly blurring the

boundary of the lesion segmentation. The purpose of this smoothing operation is to provide

a smooth transition between the intensity corrected areas and their neighborhood. It also

helps mitigate the adverse effect of imprecise segmentation, as discussed in Sec. 4.4.3. In

clinical applications, this smoothing kernel should be selected based on the type of lesion, i.e.,

if the lesion of interest has a clear boundary for a precise segmentation, a small smoothing

kernel can be used. On the other hand, for lesions that do not have a clear boundary, a larger

smoothing kernel should be used. Fig. 4.28 provides an example showing the impact of the

smoothing kernel. In particular, we conduct two experiments, where the elderly template, the

same as used in Sec. 4.4.1, is registered to a brain image with lesions in the OASIS dataset,

where σprob, for Kprob, is set to be 0 and 1 in the two experiments, respectively. The first row

in Fig. 4.28(a) shows the checkerboard image of the template and the target image before

registration. The second and third rows show the checkerboard images of the target image

and the registered template after applying spatial deformation, using σprob = 0 and σprob = 1,

respectively. All other parameters are kept the same as those used in Sec. 4.4.1. From

Fig. 4.28, we can see the registration algorithm converges to very similar spatial deformation

in the two experiments. However, the intensity displacement was affected by the choice of

σprob. This can be visualized in Fig. 4.28(b). In particular, the first row of Fig. 4.28(b)

shows a zoomed view of the region with lesion in the target image, where the boundary of

FreeSurfer lesion segmentation was marked by blue contours. The second and third rows

show the lesion-repaired target images using σprob = 0 and σprob = 1, respectively. From the

second row, we observe that there exists an artifact resulting from lesion-repair along the

boundary of the lesion segmentation. This artifact, however, is mitigated by smoothing the

label map, i.e., σprob = 1, as can be seen in the third row. Also, even in the case of σprob = 0,

the sharp boundary in p(x, y, z) does not show a strong impact on the diffusion process. This

can be observed in Fig. 4.27, which shows the image L2 residual during the two experiments.

We see that image residuals in the two experiments decrease in a very similar fashion.

4.4.7 Comparison with in-painting.

As we discussed in Chapter 1, many current DBM methods perform a additional step of in-

painting prior to the deformable registration. Specifically, the brain MRI is first segmented

into multiple classes. The classes corresponding to lesions are merged into proper anatomical
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Figure 4.27: Curves plotting image L2 residuals during the registration with σprob = 0 and

σprob = 1.

structures, e.g., white matter lesions will be merged into white matter. Then, the segments

of each class will be in-painted by the average intensity on the entire class.

In order to compare with the performance of in-painting, we tried to register a young and

healthy subject, as shown in the first row in Fig. 4.29, to a elderly subject with lesion, as

shown in the second row of Fig. 4.29, where both images are from the ADNI dataset. The

moving image is first registered to the target image using our algorithm, where the deformed

moving image is shown in the third row of Fig. 4.29. Then, we perform in-painting on

both the moving and the target image based on the segmentation results obtained using the

FreeSurfer tool. These in-painting results are shown in the first and second rows in Fig. 4.30.

The moving and target images after in-painting are then registered using diffeomorphic

demons, where the deformed moving image is shown in the third row of Fig. 4.30. Comparing

the corresponding rows in Fig. 4.29 and Fig. 4.30, we find that the deformable registration

algorithms converge to reasonable results in both cases.

In Fig. 4.31(a), we show the glyph views of the deformation fields obtained through dif-

feomorphic demons after in-painting (left) and our registration algorithm (right). We find

that in both cases, the lesions around the lateral ventricle did not induce false deformation.

However, when we apply the deformation field obtained through diffeomorphic demons after

in-painting on the original moving image, we notice certain artifacts with blocks of uniform

intensities, as shown in the zoomed images in the upper row of Fig. 4.31(b). This is not seen
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(a)

(b)

Figure 4.28: Example showing the impact of smoothing kernel Kprob. (a): The first row

shows the checkerboard image of the template and target image before registration. The

second and third row show the registered template after applying spatial deformation, using

σprob = 0 and σprob = 1, respectively. (b): the first row shows a zoom-in view of the region

with lesion in the target image, where the boundary of FreeSurfer lesion segmentation was

marked by blue contours. The second and third rows show the lesion-repaired target images

using σprob = 0 and σprob = 1, respectively.
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in the result of our algorithm, as in the lower row of Fig. 4.31(b). Clearly, after in-painting,

the deformable registration algorithm is essentially registering image blocks (segments) of

uniform intensities. The artifact is a consequence of this block-wise registration. We believe

this provides some evidence that our registration algorithm maybe capable of capturing more

detailed shape difference, compared with the matching between in-painted blocks.
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Figure 4.29: Sample registration result using our algorithm. First row: moving image.

