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Abstract

We present a diffeomorphic approach for constructing intrinsic shape atlases of sulci on the

human cortex. Sulci are represented as square-root velocity functions of continuous open curves in

ℝ3, and their shapes are studied as functional representations of an infinite-dimensional sphere.

This spherical manifold has some advantageous properties – it is equipped with a Riemannian 

metric on the tangent space and facilitates computational analyses and correspondences between

sulcal shapes. Sulcal shape mapping is achieved by computing geodesics in the quotient space of

shapes modulo scales, translations, rigid rotations and reparameterizations. The resulting sulcal

shape atlas preserves important local geometry inherently present in the sample population. The

sulcal shape atlas is integrated in a cortical registration framework and exhibits better geometric

matching compared to the conventional euclidean method. We demonstrate experimental results
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for sulcal shape mapping, cortical surface registration, and sulcal classification for two different

surface extraction protocols for separate subject populations.

Index Terms

Computational neuroanatomy; sulcal shape analysis; diffeomorphic mapping; magnetic resonance
image (MRI); cortical surface registration

I. Introduction

A Surface-based cortical morphometry analysis has been shown to have a wide reaching

applicability for detecting and measuring progression in mental illness and for understanding

of normal and abnormal neurological patterns. Cortical morphometry involves three main

steps: i) surface representation, ii) registration and alignment for construction of atlases, and

iii) statistical analysis of deformations or warps explaining the variability of surface features

in a given population. The cortical morphology is in turn determined by the folding patterns

of the sulcal and gyral features. There is a great deal of interest in directly analyzing the

geometry [1], [2], [3], [4], [5], [6], [7] of these folding patterns via suitable representations

of the underlying form. This paper proposes an invariant shape representation and the

supporting statistical mapping framework for sulcal landmark analysis on the cortex. Our

goal is to enable invariant efficient mappings between sulcal shapes intrinsic to the shape

space. An interesting question then, is while matching sulcal curves, what is the nature of

invariances that should be imposed on their shapes? There are several levels of sulcal

invariance depending upon the application or the neuroscientific study. For example, if one

is interested in size differences alone, then the representation needs to retain the native scale.

Alternatively, if one is interested in sulcal shifts or effacements in case of traumatic brain

injury, then it is important to consider both the orientation and the translation along with size

to allow meaningful comparisons between sulci. In previous literature, Mangin et al. [8] for

instance study sulcal patterns by enforcing rotational as well as scale invariance. For

morphometric analysis, global scale is often indicative of sex differences [9]. On the other

hand, in typical studies, if one is only interested in detecting changes in the geometric shape

of the sulci, one needs to make the sulcal shape matching invariant to the pose, scale, and

other shape preserving transformations as will be done here.

A. Related Work

Neuroanatomically, the utility of aligning sulcal or gyral landmarks is established by the

relationships between such landmarks and functional and architectonic boundaries as

demonstrated by the pioneering work of Brodmann [10] and more recently by other

researchers [11], [12], [13]. The underlying idea of sulcal mapping approaches is to model

(either explicitly or indirectly) the sulcal and gyral patterns exclusively based on local

geometric features. These features may be functions of curvature of these patterns on the

cortex, or more explicitly, 3D continuous space curves corresponding to the deepest regions

of the valleys for sulci and topmost regions of the ridges for the gyri. The main advantage of

using explicit landmarks is the incorporation of expert anatomical knowledge which

improves the consistency in matching of homologous features. This in turn potentially
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improves statistical power in the neighborhood of the landmarks. Additionally, increasing

the number of consistent landmarks also improves the alignment accuracy, thereby allowing

more control in the registration process. Finally, separate from cortical registration, one can

directly study the shapes of sulcal patterns. Previously, landmark curves have mostly been

used as boundary conditions for various cortical registration approaches [14], [15], [16],

[17], [18], [19], [20]. Cortical registration aims to establish point-to-point correspondences

between a pair of surfaces by aligning several homologous features on the two cortical

surfaces. These correspondences can be achieved either automatically by using both local

and global features such as sulcal depth, cortical convexity, and conformal factors on

surfaces [21], [22], [23], [24], [25], [26], [27], or in a semi-automated manner, using

expertly delineated sulcal and gyral landmarks as in the case of Thompson et al. [28], [17].

The advantages and disadvantages of using automatic vs landmark based approaches is

discussed in detail by Pantazis et al. [29], and an algorithm for selecting an optimal subset of

sulcal curves for registration is presented by Joshi et al. [30]. Various researchers have

modeled the sulci and gyri using different representations. Tao et al. [31] represent sulci

using landmark points on curves, and build a statistical model using a Procrustes alignment

of sulcal shapes. Vaillant et al. [32] represent cortical sulci by medial surfaces of cortical

folds. While the advantage of this model is that it represents entire cortical folds, a limitation

of this method is the use of unit speed parameterizations of active contours for constructing

Procrustes shape averages for sulci. Furthermore, for the both approaches, the shapes are

represented by finite features or landmarks and thus are limited in the characterization of

rich geometric detail that manifests in the cortical folds giving the sulci their shapes.

Recently, there have been several interesting approaches using continuous representations

for sulci [33], [34], [3], [4]. For example, Auzias et al. [35] model whole sulci using

distributions of point sets and use a large deformation diffeomorphic metric mapping

(LDDMM) framework for registering not only the surfaces but full MRI volumes. This

approach starts with a combined extraction and identification of sulci, which are then used

for matching across subjects. The current-based diffeomorphic approach by Durrleman et al.

[3] focuses on detecting variability in the sulcal patterns without utilizing explicit point

correspondences by using currents for modeling curves and surfaces. Fillard et al. [4]

propose a statistical representation for sulcal curves and measure variability by extrapolating

a covariance tensor field to the whole brain, whereas Lui et al. [36] and Leow et al. [37]

have proposed a shape-based approach where sulci and gyri are represented using implicit

representations for cortical mapping and analysis.

B. Our Approach: Intrinsic Sulcal Shape Analysis

Our underlying premise is that shapes of sulci encode the reduced dimensional geometry of

the cortex. We represent sulci by parameterized square-root velocity functions of their three-

dimensional curve representations. However, unlike previous approaches, we construct a

shape space of such sulcal curves and build statistical models intrinsically on the shape

space. We also note that if one has a reliable method for identifying gyri as ridges on the

cortex, we can follow the same treatment for gyral shapes as well. Our approach models the

whole sulcus without the use of user defined landmarks or discrete parametric

representations and deals with functional mappings of curve instances on the shape

manifold. The main contributions of this paper are as follows:
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1. An invariant, square-root velocity parameterized representation for sulcal shapes.

2. An inverse-consistent diffeomorphic framework for matching sulcal shapes.

3. An intrinsic statistical framework for constructing sulcal shape atlases based on the

Riemannian metric on the shape manifold.

4. Integration of diffeomorphic mapping between sulcal curves towards cortical

surface registrations.

The square-root velocity parameterization for sulci offers several advantages over the

conventional unit speed parameterized representations. It allows elastic deformations

between sulci by encoding variable speed information in the representation. The scaling

constraint on sulci transforms the sulcal shape space into a sphere, where geodesics are

efficiently computed. A Riemannian metric is induced on the shape space via its tangent

space, and sulcal geodesics are computed under this metric. This differential geometric

framework for sulcal representation and matching naturally provides the means to perform

intrinsic statistical analysis on the shape space. It is empirically observed that the geodesic

sulcal mappings respect the biological homology between the sulcal anatomies compared to

the extrinsic euclidean matching. Preliminary versions of this work have appeared in [38],

[39].

This paper is organized as follows. Section II outlines the main idea of the paper. It details

the shape modeling scheme including sulcal curve representation, analysis, and statistics. It

deals with the shape representation and specifies a Riemannian metric on the tangent space

of the shape manifold. Section II-D outlines the procedure for computing statistical shape

averages of sulci for a given population. Section III integrates sulcal shape matching into a

cortical registration framework, followed by results and conclusion. Section II-D We also

provide extensive validation results for i) constructing diffeomorphic sulcal shape atlases

(Sec. IV-A), ii) constructing cortical atlases using the sulcal matching framework (Sec. IV-B

and IV-B), and iii) classifying sulcal landmarks based on their geometric shape and location

(Sec. IV-D).