Second: target image. Third row: spatial deformed moving image.
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Figure 4.30: On the same registration experiment as in Fig. 4.29, registration result when

in-painting is used. First row: moving image after in-painting. Second: target image after

in-painting. Third row: spatial deformed moving image, i.e., after apply the deformation

field obtained using diffeomorphic demons on the in-painted image.
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(a)

(b)

Figure 4.31: Impact of in-painting. (a) glyph view of the deformation field obtained using

diffeomorphic demons after in-painting (left) and our algorithm (right). (b) upper row:

result when the deformation field obtained using in-painting is applied on the original moving

image; lower row: result when the deformation field obtained using our algorithm is applied

on the original moving image.

78



Chapter 5

Conclusion and Future Work

Deformable registration is an important research field in medical image processing, since

the resulting dense deformation fields provide rich information for clinical and basic science

studies. As demonstrated in Chapter 3, topological changes cause false deformation and

degrade the reliability of existing deformable registration algorithms. This motivated the

development of a deformable registration algorithm that is capable of registering images with

topological changes, eliminating false deformation. We now summarize our contributions in

tackling this research problem.

5.1 Research summary

In this work, we first study the impact of topological changes on existing deformable regis-

tration algorithms, which demonstrates the necessity of suppressing false deformation. To

handle the issue, we develop a new deformable registration algorithm for images with topo-

logical changes. The proposed algorithm is capable of using a segmentation of the topological

changes as an additional input to eliminate false deformation in the resulting deformation

field. In particular, the registration is performed by embedding images in R
3 Euclidian space

into surfaces in an R
4 Riemannian space. Then the image registration is modeled as a surface

evolution process. Using the information provided by the a-priori segmentation, our algo-

rithm controls the distribution of the deformation energy between the spatial deformation

and intensity displacement. By doing so, false deformation is effectively suppressed, and the

intensity displacement, as a by-product of our algorithm, captures the intensity difference
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caused by the topological change. The algorithm was extensively tested on different brain

MR image datasets containing minor to severe pathology. The registration results are com-

pared with those obtained from diffeomorphic demons, a representative modern algorithm

used in neuroimaging studies. The comparison demonstrates the efficacy of our proposed

algorithm in terms of converging to a resonable registration in the presence of topological

changes. More importantly, the resulting deformation field is free of false deformation, which

correctly reveals the structural differences between imaged brains.

The largest impact we foresee of the algorithm is an improved accuracy of DBM analysis

in the researches that has to deal frequently with lesions, including studies of aging, lupus,

MS, and Alzheimer’s. As shown in Sec. 4.4.7, our proposed algorithm avoids the extra step

of in-painting that is commonly used in DBM, and is believed to capture more detailed

shape differences, compared with the matching between in-painted blocks. In addition, our

registration algorithm also outputs a lesion correction result, which repairs the intensity of

topological changes in the input image. This by-product can also be useful in many clinical

studies, such as template building.

We also highlight the value of our proposed algorithm in terms of ease to implement, ro-

bustness, fast convergence, intuitive parameter settings and limited memory space consump-

tion (around 1/40 of that required by the original LDDMM). As shown in Sec. 4.4.5, our

proposed algorithm is also capable of registering images with normal topology, which proves

that our method is a generally applicable registration tool. Considering all these merits, we

believe our proposed algorithm will find its application in many large-scale group-wise or

longitudinal brain studies.

5.2 Future work

The current version of our implementation only allows the target image to contain a topo-

logical change relative to the source image. A direct extension would be to symmetrize the

energy function and allow lesions in both the moving and the target images to be modeled by

separate probability maps. If mutual information is used instead of the L2 image residual in

the embedding function φ, our proposed algorithm might also register images across different

modalities. In addition, as shown in Sec. 4.4.3, our algorithm can also be used to register

brain images that are not-skull stripped, where the brain mask can be modeled in p.

In the future, the proposed registration algorithms can be integrated into the pipeline of
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studies related to group-wise analysis, or longitudinal study of disease progression. In our

research group, an automatic unsupervised classification algorithm is currently being devel-

oped to distinguish brain MR images of AD patients from those of elderly normal controls.