II. Diffeomorphic sulcal shape matching

In this section, we describe the modeling scheme used to represent sulcal shape features. We

represent the cortical valleys (sulci) by open curves. However unlike previous approaches,

which have derived point landmarks for representing the sulcal features, we will use

continuous functions of curves for representing shapes. As shown in Sec. II-B, this shape

space turns out to be an infinite dimensional sphere with each shape denoting a point on the

sphere. The matching of any two shapes is performed by smoothly deforming one shape to

the second shape. The intermediate shapes are chosen such that they trace a geodesic path

between the two shapes in the shape space. An algorithm for finding such geodesics is

discussed in Sec. II-C.

A. Tracing of sulcal curves

We used MNI Display [40] to interactively label 27–28 major sulci on each cortical

hemisphere according to a sulcal labeling protocol with established intra- and inter-rater
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reliability [9], [41]. This protocol specifies that sulci do not intersect and that individual

sulci are continuous curves that are not interrupted. If interruptions are present, the human

raters specify the path across any interrupting gyri. In cases where a full set of sulci cannot

be defined, a subset can be used without requiring any changes in the algorithm described

here. The comprehensive sulcal protocol defines a set of 36 landmarks, out of which 10–12

landmarks are used for control purposes. As an initial step, we determine the maximum

number of vertices across all the sulci, and uniformly resample all the vertices of the sulci to

this number. This resampling simply changes the reparameterization of the curve, and does

not affect translation, rotation, or even scale of the curve, thus preserving its shape. An an

example, Fig. 1 shows a set of 28 landmarks traced on a cortical surface extracted using

MNI tools [40].

B. Sulcal Shape Representation

We represent sulci using parameterized continuous curves as follows [42], [43], [44]. Let β

be a 3D, arbitrarily parameterized, open curve such that β: [0, 2π] → ℝ3. We represent the

shape of the curve β by the function q: [0, 2π] → ℝ3 as,

(1)

Here, s ∈ [0, 2π], , and (·, ·)ℝ3 is the standard euclidean inner-product in

ℝ3. β(s) is the instantaneous velocity of the curve β(s). The function q defines a vector field

along the curve β in ℝ3. It is noted that the scaling by the square root of the norm in the

denominator of Eq. 1 is a departure from the conventional unit tangent vector field

representation for a shape of the curve. This offers several advantages; i) the

parameterization of the sulcal curves is not restricted to arc-length, and thus allows

stretching and shrinking in terms of the speed along the curve, ii) the Riemannian metric

induced on the shape space becomes fully invariant to reparameterizations (Sec. II-C2(c))

and is thus an elastic metric, iii) furthermore owing to the representation, the Riemannian

metric reduces to a  metric that is constant on the shape space, and lastly iv) this allows

elastic sulci to be represented by a single function and eliminates the need for representing

the bending, stretching and shrinking by separate functions. The quantity ||q(s)|| is the

instantaneous “speed” of the curve, and the ratio  is the instantaneous “direction” (unit

vector) along the curve. The original curve β can be recovered, up to a translation, using

. In order to make the representation scale invariant, we normalize the

function q by dividing it by its magnitude. Mathematically, this is given by

(2)
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Throughout this paper, the shape of a curve will be assumed to have this scale-invariant

form given by q̃, and with a slight abuse of notation will be referred to as q. The set of such

representations is defined as the space of all scale invariant elastic curves, and is denoted by

(3)

Due to scale invariance, the space  becomes an infinite-dimensional unit-sphere and

represents all open elastic curves invariant to translation and uniform scaling. We also

denote this as the pre-shape space. Figure 2 shows a schematic of the sulcal landmark curve

representation on the pre-shape space. Each curve is projected as a single element of the pre-

shape space.

To measure infinitesimal lengths and subsequently find geodesics in the shape space, we

need a notion of a metric on the pre-shape space. We would like this metric to smoothly

vary from one point to another and to have a convenient computational form. We therefore

define a metric on the tangent space of shapes, and thereby induce it on the pre-shape space.

Given a curve q ∈ , and the first order perturbations of q given by u, v ∈ Tq( ),

respectively, the inner product between the tangent vectors u, v to  at q is defined as,

(4)

It is observed that the metric given by Eq. 4 is a smooth, symmetric bilinear positive definite

form, and is a Riemannian metric. Due to the spherical nature of the shape space, any vector

on the shape space can be transformed to a tangent vector by simply subtracting its normal

component. Thus the tangent space of  is given by

(5)

where w(s): I ≡ [0, 2π] → ℝ3. Here the set {w} represents all tangent vectors in the tangent

space of .

Our goal is to seek an unique invariant representation by considering an equivalence class of

all transformations such as rotations and reparameterizations that leave the shape of the

curve unchanged. This issue is addressed in the next section by defining a quotient space of

shapes, where geodesics, and thus the matching between curves is achieved by constructing

the space of elastic shapes, and measuring the “elastic” distance between curves under

certain well-defined shape-preserving transformations.

C. Geodesic Sulcal Matching on the Shape Space

Since we assume a continuous curve representation for sulci, in addition to translation and

scaling, we consider the following transformations of the curve that preserve the sulcal

shape. A rigid rotation of a curve is a shape-preserving operation, also considered as a group

action by a 3×3 rotation matrix O3 ∈ SO(3) on  applied at q, and is defined as O3·q(s) =

O3q(s), ∀s ∈ [0, 2π]. Lastly but importantly, curves can assume arbitrary speeds without
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changing the shape giving rise to multiple parameterizations that represent the same sulcal

shape. This ambiguity in representation can be denoted by a new group action constituting a

reparameterization by a non-linear map γ that changes the speed of the sulcus. In order to

ensure that the ordering of the points on the sulci remain the same after reparameterization

and that the speed function does not exhibit sharp jumps and discontinuities, a desirable

property of this function γ is that it remains differentiable and also has a differentiable

inverse. The class of functions that exhibit this property are also referred to as

diffeomorphisms. We define  = { γ:  → } as the space of all orientation-preserving

diffeomorphisms. Then the resulting variable speed parameterizations of the curve can be

thought of as diffeomorphic group actions of γ ∈  on the curve q, and is derived as

follows. Let q be the shape representation of a curve β. Let α = β(γ) be a reparameterization

of β by γ. Then the velocity vector can be written as α̇ = γ̇β̇(γ). From Eqn. 1, we have

. Reconstituting the velocity vector in

terms of the shape function q, the reparameterization of q by γ is denoted as a right action of

the group  on the set  as ϕγ(q), where ϕ:  ×  →  and is written as

(6)

Ultimately, we are interested in analyzing the sulci in the invariant space of shapes given by

the quotient space of , modulo shape preserving transformations such as rigid rotations and

reparameterizations. Consequently, the provision of the reparameterization operation

facilitates elastic shape analysis of sulcal curves. We thus define the elastic shape space as

the quotient space  = /(SO(3) × ). Given a pair of shapes, the corresponding distance is

then calculated as the length of the shortest path or a geodesic between the respective

equivalence classes on the shape space . Before describing the method for computing

geodesics in the space , it is simpler to understand this procedure for the pre-shape space

.

1) Sulcal Geodesics in the Pre-shape Space —Given a pair of sulcal curves β1, β2,

we first obtain their shape representations q1, q2 using Eqn. 1 by projecting them to the

shape space. For the two shapes q1 and q2, the translation and scale invariant shape distance

between them is found by measuring the length of the geodesic connecting q1 and q2 on the

sphere . We know that geodesics on a sphere are great circles and can be specified

analytically. Thus given a tangent vector f ∈ Tq1( ) in the direction of q2, the geodesic on

 between the two points q1, q2 ∈  along f, for an infinitesimal time t is given by

(7)

On a sphere, this tangent vector f can be computed as follows. First we find the angle

between the two vector valued functions q1, and q2 as θ = arccos{< q1,q2 >}. The initial

direction is given by f = q2− < q1, q2 > q1. The vector f is then projected in the tangent space

at q1, as . We take incremental steps in the direction of f for short time intervals

dt, to obtain successive shapes along the geodesic while projecting the tangent vector f on
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the tangent space at the consecutive shape. Then the geodesic distance between the two

shapes q1 and q2 is given by

(8)

The quantity χ̇
t is also referred to as the tangent vector along the geodesic path χt. It is also

noted that χ0(q1) = q1, and χ1(q1) = q2. By constructing geodesics on the pre-shape sphere

( ), we implicitly assumed that the curves were rotationally aligned and that the

parameterizations of the curves were fixed at the onset of matching. This limitation is

addressed in the next section where we find geodesics fully invariant to pose, scale, rotation

as well as reparameterizations of sulci. Figure 3 shows a schematic and an example of a

geodesic between two sulci on the sphere .

2) Sulcal Geodesics in the Shape Space —In this section, we describe the

procedure for finding an elastic reparameterization-invariant geodesic between shapes q1

and q2 that yields a diffeomorphic mapping between pairs of sulci. To motivate the

discussion, we observe the comparisons between geodesics with and without scale and

rotation invariance respectively in Fig. 4. From visually observing the deformations, it is

clear that the sulcal matching is indeed affected by both scale and rotation. In our work, we

achieve fully invariant matching between sulci by removing the effects of global rotation

and scaling from the representation.

Since the actions of the re-parametrization groups SO(3) and  on  constitute actions by

isometries, we will find a geodesic between the equivalence classes of q1 and q2 by fixing

the parameterization of q1 and iteratively reparameterizing and re-orienting q2 according to

(O3q2) · γ, where O3 ∈ SO(3), γ ∈ , such that the length of the geodesic path given by

(9)

is minimized. Here d is the geodesic distance given by Eqn. 8. This procedure is described

below.

(a) Optimization over the rotation group SO(3): The optimal rotation Ô3 at each step is is

found numerically by performing singular value decomposition of . We approximate the

decomposition by the  function as

(10)

where U, S, V ∈ ℝ3×3. This yields the optimal rotation Ô3 = UVT.

(b) Optimization over the diffeomorphic group : The goal here is to find the optimal

diffeomorphism γ̂ such that Eqn. 9 is minimized. We start by defining an orbit  of the

shape q2 under the group action by a given γ ∈ . The optimality condition implies that the

tangent vector χ̇
1 ∈ Tq2( ) is orthogonal to . In order to construct the tangent space Tq2
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( ), we first define a 1-parameter flow at the tangent space of  at identity ψt: Tid( ) →

, where Tid( ) = ( ), and id = s. We further note that given a tangent vector g ∈

Tid( ), we have ψ0(id, g) = s, where s is the standard arc-length parameterization. The push-

forward map of the group action in Eqn. 6 is given as

(11)

We denote a Fourier basis for Tid( ) by V ≡ {vi}, i = 1 … d, and define the projection of

the tangent vector χ̇1 on  as

(12)

Then the optimality condition can be re-written as

(13)

Eqn. 13 is expanded in terms of the Fourier basis and minimized using gradient descent on

the Fourier coefficients of V in the tangent space of Tid( ). At each iteration of the gradient

procedure, we use the pull-back form of Eqn. 12 to construct g ∈ Tid( ) as

(14)

to obtain the current estimate of the diffeomorphism γ = ψ1(id, g). This diffeomorphism is

used to obtain the new reparameterization q2 · γ, and consequently the new estimate of χ̇
1.

This procedure is repeated until Eqn. 13 converges.

(c) Reparameterization invariant and inverse-consistent mapping: The Riemannian

metric proposed in Eq. 4 is invariant to reparameterizations. This can be easily verified as

follows. Let {f1,f2} be a pair of tangent vectors at a shape q in the tangent space . Let γ: [0,

2π] → [0, 2π] be a reparameterization function acting on q as γ · q. Then the pair of

reparameterized tangent vectors at γ · q is given by { }. The inner

product between the new pair of tangent vectors is given by

. Substituting t = γ(s) in the inner product, and noting

that dt = γ̇(s)ds, we have . This

implies that when finding the optimal geodesic path between two shapes q1 and q2 we can

keep one shape (say q1) fixed, and reparameterize q2 without changing the metric. We

initialize the optimization procedure given in Sec. II-C2 by using dynamic programming

[45] as the first step. Given the original shapes q1 and q2 we fix the initial rotation by
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performing a SVD according to Eqn. 10 and obtain an initial rotation Oinit, and consequently

the rotated shape . We then solve for the initial reparameterization by solving the

following equation,

(15)

Since γ is a differentiable and invertible function, from the inverse function theorem, Eq. 15

can be written as

(16)

The above optimization techniques to compute sulcal geodesics in the shape space  are

presented in a step-wise manner in Algorithm 1.

Algorithm 1

Geodesics between sulcal curves β1 and β2 in  = /(SO(3) × )
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Figure 5 shows comparisons of sulcal geodesics in the pre-shape space as well as in the

invariant shape space. The pre-shape space geodesics, also known as extrinsic geodesics are

obtained using Eqn. 9 by setting γ = s. It can be observed that unlike the extrinsic geodesics,

the diffeomorphic geodesic deformations preserve sulcal shape homologies by automatically

aligning critical features present in both sulci. Analogously in the extrinsic case, there is a

loss of geometric alignment that results in a mismatch of sulcal features. Furthermore,

regions of sulci where there is no obvious perceived alignment or matching show gradual

transformation along the geodesics. Additionally, in order to demonstrate inverse-

consistency of the sulcal mapping, Fig. 6 shows forward and backward (reversing the source

and target shapes) geodesics between different pairs of sulci, along with the optimal repa-

rameterizations obtained between the given pairs of shapes. For each column, the first path

denotes a forward geodesic, and the second path denotes a backward geodesic. The two

paths should be visually compared by following the first one from top to bottom, and the

second one from bottom to top as shown by the arrows in the first column, and by noticing

that the middle shapes along both the geodesics are most similar to each other. It is observed

that the geodesics yield inverse consistent matching between shapes. This is further

confirmed by overlaying the optimal parameterization γ1 for the forward geodesic, along

with the inverse optimal parameterization  for the backward geodesic, and observing that

they closely agree with each other.

D. Construction of a Statistical Sulcal Atlas

For a collection of sulcal landmark curves, we now construct a statistical shape average for

the entire set. Our objective here is twofold: create an atlas for a group/population analysis

of the sulcal patterns, and utilize the diffeomorphic atlas for driving cortical registrations for

a group of subjects. A related approach by Fletcher et al. [46] represents the population

variability of object shapes on a manifold by geodesics between medial axis representations

of shapes. In this work, we will also utilize non-linear geodesics between sulci, albeit on the

shape space of curves. Based upon the homologous matching between individual sulci, it is

desirable that the population average captures important statistical variabilities in the

landmark data. While matching sulcal landmarks, we assume that the end points for all of

the sulci of a particular type are identified. There are two well known approaches of

computing statistical averages in nonlinear spaces. The extrinsic shape average is computed

as an euclidean average of the shapes in the ambient space, and then subsequently projected

back to the shape space. Despite its speed and computational simplicity, the extrinsic mean

has a few limitations. It is ignorant of the specific nature of the representation of shapes, and

thereby the underlying nonlinearity of the shape space. Furthermore it is sensitive to the

method used for embedding the manifold in the euclidean space. As a simple example, a unit

circle can be embedded inside ℝ2 in several ways, and each embedding possibly leads to

different values of extrinsic means on the circle. Importantly in the case of shapes, the

extrinsic approach does not consider the elastic metric on the shape space and thus may not

respect local shape homologies. Alternately, the intrinsic average is computed directly on

the shape space, and makes use of distances and lengths that are defined strictly on the shape

space. A major advantage of our sulcal representation and mapping framework is that it

provides us with the necessary geometric structure to compute intrinsic statistical measures

on the shape space. However, owing to the nonlinear, infinite-dimensional, and spherical
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nature of the shape space, the computation of the average shape is not straightforward, since

we would like to compute the intrinsic mean shape in the quotient space of shapes . We

use the well known definition of the Karcher mean [47], [48] to denote this intrinsic average

and define it as follows.