The classification uses the metric computed from dense registration vector fields, an exam-

ple result of which is illustrated by Fig. 5.1. However, the issue of false deformation with

existing deformable registration algorithms degrades the classification performance. Ideally,

the structural difference and intensity difference caused by lesions among brains are two

difference sources in the analysis of brain variations. Our proposed registration algorithm

is well suited for this application, where it can provide two separate metrics for such clas-

sification algorithms: one is the spatial deformation field for brain structural changes that

is free of false deformation, and the other is the intensity displacement which contains only

the intensity difference caused by lesions. This well-separated and enriched information is

expected to enhance the performance of classification and provide new information for severe

disease studies.
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Figure 5.1: Classification on dataset using whole-brain distances. Quick shift classification

result in the embedded space [2].
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Appendix A

Derivation of Euler-Lagrange equation

Given an image manifold and its metric (Σ, g) in R
3, we embed it as feature-scale manifold

(M,h) in R
4 through the map X : Σ→M :

X = [x, y, z, I(x, y, z)], (A.1)

where I is the image intensity feature, which is a spatial varying function with respect to

the image local corrdinates x, y, z.

To get a conformal area of the embedded surface that is approprate for a registration objec-

tive, we choose the following metirc in M :

h =











φ 0 0 0

0 φ 0 0

0 0 φ 0

0 0 0 βφ











(A.2)

where φ(x, y, z, I) is a chosen embedding function. β(x, y, z) is a scaling function that controls

the relative magnitude of the embedded scale-space. The elements in h are indexed as

hi,j, i, j = 1, . . . , 4. The inverse of h can be directly obtained:
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h−1 =













1
φ

0 0 0

0 1
φ

0 0

0 0 1
φ

0

0 0 0 1
βφ













(A.3)

whose elements are indexed as hij , i, j = 1, . . . , 4.

Now we compute the metric g through the pullback procedure:

gµν = hij∂µX
i∂νX

j. (A.4)

Note that Einstein summation convention is used, with µ, ν = 1, 2, 3 and i, j = 1, . . . , 4.

g11 = h11∂xX
1∂xX

1 + h44∂xX
4∂xX

4 = φ(1 + βI2x);

g12 = h44∂xX
4∂yX

4 = φβIxIy;

g13 = h44∂xX
4∂zX

4 = φβIxIz;

g21 = h44∂yX
4∂xX

4 = φβIxIy;

g22 = h22∂yX
2∂yX

2 + h44∂yX
4∂yX

4 = φ(1 + βI2y );

g23 = h44∂yX
4∂zX

4 = φβIyIz;

g31 = h44∂zX
4∂xX

4 = φβIxIz;

g32 = h44∂zX
4∂yX

4 = φβIyIz;

g33 = h33∂zX
2∂zX

2 + h44∂zX
4∂zX

4 = φ(1 + βI2z );

thus, we have

g = φ







1 + βI2x βIxIy βIxIz

βIxIy 1 + βI2y βIyIz

βIxIz βIxIz 1 + βI2z






(A.5)

The determinant of g is computed as:
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|g| = φ3[(1 + βI2x)(1 + βI2y )(1 + βI2z ) + 2β3I2xI
2
y I

2
z − β3I2xI

2
z

− β3I2xI
2
yI

2
z − β3I2yI

2
z − β3I2xI

2
yI

2
z − β3I2xI

2
y − β3I2xI

2
y I

2
z

= φ3(1 + βI2x + βI2y + βI2z ). (A.6)

Then, we get the inverse of g:

g22g33 − g32g23 = φ2 + βφ2(I2y + I2z ) + β2φ2(I2y I
2
z − I2yI

2
z ) = φ2(1 + βI2y + βI2z );

g13g32 − g12g33 = β2φ2IxIyI
2
z − βφ2IxIy − β2φ2IxIyI

2
z = −βφ2IxIy;

g12g23 − g13g22 = β2φ2IxI
2
y Iz − βφ2IxIz − β2φ2IxI

2
yIz = −βφ2IxIz;

g23g31 − g21g33 = β2φ2IxIyI
2
z − βφ2IxIy − β2φ2IxIyI

2
z = −βφ2IxIy;

g11g33 − g31g13 = φ2 + βφ2(I2x + I2z ) + β2φ2(I2xI
2
z − I2xI

2
z ) = φ2(1 + βI2x + βI2z );

g13g21 − g11g23 = β2φ2I2xIyIz − βφ2IyIz − β2φ2I2xIyIz = −βφ2IyIz;

g21g32 − g22g31 = β2φ2IxI
2
y Iz − βφ2IxIz − β2φ2IxI

2
yIz = −βφ2IxIz;

g12g31 − g11g32 = β2φ2I2xIyIz − βφ2IyIz − β2φ2I2xIyIz = −βφ2IyIz;

g11g22 − g12g21 = φ2 + βφ2(I2x + I2y ) + β2φ2(I2xI
2
y − I2xI

2
y ) = φ2(1 + βI2x + βI2y);

thus:

g−1 =
1

φ(1 + βI2x + βI2y + βI2z )