Definition 1—Karcher Mean: For a set of shapes {qi}, i = 1, …, N, the Karcher mean is

given by

(17)

The Karcher mean relies on the geodesics defined via the exponential map, and minimizes

the average geodesic variance of the collection of shapes. The geodesic variance for N

shapes is given by

(18)

where the quantity χ̇
1
i(μ) is calculated using Eqn. 13. Unlike the extrinsic mean, the Karcher

mean is calculated by an iterative optimization procedure that involves repeated

computations of geodesics from each of the shapes of the population to the current estimate

of the mean. Algorithm 2 describes the procedure for computing the Karcher mean of a

collection of shapes. As an illustration, Fig. 7 shows a schematic of the calculation of the

extrinsic and the Karcher mean for a set of shapes. In this work, we will use the intrinsic

approach by computing the Karcher mean for a given set of shapes.
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Algorithm 2

Computation of Karcher mean shape for a collection of shapes {qi}, i = 1, …, N

E. Sulcal Shape Homologies

The curves representing the fundi of the sulci and the ridges of the gyri partially encode the

complexity of the cortex. For landmark based cortical analysis, it is desirable that the

geometrical features associated with this complexity be preserved for both the pairwise

sulcal registrations as well as group-wise registrations to an atlas. This is possible if both the

geometrical representation as well as the shape analysis method respect the observed

biological sulcal shape homologies present in any given population. Conventional linear

matching of sulcal curves assigns equal weights to all infinitesimal segments of the curve

and simply computes a one-to-one mapping between two curves regardless of their intrinsic

geometry. This is based upon a homeomorphism that is based upon equally weighted

fractional distances from the starting point of the curve. This can result in a suboptimal

matching of features on curves, and can lead to bumps on one curve corresponding to

valleys on the other (See Fig. 5). As a consequence, when several of these sulci are pooled

together from a population, these features can get weaker when averages are constructed. In

contrast to this approach, our method shows a dramatic improvement in matching these

features across sulci. Specifically, we suggest that the underlying geometric metric as well

as the geodesics constructed using the metric are sensitive to the geometry of the sulci.

While this is difficult to prove theoretically, we obtain experimental confirmation that the

pairwise sulcal shape mappings demonstrate that salient geometrical features are matched

from one sulcus to another. Moreover, the sulcal shape atlas constructed by finding repeated

geodesics from all the sulci in the population to the mean shape also shows the presence of

prominent global features that are characteristic of the population. This is depicted in Fig. 8,

which compares the conventional euclidean sulcal matching with our approach. The left
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panel in Fig. 8 also shows the point-wise correspondences between sulcal pairs for both the

diffeomorphic sulcal matching as well as the conventional euclidean sulcal matching

approach. It is observed that the diffeomorphic matching enables better alignment of the

ridges and valleys along the landmarks as compared to the euclidean matching. The right

panel in Fig. 8 shows a comparison between the Karcher mean and the extrinsic euclidean

mean for a set of 20 sulcal shapes. Furthermore, as expected, the euclidean average appears

to have smoothed out detailed features pertaining to the ridges, and folds in the sample set

compared to the Karcher mean. This idea is further investigated and experimentally verified

for a large population of sulci in Sec. IV-A.

In the next section, we describe a procedure for combining the diffeomorphic sulcal shape

atlas with a cortical registration framework that exploits the sulcal shape patterns for

mapping brains across populations.

III. Cortical Surface Registration using Sulcal Homologies

In this section, we describe the method for cortical registration applied to models of the

cortical pial surface that uses the presented sulcal matching framework. This registration

process has three stages: (i) perform the matching of delineated sulcal landmarks, (ii) for

each subject, parameterize the cortical surface to a unit square and (iii) find a vector field

with respect to this parameterization that aligns the matched sulcal landmarks between

subjects. The actual cortical registration uses a linear elastic energy for regularizing the

displacement field. All the surfaces used in our analysis are assumed to have a spherical

topology that is presumed to be enforced by the surface extraction method. In our studies,

we used MNI tools [40] and Freesurfer [22] tools that do guarantee this constraint.

We define a set of N surfaces, {M1, …, MN} where Mi ⊂ ℝ3. We represent these surfaces

discretely by manifold triangle meshes with spherical topology. For each surface i, we have

a set of L landmarks represented by continuous open curves {βi1, …, βiL} where βij: [0, 2π]

↦ Mi, and the ordered set of points {βij: i ∈ [1, N], j ∈ [1, L]} represents homologous

vertices on the set of surfaces. The curves are discretized as simple polylines, where the j-th

curve has kj vertices.

A. Inverse Diffeomorphic Mapping of Sulci

The first step of the process is to establish a correspondence between the homologous

landmark curves by computing diffeomorphic mappings γ̂
ij: [0, 2π] ↦ [0, 2π] given by

Algorithm 1 between shapes of sulci. We then apply the resulting diffeomorphisms γ̂
ij to the

native sulci βij such that for curve j and parameter t, {βij(γ̂
ij(t)): i ∈ [1, N]} is a set of

homologous points on the surfaces. This is accomplished by mapping the curves to a

Riemannian manifold, where reparameterizations are defined by geodesics to the Karcher

mean of the curves in the shape space. To avoid aliasing artifacts, each curve in a set is

resampled with the maximal number of vertices in the set.

B. Spherical Mapping and Alignment

Next, the surfaces are mapped to the sphere to establish a parameterization in which the

registration will be performed. The spherical mapping is initialized by subtracting the mean
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and normalizing all of the vertices, so that they are consistent with the pose and orientation

of the input meshes. A set of bijective mappings is found from each surface to the unit

sphere, {ϕ1, …, ϕN} where ϕi: Mi ↦ S2. The spherical mapping of the matched curves is

then . The meshes are simplified using QEM simplification [49] and

mapped to a sphere using an unconstrained energy-based method [50]. The curves are then

mapped to the sphere by finding the barycentric coordinates of each curve vertex in the

nearest triangle. A bounded interval hierarchy is used to efficiently search for the coincident

face of each curve vertex. Once the meshes and curves are mapped to the sphere, they are

rotationally aligned to enforce a consistent orientation of the spherical mappings. Given an

arbitrarily chosen target, each set of curves is aligned to the target by computing the rotation

and reflection that minimizes the least-squared difference between the discretized curve

coordinates. This is accomplished by solving the unconstrained orthogonal Procrustes

problem using singular value decomposition. Typically, left and right hemisphere surfaces

will be included and allowing reflections in the transform allows both hemispheres to be

mapped to a common orientation. More formally, for an arbitrary , we

find an alignment R ∈ ℝ3×3

(19)

where ΩT Ω = I

The rotation is then applied to the sphere-mapped curves and meshes as, , and

.

C. Spherical Curve Atlas

Once the meshes and curves have been aligned on the sphere, the mean curves are

computed. These mean curves will be used as the atlas curves in the surface warping. The

Karcher mean on the sphere is found for each vertex of each curve, across the group. In this

method, an initial guess is found by the normalized average of the points. For this point, the

tangent space is defined by the gnomonic projection. A new mean is computed in the

tangent space, and it is mapped back to the sphere and the process is repeated until the

difference between the previous and the new mean is smaller than a threshold. We can

express the curve atlas as the set { }, where  is the Karcher mean of

{ }.

D. Elastic Surface Warping

For surface i, the deformation of the atlas is denoted by ϕi: S2 ↦ S2, where 

for t ∈ [0, 2π], j ∈ [1, L]. Six bijective flattenings of the sphere, each topologically

equivalent to cutting along the four edges that meet at one of the six vertices of an

octahedron, are defined as {φn: S2 ↦ [0, 1]2: n ∈ 1, 2, 3, 4, 5, 6}. For a point on the sphere,

p ∈ S2, the flattening is chosen as . The displacement field
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up: S2 ↦ ℝ2 is then up(x) = φp(ϕi(x)) − φp(x). At non-landmark points, i.e. x ∈ S2,

, the mapping is constrained to satisfy a small deformation linear

elastic model similar to Thompson et al. [28], and is given by

(20)

The atlas mesh is defined on the sphere by tessellating the sphere with a subdivided

octahedron [51]. This tessellation provides convenient flattened representations and has

computationally advantageous multiscale properties. Subdivision of each triangle is

performed by adding vertices at the midpoints of the edges, adding new edges connecting

them, and creating four triangles from the original. This scheme is used for defining the

representations of the mesh in multiscale algorithms. Furthermore, this subdivision process

ensures that the mesh can be flattened to a square and eventually a regularly sampled grid.

One benefit of the planar mapping is that it greatly simplifies the implementation of finite

difference and multigrid numerical methods and can also be implemented efficiently by a

lookup table. This flattening can be imagined as follows. First, one of the vertices of the

octahedron is chosen, and mapped to the center of the grid. Then four far edges that do not

contain the center vertex are cut, and duplicated to define the boundary of the grid. Finally

the vertex opposite to the one selected maps to the four corners of the grid. The flattening

points (those that are mapped to the center of the grid for each of their respective mappings)

lie on antipodal points at each of the three coordinate axes, which coincide with the vertices

of the octahedron. These points were chosen to maximize the distance between points and to

permit efficient flattening and numerical optimization. This flattened representation allows

for efficient interpolation, smoothing and finite differences operations on the grid [51]. The

spherical mapping, octahedral warping, and flattening is illustrated in Fig. 9.

The deformation is computed iteratively using finite differences with a multigrid method,

where prolongation, restriction and smoothing operations are performed on the flattened

representation. The solver accounts for the spherical topology of the domain by solving the

equation in the optimal flattening of the mesh at the vertex. The parameterization of each

mesh is resampled by the deformation from the atlas, establishing vertex homology between

the meshes. The cortical surface warping workflow is schematically illustrated in Fig. 10.

IV. Results and Discussion

In this section we present results showing the diffeomorphic sulcal shape atlas based on two

different populations. Additionally, we show results for cortical surface matching obtained

using the sulcal shape atlas. The cortical data was derived from two different surface

extraction methods that extract both shallow and deep sulci on the cortex. The same sulcal

tracing protocol [9] was used to delineate curves on the cortex.

A. Diffeomorphic Sulcal Shape Atlas

This section presents experimental results showing the construction of a sulcal shape atlas

obtained using Algorithm 2. The population data consisted of 176 subjects (age: 31.8 ± 9

years, sex: 105 males, 71 females, ethnicity: consistent with the demographics of the Los
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Angeles area) obtained after approval by the UCLA Institutional Review Board (IRB).

These subjects underwent high-resolution T1-weighted structural MRI scanning on a

Siemens 1.5 Tesla Sonata system using a 3D MPRAGE sequence (TR/TE = 1900 ms/28 ms;

voxel size = 1 mm× 1 mm × 1 mm; TI = 1100; matrix size = 256 × 256 × 160; flip angle:

15°). After preprocessing the raw data and registering it stereotaxically to a standard atlas

space, the cortical surfaces for these subjects were extracted using an automated algorithm

[40], and sulci were traced according to the protocol illustrated in Fig. 1 [9]. Figure 11

shows the original unregistered 28 sulcal landmarks for the complete population of 176

subjects for the left hemisphere. Along with the sulcal population, Fig. 11 also shows the

intrinsic, Karcher sulcal shape averages using Algorithm 2 for all of the 28 landmark curves,

as well as the extrinsic shape averages for the same. The extrinsic averages are computed on

the pre-shape space  by using the same Algorithm 2, but setting γ = s at each step. Since

the euclidean matching of sulci forces a one-one correspondence between them, under the

uniform sampling assumption, the only remaining shape-preserving transformation after

scale, and translation is removed is pairwise rotational alignment. The extrinsic euclidean

average for all the sulci was thus computed on the shape space by factoring out rigid

motions and scale. This is in contrast with the Karcher sulcal average which is computed

after an additional invariance to reparameterization. For visualization purposes, both the

Karcher averages, as well as the euclidean sulcal averages were instantiated in the curve

space under an average translation, scaling and rotation all measured in their respective

spaces, ℝ3, ℝ{+}, and SO(3). It should be noted that the intrinsic averages although smooth,

have preserved important features along the landmarks, thus representing the average local

shape geometry along the sulci. This implies that the shape average has not only captured

the salient geometric features, but has also reduced the shape variability in the population. In

order to demonstrate this property, we plot the variance of the shape deformation for each

landmark type as captured by the velocity vector along the geodesic path, both for euclidean

extrinsic, and Riemannian intrinsic averages. Thus for each of the 28 landmark average

shapes for 176 subjects, μ̂
i, i = 1, …, 28, we plot the geodesic variance  from Eqn. 18. The

geodesic variance measures the invariant deformation between a pair of shapes, and only

depends upon the intrinsic geometry of the shapes. Figure 11 shows a comparison of the

plots of  for each of the landmarks, taken along the length of the curve, for both euclidean

shape averages, as well as intrinsic shape averages. This can also be thought of as the

geodesic variance. From the color-coded map, it is observed that the intrinsic average has

reduced the variance in terms of shape geometry deformation, and thus is a better

representative of the population. For further quantification of this result, we compared the

geodesic variance averaged for each sulcus for both the euclidean and the diffeomorphic

methods, displayed in Fig. 12. The variance displayed by the diffeomorphic method was

significantly lower (when corrected for multiple comparisons at a threshold of pFDR =

0.001) for all the sulci except the Central Sulcus. Fig. 12 shows a * symbol next to each

sulcal label that showed a significant difference (p < 1e−3) in the variance between the two

methods.

Based on the discussion in Sec. II-E, the euclidean sulcal atlas shows weakened

representation of bumps and wiggles along the curve. However an important question here is

whether all the features manifested in the diffeomorphic population sulcal atlas really arise
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inherently from the data, and not as a result of noise or errors introduced in the matching

process over the course of optimization? In order to experimentally verify that this is indeed

not the case, we performed 100 randomized trials of sampling 8 disjoint subsets of 22

subjects each and computed the extrinsic and diffeomorphic averages for all the sulci in

those subsets for each trial. We then computed the local curvature at each point on the

average curves for each sulcus. Figure 13 shows the local curvatures overlaid on the

extrinsic and diffeomorphic averages for the 100 trials. Comparing Figures 11 and 13, it is

observed that even after sub dividing the population to a reduced number of subjects, the

diffeomorphic method is able to detect conspicuous patterns present in the sulcal geometry.

Furthermore almost all of the important sulci (including the inferior and superior frontal,

inferior and superior temporal, as well as pre- and post-central sulci) display higher

curvature than their counterparts in the euclidean atlases. If one assumes that curvatures of

the landmark curves do contain partial information about the complexity of the cortex, then

the results suggest that the diffeomorphic sulcal shape atlas contains more information than

the euclidean sulcal atlas.

Additionally, we performed t-tests comparing the average raw curvatures for both the

methods. After correcting for multiple comparisons, we observed that the curvatures for

diffeomorphic averages were significantly higher than their extrinsic counterparts. Figure 14

shows a bar chart of the local curvatures averaged over each sulcus after 100 randomized

trials. The * next to the sulcus label denotes that the sulcal curvature showed a significant

difference (p < 1e − 5), after controlling for FDR (pFDR = 0.00001). The box plots along the

bar graphs display the variance in the curvature in the 100 trials.

B. Cortical Mapping for Surfaces extracted using the MNI [40] protocol

We now demonstrate results of cortical surface registration with and without the

incorporation of the diffeomorphic matching for sulcal shape analysis. The data consisted of

same set of cortical surfaces used in Sec. IV-A. The sulcal shape atlas is already constructed

and shown in Fig. 11. We now compute geodesics between the average shape of the

landmark and the set of all sulci belonging to that landmark type and reparameterize the set

of sulci according to inverses of the resulting diffeomorphisms. We then follow the steps

outlined in Sec. III in order to warp all the surfaces meshes to the atlas. Figure 15 shows the

flattened representation of a surface atlas colored according to curvature of the surface using

both euclidean analysis and diffeomorphic shape analysis. Additionally, Fig. 15 shows the

lateral, dorsal, and medial views of the reconstructed cortical surface from the flattened

representations. It is observed that the surfaces using intrinsic sulcal analysis exhibit rich

local geometry that has been preserved due to the elastic diffeomorphisms.