1 + βI2y + βI2z −βIxIy −βIxIz
−βIxIy 1 + βI2x + βI2z −βIyIz
−βIxIz −βIxIz 1 + βI2x + βI2y






. (A.7)

whose elements are indexed by gµν , µ, ν = 1, 2, 3. The evolution of the embedded surface is

defined through the Euler-Lagrange equation of the conformal surface area measured by the

Polykov Functional:

∂X i

∂t
=

φ2

√
g
∂µ(
√
ggµν∂νX

i) + φ2Γi
jk∂µX

j∂νX
kgµν , (A.8)

whose Γi
jk are the Levi-Civita connection coefficients, computed as:
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Γi
jk =

1

2
hil(∂jhlk + ∂khjl − ∂lhjk), (A.9)

so,

Γ1
11 =

1

2
h11(∂xh11 + ∂xh11 − ∂xh11) =

φx

2φ

Γ1
12 =

1

2
h11(∂xh12 + ∂yh11 − ∂xh12) =

φy

2φ

Γ1
13 =

1

2
h11(∂xh13 + ∂zh11 − ∂xh13) =

φz

2φ

Γ1
14 =

1

2
h11(∂xh14 + ∂Ih11 − ∂xh14) =

φI

2φ

Γ1
21 =

1

2
h11(∂yh11 + ∂xh21 − ∂xh21) =

φy

2φ

Γ1
22 =

1

2
h11(∂yh12 + ∂yh21 − ∂xh22) = −

φx

2φ

Γ1
23 =

1

2
h11(∂yh13 + ∂zh21 − ∂xh23) = 0

Γ1
24 =

1

2
h11(∂yh14 + ∂Ih21 − ∂xh24) = 0

Γ1
31 =

1

2
h11(∂zh11 + ∂xh31 − ∂xh31) =

φz

2φ

Γ1
32 =

1

2
h11(∂zh12 + ∂yh31 − ∂xh32) = 0

Γ1
33 =

1

2
h11(∂zh13 + ∂zh31 − ∂xh33) = −

φx

2φ

Γ1
34 =

1

2
h11(∂zh14 + ∂Ih31 − ∂xh34) = 0

Γ1
41 =

1

2
h11(∂Ih11 + ∂xh41 − ∂xh41) =

φz

2φ

Γ1
42 =

1

2
h11(∂Ih12 + ∂yh41 − ∂xh42) = 0

Γ1
43 =

1

2
h11(∂Ih13 + ∂zh41 − ∂xh43) = 0

Γ1
44 =

1

2
h11(∂Ih14 + ∂Ih41 − ∂xh44) = −

βφx + βxφ

2φ

thus,
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Γ1 =
1

2φ











φx φy φz φI

φy −φx 0 0

φz 0 −φx 0

φI 0 0 −(βφx + βxφ)











. (A.10)

Similarly, we have

Γ2 =
1

2φ











−φy φx 0 0

φx φy φz φI

0 φz −φy 0

0 φI 0 −(βφy + βyφ)











. (A.11)

Γ3 =
1

2φ











−φz 0 φx 0

0 −φz φy 0

φx φy φz φI

0 0 φI −(βφz + βzφ)











. (A.12)

Γ4 has a slightly different form:

Γ4
11 =

1

2
h44(∂xh41 + ∂xh14 − ∂Ih11) = −

φI

2βφ

Γ4
12 =

1

2
h44(∂xh42 + ∂yh14 − ∂Ih12) = 0

Γ4
13 =

1

2
h44(∂xh43 + ∂zh14 − ∂Ih13) = 0

Γ4
14 =

1

2
h44(∂xh44 + ∂Ih14 − ∂Ih14) =

βxφ+ βφx

2βφ

Γ4
21 =

1

2
h44(∂yh41 + ∂xh24 − ∂Ih21) = 0

Γ4
22 =

1

2
h44(∂yh42 + ∂yh24 − ∂Ih22) = −

φI

2βφ

Γ4
23 =

1

2
h44(∂yh43 + ∂zh24 − ∂Ih23) = 0

Γ4
24 =

1

2
h44(∂yh44 + ∂Ih24 − ∂Ih24) =

βyφ+ βφy

2βφ

Γ4
31 =

1

2
h44(∂zh41 + ∂xh34 − ∂Ih31) = 0
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Γ4
32 =