Cortical Mapping for Surfaces extracted using the Freesurfer [22] protocol

Our experimental data consisted of 3T MRI acquisitions (GE) for a population of 69

subjects (age: 25.5 ± 10.6 years, sex: 30 males, 39 females, ethnicity: Chinese) acquired

using the Shandong University IRB approved study. The scanning protocol involved a

transverse 3D T1-weighted fast spoiled gradient-echo (FSPGR) sequence (TR/TE = 6.8

ms/2.9 ms; voxel size = 0.47 mm × 0.47 mm × 0.70 mm; matrix size = 512 × 512; flip angle

= 10°, slice thickness = 1.4 mm, and slice gap = 0.7 mm). After preprocessing the raw data
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and registering it stereotaxically to a standard atlas space, the cortical surfaces for these

subjects were extracted using an automated algorithm [21]. It is noted that these surfaces

obtained using the Freesurfer protocol exhibit greater sulcal depth than those obtained using

the MNI protocol in Sec. IV-B. The original sulcal tracing protocol was developed on the

MNI surfaces and thus was subsequently adapted to deal with Freesurfer surfaces as well.

Accordingly, we selected a total of 27 landmark curves on the Freesurfer surfaces for the

purpose of constructing the Chinese atlas. Figure 17 shows the 27 sulcal landmarks for all of

the 69 subjects for both hemispheres overlaid together. Using this set of sulcal curves, we

proceed to follow the same steps in Sec. IV-B to compute the diffeomorphic as well as

euclidean sulcal averages for the population. Figure 17 shows the diffeomorphic sulcal

shape averages, as well as the respective extrinsic euclidean averages for this group. Again,

all the averages were computed by mapping of the native curves to the shape space. The

shape space averages were then projected back in the the native space of curves in order to

obtain Fig. 17. Similar to the results in Sec. IV-B, it is observed that the intrinsic averages

were smooth but preserved important features along the landmarks implying that the shape

average have captured the salient geometric features and also have reduced the shape

variability in the population. Similar to Sec. IV-B, we plot the variance of the shape

deformation for each landmark type as captured by the velocity vector along the geodesic

path for the euclidean extrinsic and the Riemannian intrinsic averages in Fig. 16 for both the

hemispheres. From the variance bars, it is observed that the intrinsic average has reduced the

variance in terms of shape geometry deformation compared to the extrinsic average and thus

is a better representative of the population. This result is also consistent with the results in

the previous section (Sec. IV-B). We also tested for statistical significance in the differences

between variances and found that the geodesic variances obtained using the diffeomorphic

method was highly significantly different from the extrinsic result, even when corrected for

multiple comparisons using the false discovery rate (FDR). For the left hemisphere, all the

sulci showed significantly lower variance (p < 1e − 6) when FDR thresholded at pFDR =

0.0059, whereas in the right hemisphere, all the sulci except the Sylvian fissure showed a

significantly lower variance (p < 1e − 6) when thresholded at pFDR=0.0014. The significant

sulci are represented by the * symbol in Fig. 16. Also see Sec. IV-C for the experimental

results obtained using the Freesurfer sulcal alignment, also plotted in Fig. 16.

Next, we demonstrate results of cortical surface registration with and without the

incorporation of the above diffeomorphic sulcal atlas in Figure 17. As an initial step, we

compute geodesics between the average shape of the landmark and the set of all sulci

belonging to that landmark type and reparameterize the set of sulci according to inverses of

the resulting diffeomorphisms. We then follow the steps outlined in Sec. III in order to warp

all the surfaces meshes to the atlas. Figure 18 shows the lateral, axial, ventral, and medial

views of the reconstructed cortical surface averages from the flattened representations. The

surface is colored by its curvedness in order to highlight the fundi of the sulci as well as the

ridges of the gyri. It is observed that the surface with diffeomorphic sulcal mapping shows

richer geometric detail than the traditional euclidean reconstruction.

We also computed the local Jacobian determinants of the mapping from each subject to the

mean surface for both the extrinsic and the diffeomorphic methods following the procedure
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given in [52]. Assuming a smooth mapping Φ from each surface Mi to the mean given by Φ:

Mi → Mμ, where Mμ is the surface atlas, the differential mapping dΦ: Tv(Mi) → TΦ(v)(Mμ), v

≡ [v1, v2, v3]T ∈ ℝ3, can be approximated up to a first order and discretely represented by

the Jacobian J given by J = [Φ(v3) − Φ(v1), Φ(v2) − Φ (v1)][v3 − v1, v2 − v1]−1. Similar to

Wang et al. [52], we compute a deformation tensor , and compute its determinant.

In the discrete setting, we project the two corresponding triangle faces on a planar domain

that represents a locally linear tangent space to the surface at a point denoting the midpoint

of the face and then compute the two-dimensional displacement vectors to form the matrix J

at each point on the surface. We then compared the Jacobian determinants for all point on

the surface for all the subjects with respect to the mean for both euclidean and diffeomorphic

mapping. All determinants for both the methods were strictly positive. Fig. 19 shows the p-

map (after correcting for multiple comparisons at a FDR threshold of pFDR = 0.0031) for a t-

test between the Jacobian determinants for both cases. It is observed that there are

significant differences in the warping between both methods in the vicinity of the sulci. It

was also observed (not shown in the figure) that the determinants for the diffeomorphic case

were larger in magnitude compared to the euclidean case. One possible interpretation of this

result is that the diffeomorphic mapping incurs larger deformations when it attempts to bring

the shape of the sulcus under alignment compared to the euclidean mapping. Since the sulcal

geodesics are constructed on the shape space, the geodesic distances between sulci under the

diffeomorphic mapping are greater than the geodesic distances in the ambient space, as is

the case for the euclidean matching. Consequently there is a larger cost in deforming sulci

diffeomorphically instead of extrinsically and this is reflected in the Jacobians of the warps

under both methods.

C. Comparison to a Cortical Atlas without explicit sulcal constraints

In this section, we compare the cortical atlas obtained using diffeomorphic sulcal matching

using Freesurfer [22], which implements a fully automated algorithm for cortical warping

and atlas construction. Freesurfer utilizes diverse local and global criteria such as local

cortical curvature along with sulcal depth and automatically aligns cortical surfaces for a

population of subjects. For evaluation purposes, we compared the following three

experimental results, a) automatic Freesurfer cortical registration, b) diffeomorphic sulcal

shape-based cortical registration, and c) a combined approach of first using Freesurfer

cortical registrations and then warping the resulting registered spherical cortices combined

with the sulcal curves mapped using our diffeomorphic approach. The last experiment was

performed as follows: i) The individual pial surfaces obtained from Freesurfer were

resampled to the Freesurfer average template subject to have the same number of vertices

and faces throughout the population. ii) For each subject, the sulci were then projected on to

the resampled surface. iii) The spherical coordinates of the sphere-resampled pial surface

were stored as per-vertex attributes in the pial surface itself and these augmented pial

surfaces and curves were provided as an input to our diffeomorphic warping workflow.

While executing the algorithm, we disabled the sphere mapping step, choosing to utilize the

Freesurfer generated spherical coordinates instead. The output of the diffeomorphic

workflow then resulted in the cortical registrations that respected both the additional

constraints that Freesurfer imposed previously as well as the explicit sulcal shape constraints

that we calculated. Figure 20 shows the average surfaces resulting from the three
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experiments. As a measure of distortion, we also computed the root mean square (r.m.s.)

error of the distance from each sample surface to the average reconstructed cortical surface

and overlaid it on the average (20) for each of the results. For the Freesurfer registration, it is

observed that the Freesurfer displacement is higher in some regions such as the left and right

frontal lobe, the left temporal lobe, and the left and right parietal lobe, compared to the

diffeomorphic approach, whereas it is lower in regions such as the Sylvian fissure. At the

same time, it is also observed that on the account of Freesurfer’s local and global constraints

on curvature and depth, in the case of the occipital lobe, the Freesurfer average shows more

details than the diffeomorphic approach, where there were only a few sulci guiding the

registration. For the combined Freesurfer and diffeomorphic approach, it is observed that the

r.m.s. displacement was reduced in the places where it was higher previously, and there is an

emergence of details in the cortical patterns in the occipital lobe. Additionally, the

displacement in the Sylvian fissure was reduced considerably, where the matching

discounted explicit sulcal constraints. At the same time it should be noted that the Freesurfer

matching criteria and energy functions are different from our approach, hence there is an

interplay of these energies in the final results where both the Freesurfer and diffeomorphic

registrations are combined. As a result, the solution may not always be jointly optimal with

respect to both non-explicit depth, and curvature and explicit sulcal constraints.