1

2
h44(∂zh42 + ∂yh34 − ∂Ih32) = 0

Γ4
33 =

1

2
h44(∂zh43 + ∂zh34 − ∂Ih33) = −

φI

2βφ

Γ4
34 =

1

2
h44(∂zh44 + ∂Ih34 − ∂Ih34) =

βzφ+ βφz

2βφ

Γ4
41 =

1

2
h44(∂Ih41 + ∂xh44 − ∂Ih41) =

βxφ+ βφx

2βφ

Γ4
42 =

1

2
h44(∂Ih42 + ∂yh44 − ∂Ih42) =

βyφ+ βφy

2βφ

Γ4
43 =

1

2
h44(∂Ih43 + ∂zh44 − ∂Ih43) =

βzφ+ βφz

2βφ

Γ4
44 =

1

2
h44(∂Ih44 + ∂Ih44 − ∂Ih44) = −

βφI

2βφ

Thus, we have

Γ4 =
1

2βφ











−φI 0 0 βφx + βxφ

0 −φI 0 βφy + βyφ

0 0 −φI βφz + βzφ

βφx + βxφ βφy + βyφ βφz + βzφ βφI











. (A.13)

Now we get back to Equation A.8:

∂X1

∂t
=

φ2

√
g
∂µ(
√
ggµν∂νX

1) + φ2Γ1
jk∂µX

j∂νX
kgµν , (A.14)

We derive the two righthand terms in Equation A.14 separately:

−S11 =
φ2

√
g
∂µ(
√
ggµν∂νX

1)

=
φ2

√
g

[

∂x(
√
gg11) + ∂y(

√
gg21) + ∂z(

√
gg31)

]

=
φ2

√
g

{

∂x

√
φ(1 + βI2y + βI2z )

√

1 + βI2x + βI2y + βI2z
−∂y

√
φβIxIy

√

1 + βI2x + βI2y + βI2z
−∂z

√
φβIxIz

√

1 + βI2x + βI2y + βI2z

}
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∂

∂x





φ(1 + βI2y + βI2z )
√

φ(1 + βI2x + βI2y + βI2z )





=
1

2[φ(1 + βI2x + βI2y + βI2z )]
3/2

[φφx(1 + βI2y + βI2z )(1 + βI2x + βI2y + βI2z )

+ 2φ2(βxI
2
y + 2βIyIxy + βxI

2
z + 2βIzIxz)(1 + βI2x + βI2y + βI2z )

− φ2(βxI
2
x + 2βIxIxx + βxI

2
y + 2βIyIxy + βxI

2
z + 2βIzIxz)(1 + βI2y + βI2z )] (A.15)

− ∂

∂y





φβIxIy
√

φ(1 + βI2x + βI2y + βI2z )





=
−1

2[φ(1 + βI2x + βI2y + βI2z )]
3/2

[φφyβIxIy(1 + βI2x + βI2y + βI2z )

+ 2φ2(βyIxIy + βIyIxy + βIxIyy)(1 + βI2x + βI2y + βI2z )

− φ2βIxIy(βyI
2
x + 2βIxIxy + βyI

2
y + 2βIyIyy + βyI

2
z + 2βIzIyz)] (A.16)

− ∂

∂z





φβIxIz
√

φ(1 + βI2x + βI2y + βI2z )





=
−1

2[φ(1 + βI2x + βI2y + βI2z )]
3/2

[φφzβIxIz(1 + βI2x + βI2y + βI2z )

+ 2φ2(βzIxIz + βIzIxz + βIxIzz)(1 + βI2x + βI2y + βI2z )

− φ2βIxIz(βzI
2
x + 2βIxIxz + βzI

2
y + 2βIyIyz + βzI

2
z + 2βIzIzz)] (A.17)

Based on A.15, A.16, A.17, we get

−S11 =
φ2

√
g
∂µ(
√
ggµν∂νX

1)

=
−φx(1 + βI2x + βI2y + βI2z ) + Ix(φxβIx + φyβIy + φzβIz − φI) + φIIx

2(1 + βI2x + βI2y + βI2z )

+
1

2φ(1 + βI2x + βI2y + βI2z )
2
[−2βIxIxx(1 + βI2y + βI2z )− 2βIxIyy(1 + βI2x + βI2z )

− 2βIxIzz(1 + βI2x + βI2y ) + 4β2I2xIyIxy + 4β2I2xIzIxz4β
2IxIyIzIyz

− (I2x + I2y + I2z )(ββyIxIy + ββzIxIz − βx − ββxI
2
y − ββxI

2
z )] (A.18)
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and,

−S12 =φ2Γ1
jk∂µX

j∂νX
kgµν

=φ2(Γ1
11g

11 + 2Γ1
12g

12 + 2Γ1
13g

13 + 2Γ1
14(Ixg

11 + Iyg
12 + Izg

13 + Γ1
22g

22 + Γ1
33g

33)

+ Γ1
44(I

2
xg

11 + I2yg
22 + I2z g

33 + 2IxIyg
21 + 2IxIzg

31 + 2IyIzg
23))

=
1

2(1 + βI2x + βI2y + βI2z )
[2Ix(φxβIx + φyβIy + φzβIz − φI) + φx(1 + βI2x + βI2y + βI2z )

+ φβx(I
2
x + I2y + I2z )] (A.19)

To summarize,

∂X1

∂t
=− S11 − S12

=−
φβIx[(1 + βI2y + βI2z )Ixx + (1 + βI2x + βI2z )Iyy + (1 + βI2x + βI2y )Izz]

(βI2x + βI2y + βI2z + 1)2

+
2φβ2Ix(IxIyIxy + IxIzIxz + IyIzIyz)

(βI2x + βI2y + βI2z + 1)2

− 3Ix(φxβIx + φyβIy + φzβIz − φI)− 2φIIx
2(1 + βI2x + βI2y + βI2z )

−
φIx(2 + βI2x + βI2y + βI2z )(βxIx + βyIy + βzIz)

2(1 + βI2x + βI2y + βI2z )
2

(A.20)

Similarly, we have

∂X2

∂t
=− S21 − S22

=−
φβIy[(1 + βI2y + βI2z )Ixx + (1 + βI2x + βI2z )Iyy + (1 + βI2x + βI2y )Izz]

(βI2x + βI2y + βI2z + 1)2

+
2φβ2Iy(IxIyIxy + IxIzIxz + IyIzIyz)

(βI2x + βI2y + βI2z + 1)2

− 3Iy(φxβIx + φyβIy + φzβIz − φI)− 2φIIy
2(1 + βI2x + βI2y + βI2z )

−
φIy(2 + βI2x + βI2y + βI2z )(βxIx + βyIy + βzIz)

2(1 + βI2x + βI2y + βI2z )
2

(A.21)
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∂X3

∂t
=− S31 − S32

=−
φβIz[(1 + βI2y + βI2z )Ixx + (1 + βI2x + βI2z )Iyy + (1 + βI2x + βI2y )Izz]

(βI2x + βI2y + βI2z + 1)2

+
2φβ2Iz(IxIyIxy + IxIzIxz + IyIzIyz)

(βI2x + βI2y + βI2z + 1)2

− 3Iz(φxβIx + φyβIy + φzβIz − φI)− 2φIIz
2(1 + βI2x + βI2y + βI2z )

−
φIz(2 + βI2x + βI2y + βI2z )(βxIx + βyIy + βzIz)

2(1 + βI2x + βI2y + βI2z )
2

(A.22)

Now for the last term,

∂X4

∂t
=

φ2

√
g
∂µ(
√
ggµν∂νX

4) + φ2Γ4
jk∂µX

j∂νX
kgµν = S41 + S42 (A.23)

where

S41 =
φ2

√
g
∂µ(
√
ggµν∂νX

4)

=
φ2

√
g
[∂x(
√
g(g11Ix + g12Iy + g13Iz)) + ∂y(

√
g(g21Ix + g22Iy + g23Iz))

+ ∂z(
√
g(g31Ix + g32Iy + g33Iz))]

For convenience, we divide S41 into 3 terms:

S41 = term1 + term2 + term3

term1 =
φ2

√
g
(∂x
√
gg11Ix + ∂y

√
gg21Ix + ∂z

√
gg31Ix)

term2 =
φ2

√
g
(∂x
√
gg12Ix + ∂y

√
gg22Ix + ∂z

√
gg32Ix)

term3 =
φ2

√
g
(∂x
√
gg13Ix + ∂y

√
gg23Ix + ∂z

√
gg33Ix)
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Now we look at each of the three terms:

term1 =
φ2

√
g

{

∂x

√
φIx(1 + βI2y + βI2z )

√

1 + βI2x + βI2y + βI2z
−∂y

√
φβI2xIy

√

1 + βI2x + βI2y + βI2z
−∂z

√
φβI2xIz

√

1 + βI2x + βI2y + βI2z

}

=− IxS11 +R1

where

R1 =
1

2φ(1 + βI2x + βI2y + βI2z )
2
[2φ2(1 + βI2x + βI2y + βI2z )(1 + βI2y + βI2z )Ixx

−2φ2IxIyIxyβ(1 + βI2x + βI2y + βI2z )