Lastly, aside from the cortical surfaces, we also investigated the sulcal alignment and

mapping resulting from the automatic Freesurfer registration. We followed steps i) and ii) of

the above experiment to obtain the projected sulcal curves from the resampled Freesurfer

surfaces. These registered landmarks were then projected on the shape space, removing the

translation and scale but keeping the non-uniform parameterization intact. These projected

sulcal curves can be represented as the set { : i = 1 … 69, j = 1 … 27}, where

{βij} is the set of native sulci and  is the automatic Freesurfer optimal resampling. We

projected these resampled sulci on the pre-shape space  and computed the extrinsic

geodesic variance as described in Sec. II-E. It is noted that the optimal Freesurfer

resampling is kept intact in this procedure, since we do not change the curve

reparameterizations when computing the extrinsic geodesic variance. Thus the Freesurfer

sulcal alignment can also be thought of as an optimal reparameterization of the sulcal curves

under automatic curvature-based constraints. This makes the respective variances

comparable, since they are computed on the same shape space and under the same metric

(inner-product) using the same algorithm. Figure 16 displays the Freesurfer aligned sulcal

geodesic variance in comparison with the extrinsic euclidean and the diffeomorphic

geodesic variance. It is observed that variance due to the Freesurfer alignment is smaller

than the extrinsic variance, but significantly (left hemisphere, p < 1e − 6, pFDR = 0.0059)

greater than the diffeomorphic case. In the case of the Sylvian fissure, Freesurfer had a

lower geodesic variance than the diffeomorphic case, but the differences were not

significant.

D. Sulcal Shape Classification

The shapes of the individual sulcal curves are influenced by the intrinsic cortical folding

patterns. This shape variability has been exploited in the problem of sulcal labeling and
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classification in the context of detection and extraction of sulci [53], [36], [54], [7], [55],

[56], [57]. In order to determine the discriminative characteristics of our geometric sulcal

representation, we classify sulcal shapes by performing discriminative pattern analysis of the

sulcal shapes. For the purpose of classification, we consider the dataset of 176 subjects

described in Sec. IV-B and randomly divide it into a training set and a testing set of 88

subjects each. We then compute the mean shapes for each of the 28 sulcal types for the

training set and denote them by { }, k = 1, …, 28. We then compute geodesic distances

from each sulcus for each subject to the training mean shapes and use a minimum distance

classifier to label each of the sulci according to the 28 classes. Additionally we included

pose information (location only) from the sulcal curve in the classifier. For a given sulcus ,

j ∈ [1, 88], the labeled class, k̂ ∈ [1, 28] is given by

(21)

where i, k = 1, …, 28, j = 1, …, 88, and , and  are the center positions of the

native space curve representations of  , and  , and w1 and w2 are the weights assigned

(chosen experimentally) to the shape distance and the pose distance respectively. We

performed 50 trials of the above experiment by randomly dividing the population into two

groups and computed the average classification recall rate separately for each sulcus

(proportion of the correctly labeled sulci from the random subset of 88 subjects) using the

one-against-all rule. The complete labeling results for the randomized trials for three cases

are described as follows: (a) Pose-only classification (w1 = 0, w2 = 0.01): Figure 21(A)

shows the sulcus-wise percent recall rate based on differences in location alone. Almost all

(23/28) sulci showed a greater than 92~94% recall rate, with the superior temporal sulcus

showing a 100% recall rate for each trial. The sulci that underperformed significantly (<

80%) are the olfactory sulcus (74%), the inferior (76%) and the superior callosal boundary

(80%), and the olfactory control line (77%). This is because the callosal boundaries and the

olfactory sulci were misclassified since they are close together. (b) Shape-only classification

(w1 = 1, w2 = 0): Figure 21(B) shows the recall rate based only on shape discrimination

under the extrinsic as well as the diffeomorphic shape metric. We observed that 11/28 sulci

showed a high recall rate (> 93%). Moreover it was remarkable that both the shape metrics

were able to successfully differentiate between the inferior and the superior callosal

boundaries 100% of the time. Furthermore, for specific sulci such as the intraparietal sulcus,

olfactory control line, central sulcus, precentral sulcus, paracentral sulcus, inferior frontal

sulcus, and the precentral marginal sulcus, the diffeomorphic method yielded significantly

improved success rates (5~11%) over the extrinsic method. It is also observed that the recall

rate for the olfactory sulcus has substantially improved due to shape matching. In the case of

the trans occipital, and the calcarine ant. sulcus, the euclidean metric showed a better

performance than the diffeomorphic metric. A possible explanation is that the lengths of

these sulci are significantly smaller compared to all the other sulci, and for shape-only

classification, we enforce an unit length constraint on these sulci. Our reasoning is that due

to this constraint, the shape matching may have favored the euclidean metric vs the

diffeomorphic metric. Additionally, the superior temporal sulcus showed a very mild
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improvement with the euclidean metric, but the result was not statistically significant. (c)

Combined Shape and Pose classification (w1 = 1, w2 = 0.01): Finally Fig. 21(C) shows the

recall rate for joint shape and pose classification for both the extrinsic and the diffeomorphic

shape measures. This time, in the case of the diffeomorphic matching, all of the sulci show a

recall rate greater than 90% with 22/28 sulci showing a recall rate greater than 98%. In the

case of the olfactory sulcus the overall combined recall rate has decreased compared to the

one based on shape alone, since the pose classification interferes with the shape

classification.

We achieved significantly higher recall rates using both the shape and location of the

individual sulci together compared to using both of them individually. These rates can be

considerably improved further by considering joint configurations of sulcal shapes, their

relative locations, as well as scales and orientations with respect to each other.

V. Notes on Implementation

The sulcal protocols used in this paper can be downloaded from the LONI Sulcal Protocol

http://www.loni.ucla.edu/~esowell/edevel/new_sulcvar.html, and the Damasio Curve

Protocol [58] (http://neuroimage.usc.edu/CurveProtocol.html). The methods discussed in the

paper are implemented in Java and are completely cross-platform. The binaries as well as

source code files are freely available from LONI ShapeTools (http://www.loni.ucla.edu/

twiki/bin/view/CCB/ShapeToolLibraryProgram). In addition to the individual modules, an

integrated workflow is also available for download at LONI MAST Surface Warping

Pipeline http://www.loni.ucla.edu/twiki/bin/view/MAST/

ElasticSurfaceWarpProtocolDownload. This workflow can be executed from the LONI

pipeline [59] interface both on a multi-node compute cluster, as well as a standalone

workstation. After undergoing tracing training, sulci can be delineated swiftly using either

ShapeTools ShapeViewer or Brainsuite on an average of 10~15 minutes per brain, with the

tracing time improving rapidly with experience. In the same pass, we determine the

maximum number of vertices across all the sulci and uniformly resample all the vertices of

the sulci to this number. It is noted that this resampling preserves the shapes of the sulci and

does not affect the pose, orientation, or even the scale of the curves. Since these sulci are

manually delineated, we do not incur aliasing effects, except at the point of tracing.

Furthermore, when tracing the curves, either using Shapeviewer or Brainsuite, the interface

is designed in such a way that, even when the user clicks a limited set of points, the tracing

program estimates a dense curve passing through all the vertices on the surface along the

path of the clicked points. The execution time for the complete workflow for a set of 176

subjects on a stand-alone workstation (Intel Xeon, 8 core, 2.5 GHz) was approximately 10

hours, including both hemispheres. While the running time could be reduced further by

reimplementing the methods in C++ and using standard optimization packages, our focus

was on cross-platform portability and ease of distribution and use.