−2φ2IxIzIxzβ(1 + βI2x + βI2y + βI2z )]

similarily:

term2 =− IyS21 +R2

R2 =
1

2φ(1 + βI2x + βI2y + βI2z )
2
[2φ2(1 + βI2x + βI2y + βI2z )(1 + βI2y + βI2z )Iyy

− 2φ2IxIyIxyβ(1 + βI2x + βI2y + βI2z )

− 2φ2IyIzIyzβ(1 + βI2x + βI2y + βI2z )]

term3 =− IzS31 +R3

R3 =
1

2φ(1 + βI2x + βI2y + βI2z )
2
[2φ2(1 + βI2x + βI2y + βI2z )(1 + βI2y + βI2z )Izz

− 2φ2IxIzIxzβ(1 + βI2x + βI2y + βI2z )

− 2φ2IyIzIyzβ(1 + βI2x + βI2y + βI2z )]

To summarize:
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S41 = term1 + term2 + term3

=− IxS11 − IyS21 − IzS31 +R1 +R2 +R3

=
1

2β(1 + βI2x + βI2y + βI2z )
(φxβIx + φyβIy + φzβIz)

−
φ[(1+βI2y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1 + βI2x+βI

2
y )Izz−2βIx(IxIyIxy+IxIzIxz+IyIzIyz)]

(1+βI2x+βI
2
y + βI2z )

2

− φ

2(1 + βI2x + βI2y + βI2z )
[(I2x + I2y + I2z )(βxIx + βyIy + βzIz)]

Then,

S42 =φ2Γ4
jk∂µX

j∂νX
kgµν

=Γ4
11g

11 + 2Γ4
14(Ixg

11 + Iyg
12 + Izg

13) + 2Γ4
24(Ixg

21 + Iyg
22 + Izg

23)

+ 2Γ4
34(Ixg

31 + Iyg
32 + Izg

33) + Γ4
22g

22 + Γ4
33g

33

+ Γ4
44(I

2
xg

11 + I2yg
22 + I2z g

33 + IxIyg
12 + IxIzg

13 + IyIzg
23)

=
1

2β(1 + βI2x + βI2y + βI2z )
[−φI(3 + 2βI2x + 2βI2y + 2βI2z )

+ 2Ix(βφx + βxφ) + 2Iy(βφy + βyφ) + 2Iz(βφz + βzφ)

+ βφI(I
2
x + I2y + I2z )] (A.24)

So, overall,

∂X4

∂t
=S41 + S42

=
φ[(1+βI2y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1 + βI2x+βI

2
y )Izz−2βIx(IxIyIxy+IxIzIxz+IyIzIyz)]

(1 + βI2x + βI2y + βI2z )
2

+
3(φxβIx + φyβIy + φzβIz − φI)− φI(βI

2
x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )

+
φ(βxIx + βyIy + βzIz)(2 + βI2x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )
2

(A.25)

We immediately notice that Equation A.20, A.21, A.22, A.25 have the same shape, and thus

the variation of the surface can be written in vector form:
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∂X

∂t
= S1











−βIx
−βIy
−βIz
1











+ S2











Ix

Iy

Iz

I2x + I2y + I2z











+ S3











−βIx
−βIy
−βIz
1











(A.26)

where

S1 =
φ[(1+βI2y+βI

2
z )Ixx+(1 +βI

2
x+βI

2
z )Iyy+(1+βI

2
x+βI

2
y)Izz−2β(IxIyIxy+IxIzIxz+IyIzIyz)]

(βI2x + βI2y + βI2z + 1)2

+
3(φxβIx + φyβIy + φzβIz − φI)

2(1 + βI2x + βI2y + βI2z )

S2 =−
φI

2(1 + βI2x + βI2y + βI2z )

S3 =−
φ(βxIx + βyIy + βzIz)(2 + βI2x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )

Note that in Equation A.26 we intentionally put all the terms that relate to the partial

derivatives of β in the last term S3.
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Appendix B

Impact of β

The value of β decides the embedded feature-space.

∂X1

∂t
=−

φβIx[(1+βI
2
y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1+βI

2
x+βI

2
y)Izz−2β(IxIyIxy+IxIzIxz+IyIzIyz)]

(1 + βI2x + βI2y + βI2z )
2

− 3Ix(φxβIx + φyβIy + φzβIz)− 2φIIx
2(1 + βI2x + βI2y + βI2z )

−
φIx(2 + βI2x + βI2y + βI2z )(βxIx + βyIy + βzIz)

2(1 + βI2x + βI2y + βI2z )
2

=−
φIx[(

1
β
+I2y+I

2
z )Ixx+(

1
β
+I2x+I

2
z )Iyy+(

1
β
+I2x+I

2
y )Izz−2(IxIyIxy+IxIzIxz+IyIzIyz)]

( 1
β
+ I2x + I2y + I2z )

2

− 3Ix(φxIx + φyIy + φzIz)

2( 1
β
+ I2x + I2y + I2z )

+
−2φIIx

2β( 1
β
+ I2x + I2y + I2z )

−
φIx(

2
β
+ I2x + I2y + I2z )(βxIx + βyIy + βzIz)

2β( 1
β
+ I2x + I2y + I2z )

2

(when β →∞)

=−
φIx[(I

2
y+I

2
z )Ixx+(I

2
x+I

2
z )Iyy+(I

2
x+I

2
y )Izz−2(IxIyIxy+IxIzIxz+IyIzIyz)]

(I2x + I2y + I2z )
2

− 3Ix(φxIx + φyIy + φzIz)

2(I2x + I2y + I2z )

Similarly, when β →∞,
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∂X2

∂t
=−

φIy[(I
2
y+I

2
z )Ixx+(I

2
x+I

2
z )Iyy+(I

2
x+I

2
y )Izz−2(IxIyIxy+IxIzIxz+IyIzIyz)]

(I2x + I2y + I2z )
2

− 3Iy(φxIx + φyIy + φzIz)

2(I2x + I2y + I2z )

∂X3

∂t
=−

φIz[(I
2
y+I

2
z )Ixx+(I

2
x+I

2
z )Iyy+(I

2
x+I

2
y )Izz−2(IxIyIxy+IxIzIxz+IyIzIyz)]

(I2x + I2y + I2z )
2

− 3Iz(φxIx + φyIy + φzIz)

2(I2x + I2y + I2z )

For the intensity deformation component,

∂X4

∂t
=
φ[(1+βI2y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1 + βI2x+βI

2
y)Izz−2βIx(IxIyIxy+IxIzIxz+IyIzIyz)]

(1 + βI2x + βI2y + βI2z )
2

+
3(φxβIx + φyβIy + φzβIz − φI)− φI(βI

2
x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )

+
φ(βxIx + βyIy + βzIz)(2 + βI2x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )
2

=
φ[( 1

β
+I2y+I

2
z )Ixx+(

1
β
+I2x+I

2
z )Iyy+(

1
β
+ I2x+I

2
y )Izz−2Ix(IxIyIxy+IxIzIxz+IyIzIyz)]

β( 1
β
+ I2x + I2y + I2z )

2

+
3(φxIx + φyIy + φzIz − φI

β
)− φI(I

2
x + I2y + I2z )

2β( 1
β
+ βI2x + βI2y + βI2z )

+
φ(βxIx + βyIy + βzIz)(

2
β
+ βI2x + βI2y + βI2z )

2β( 1
β
+ βI2x + βI2y + βI2z )

2

(when β →∞)

= 0

These results show that when β is set to a very large value, the spatial grid deformation will

dominate. Now, we test the case when β → 0:
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∂X1

∂t
=−

φβIx[(1+βI
2
y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1+βI

2
x+βI

2
y)Izz−2β(IxIyIxy+IxIzIxz+IyIzIyz)]

(1 + βI2x + βI2y + βI2z )
2

− 3Ix(φxβIx + φyβIy + φzβIz)− 2φIIx
2(1 + βI2x + βI2y + βI2z )

−
φIx(2 + βI2x + βI2y + βI2z )(βxIx + βyIy + βzIz)

2(1 + βI2x + βI2y + βI2z )
2

(when β → 0)

=φIIx − 2φIx(βxIx + βyIy + βzIz)

Similarly, when β → 0

∂X2

∂t
= φIIy − 2φIy(βxIx + βyIy + βzIz)

∂X3

∂t
= φIIz − 2φIz(βxIx + βyIy + βzIz)

For the intensity deformation component,

∂X4

∂t
=
φ[(1+βI2y+βI

2
z )Ixx+(1+βI

2
x+βI

2
z )Iyy+(1 + βI2x+βI

2
y)Izz−2βIx(IxIyIxy+IxIzIxz+IyIzIyz)]

(1 + βI2x + βI2y + βI2z )
2

+
3(φxβIx + φyβIy + φzβIz − φI)− φI(βI

2
x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )

+
φ(βxIx + βyIy + βzIz)(2 + βI2x + βI2y + βI2z )

2β(1 + βI2x + βI2y + βI2z )
2

(when β → 0)

=φ(Ixx + Iyy + Izz)−
3φI

0
+

2φ(βxIx + βyIy + βzIz)

0

=∞

These results shows that when β is set to a very small value, the intensity deformation will

dominate.
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