VI. Conclusion

We have presented a diffeomorphic approach for sulcal shape representation and mapping

and have demonstrated its applicability to population based sulcal shape analysis, cortical
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surface registration, and sulcal shape classification. The method uses a novel square-root

velocity representation for elastic curves and a Riemannian metric for matching shapes. The

metric is invariant to rigid motions as well as speed-reparameterization, an important

requirement for diffeomorphic matching. Experimental results seem to suggest that the

shape matching methodology respects the underlying biological patterns manifested on the

landmark curves through the cortex. The diffeomorphic sulcal shape atlas also exhibits

higher curvature values throughout the curves compared to the euclidean sulcal atlas. This

further confirms that the diffeomorphic method is indeed preserving feature-rich information

in the biological population. The comparison of sulcal alignment with Freesurfer yielded

somewhat different results from Pantazis, et al. [29]. They observed that the manual

landmark-based method performed better than Freesurfer, as far as individual sulci were

concerned. However, they computed the variance using Hausdorff distance, which is

different from the variance based on geodesic distance that we use here. Furthermore, it

should be noted that in our comparison, Freesurfer was given an initial advantage, by

providing the labeled delineated sulci on each subject in the first place. We think this would

have contributed to the reduction of the shape variance. Our method agrees in principle with

the approaches proposed in [3], [4], [35] in that it also evaluates diffeomorphic mappings

between sulci. The difference lies in the shape representation of the sulcal features.

Furthermore, even if our method computes point correspondences across sulci, the curve

registration procedure ensures that the correspondences are achieved automatically and

without making explicit assumptions about the actual shape of the sulci or any specific

features unique to the sulcal curves. Additionally, even if the sulcal curves are discretized

for the purpose of computer representation, the fundamental theory for the curve shape

analysis differs from inherently discrete representations [31] of points used to model sulci.

Thus depending upon the application and accuracy, one can have arbitrary resolution in

matching sulci. In addition to the convenient representation, owing to the spherical geometry

of the shape space, geodesics between sulci can be calculated very efficiently.

We emphasize that the utility of the framework for sulcal atlas construction is not limited to

registration alone and can also be used to study cortical patterns for developmental, diseased

or even normative relationships. One can make use of the same invariant Riemannian metric

for defining higher order statistics for sulcal patterns. Analogous to the diffeomorphic

approach by Fillard et al. [4], Durrleman et al. [3], and also Fletcher et al. [46], one can

linearize the space of sulcal shapes at the mean shape and perform tangent principal

component analysis (TPCA) in the shape space at mean in order to construct statistical

distributions and measure the variability in shape for a given population. The success of our

method on deep brain sulci also demonstrates the effectiveness in capturing the intrinsic

shape variability of the sulci. One limitation of the current model is that end to end matching

between sulcal shapes is assumed. This can potentially result in suboptimal matching in

cases of abnormal anatomical variations in the brains where sulcal curves interrupt, bifurcate

or merge with other sulci. Another limitation is that the intra-rater variability is introduced

by manual sulcal tracing, especially at the endpoints. We have attempted to resolve these

ambiguities through rigorous and detailed definition of a protocol [9], [58] for sulcal

delineation, where clear rules are defined in case of ambiguity in the anatomy; and training

of individual raters to reduce the intra-rater variability [41].
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We are also encouraged by the sulcal classification results based on shape and location. The

geodesic mappings between sulci show good discriminative properties. We plan to

investigate this approach for future applications towards sulcal shape completion, curve

grouping and extraction by integrating geometric cortical information with curve

representations.
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Figure 1.
A set of 28 sulcal landmark curves labeled on the lateral, medial, and axial views of a

cortical surface.
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Figure 2.
Schematic of the representation of the sulci on the shape space
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Figure 3.
Example of a geodesic between a pair of sulci (the first and the last shape along the

geodesic) on .
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Figure 4.
Examples of geodesics with and without rotational (top) and scale (bottom) invariance

between the first and the last curves respectively. The last curve was rotated and scaled

according to the values displayed in the legend. The curves in the top row and the bottom

row are color coded according to the rotation and the scale incurred by the target curve

respectively. The geodesics for different rotations and scales are overlaid on top of each

other.
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Figure 5.
Left column: extrinsic geodesics in the pre-shape space invariant to translation, rotation and

scaling. Right column: intrinsic geodesics in the shape space invariant to translation,

rotation, scaling, and reparameterizations.
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Figure 6.
Inverse consistency between the sulcal shape mappings. Each column shows a forward and

backward geodesics between pairs of sulci (top row) as shown by the arrows in the first

column. The optimal parameterization (γ1) for the forward geodesic, as well as the inverse

optimal parameterization ( ) for the backward geodesic are overlaid on top of each other

(bottom row).
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Figure 7.
Schematic of the extrinsic and the intrinsic Karcher mean computation for a collection of

shapes in .
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Figure 8.
Comparison between the extrinsic euclidean mean with the Karcher mean. Left panel shows

point-wise correspondences between sample sulcal pairs for both non-elastic and elastic

matching. Right panel shows the extrinsic euclidean mean and the Karcher mean for a

sample of 20 sulcal shapes.
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Figure 9.
Mappings between the cortical surface, sphere, an octahedron, and a plane.
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Figure 10.
Pipeline for cortical surface registration using the diffeomorphic sulcal shape homology.

(See Sec. V for implementation).

Joshi et al. Page 38

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 11.
Lateral, medial, and axial views of, First column: All 28 landmark sulci for 176 subjects,

Middle column: euclidean sulcal shape averages for each landmark, Last column: Karcher

means for each landmark. (Best viewed in color). In the middle and last column, sulci are

color-coded according to the geodesic variance for the entire sulcal population for each of

the 28 landmarks, both for euclidean shape averages, as well as elastic shape averages, along

the length of the curves.
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Figure 12.
Comparison of the geodesic variance averaged over each sulcus for the sulcal population for

each of the 28 landmarks, for euclidean as well as diffeomorphic sulcal mapping averages,

for the left hemisphere. The * denotes the sulci where the difference between the variance is

significant.
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Figure 13.
Comparison of the euclidean and diffeomorphic sulcal atlases for eight different disjoint

sub-populations of the original 176 subjects. The sub-populations were obtained after 100

randomized trials of sampling subsets of 22 subjects for each group. For each method, the

sulcal atlases are overlaid on top of each other and color-coded by curvature of the curve.
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Figure 14.
Comparison of the local curvatures averaged over each sulcus under both euclidean and

diffeomorphic mapping. The * denotes that the two curvatures were significantly different

after controlling for FDR.
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Figure 15.
Top row: Average flattened representations for atlases: with landmark curves using

euclidean matching (left), with landmark curves using the diffeomorphic matching (right).

Remaining rows show lateral, ventral, and medial views of the reconstructed cortical surface

with euclidean matching (left) and diffeomorphic matching (right). The flat maps and the

surfaces are color coded according to curvedness.
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Figure 16.
Comparison of the geodesic variance averaged over each sulcus for the entire sulcal

population for each of the 27 landmarks, for euclidean shape averages, Freesurfer-aligned

sulcal averages, as well as diffeomorphic shape averages, for both the left (top row), and the

right (bottom row) hemispheres. The * symbol denotes the sulci for which the variance is

significantly different between the diffeomorphic method and the euclidean and the

Freesurfer alignment.
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Figure 17.
Lateral left and right, and axial views of: 27 landmark sulci for each of the 69 subjects (first

column), euclidean sulcal shape averages (second column), and Karcher shape average

(third column) for each landmark type overlaid on the average surface. The sulcal shapes in

the second and the third column are colored according to the geodesic variance of the

population.
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Figure 18.
Lateral, axial, ventral, and medial views of the reconstructed cortical surface with spherical

alignment without landmarks (top), euclidean sulcal matching (middle), and diffeomorphic

sulcal matching (bottom). Shape curvedness is calculated for each surface, thresholded

according to the displayed color scale, and overlaid on all the surfaces.
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Figure 19.
Comparison of the Jacobian determinants between the diffeomorphic and euclidean

mapping. The colormap shows p-values (after correcting for the false discovery rate)

overlaid on the diffeomorphic atlas surface.
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Figure 20.
R.M.S. error of the distance from each sample surface to the average surface for automatic

cortical warping for (first column) Freesurfer-based [22] warping, middle column

(diffeomorphic warping), and (last column) combined intermediate Freesurfer spherical

warping and diffeomorphic landmark mapping.
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Figure 21.
Percent recall rate for each sulcus based on A) Pose location only, B) Shape matching only,

and C) combined shape and pose matching.
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