
Spatial resolution properties of motion-compensated
tomographic image reconstruction methods

Se Young Chun [Member, IEEE]
Department of EECS and Radiology, the University of Michigan, Ann Arbor, MI 48109, USA.
(delight@umich.edu)

Jeffrey A. Fessler [Fellow, IEEE]
Department of EECS, the University of Michigan, Ann Arbor, MI 48109, USA.
(fessler@umich.edu)

Abstract
Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct
for subject motion in medical imaging. MCIR methods incorporate motion models to improve
image quality by reducing motion artifacts and noise.

This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid
local motion can lead to non-uniform and anisotropic spatial resolution for conventional quadratic
regularizers. This undesirable property is akin to the known effects of interactions between
heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect
may lead to quantification errors in small or narrow structures (such as small lesions or rings) of
reconstructed images.

This paper proposes novel spatial regularization design methods for three different MCIR methods
that account for known nonrigid motion. We develop MCIR regularization designs that provide
approximately uniform and isotropic spatial resolution and that match a user-specified target
spatial resolution. 2D PET simulations demonstrate the performance and benefits of the proposed
spatial regularization design methods.

Keywords
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I. Introduction
MOTION can degrade image quality in medical imaging. Often medical imaging systems
cannot capture ideal quality images due to their innate acquisition speeds and patient
motion. Gating methods have been investigated to reduce motion artifacts [1], [2], but can
suffer from insufficient measurements that result in low signal-to-noise ratio (SNR) images.
Motion-compensated image reconstruction (MCIR) methods have been studied for various
imaging modalities to improve image quality by using all collected data and motion
information so that high SNR images are reconstructed without motion artifacts [3]–[16].

MCIR methods differ in terms of how they incorporate motion information. We focus here
on three common MCIR methods: post-reconstruction motion correction (PMC) [3]–[5],
motion-compensated temporal regularization (MTR) [6], [7], and the parametric motion
model (PMM) [8]–[16] (see Table I). These models have also been used in non-medical
super-resolution applications [17]–[20]. These MCIR methods have shown promising results
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for reducing noise and motion artifacts. MCIR methods have great potential for improving
image quality and benefiting the tasks used in medical imaging (e.g., better quantitative
accuracy for PET or lower radiation dose for CT).

The interactions between heteroscedastic log-likelihood models (e.g., Poisson
measurements) and conventional static quadratic regularizers lead to non-uniform and
anisotropic spatial resolution [21]. In this paper, we show analytically that these undesired
properties can become worse in regularized MCIR methods due to local motion, may cause
non-uniform and anisotropic spatial resolution, and produce quantification errors in small or
narrow structures such as small lesions or rings of reconstructed images. For example, Fig. 1
shows the contours of local impulse response (LIR) functions of Target (desired LIR), SGR-
S (single gated reconstruction with conventional spatial regularizer using one frame), and
PMC-S (PMC with conventional static spatial regularizer using four frames) in a 2D PET
simulation (see Table I for acronyms). Each LIR was generated by subtracting the
reconstructed image of the noiseless projection data of the original image from the
reconstructed image of the noiseless projection of the original image with a Kronecker
impulse at one point. The Target has isotropic contours, but SGR-S has a skewed LIR due to
the interaction between the log-likelihood and the quadratic regularizer. This skewness
became worse for the LIR of PMC-S due to affine motion between image frames.

There have been many studies of the spatial resolution properties of static image
reconstruction [21]–[27] and dynamic image reconstruction [28]. Regularizers that provide
nearly uniform spatial resolution, or “certainty-based” regularizers, have been proposed for
quadratic regularization with PET [21], fully 3D PET [23], and for nonquadratic regularizers
with PET [26]. Regularizers that achieve approximately uniform and isotropic spatial
resolution have been developed for PET [24], [25] and 2D fan-beam CT [27]. However,
there has been little such research for regularized MCIR methods.

This paper investigates the spatial resolution properties of three popular MCIR methods
(PMC, PMM, and MTR). Based on this analysis, we propose quadratic regularizers that can
achieve approximately isotropic and uniform spatial resolution even in the presence of
nonrigid motion and for heteroscedastic log-likelihoods. For regularizer design, we extend
the “analytical approach” [27], [29] to MCIR methods [30] for the case of known nonrigid
motion. The known motion assumption can be suitable for some multi-modal medical
imaging applications such as PET-CT [9], [10], [12] and PET-MR systems [16].

This paper is organized as follows. Section II presents measurement and motion/warp
models for MCIR methods. Section III introduces three different MCIR methods and their
LIRs. Section IV investigates how to design spatial regularizers for MCIR methods that
provide approximately uniform and isotropic spatial resolution for nonrigid motion by
extending analytical approach. Section V illustrates the proposed spatial regularizers by 2D
PET simulations with nonrigid motion.

II. MCIR MODELS
A. Measurement model

Most medical imaging systems cannot capture an entire dataset instantaneously, but rather
record a sequence of measurements over some time interval. For example, X-ray CT
scanners acquire about 1000 projection views during a sub-second rotation around the

object. MCIR methods are needed when the time-varying object  has non-negligible
motion during such an acquisition interval. Often one can use gating or temporal binning to
group the measurements into M sets, called “frames” here, such that object motion is
negligible within each frame, and then one can focus on the object motion between frames.
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This type of discrete approximation to continuous object motion is ubiquitous in MCIR
models and we adopt it here as well. Let ym denote the vector of measurements associated

with the mth frame, e.g., a frame in a gated scan. We assume the time varying object 
is approximately motionless during the acquisition of each ym. Let tm denote the time

associated with the mth frame, and let  denote a spatial

discretization of the object f(., tm) where  denotes the center of the jth voxel for j = 1, …,
N, and N denotes the number of voxels. We assume that the measurements are related to the
object linearly as follows:

(1)

where Am denotes the system model for the mth frame, ∊m denotes noise, and M is the
number of gates or frames. We allow the system model Am to possibly differ for each frame
to accommodate systems that rotate such as gated SPECT or CT or that can otherwise
change sampling properties dynamically such as MRI. In some cases, we assume that Am =
DmA0, ∀m where Dm is a diagonal matrix (e.g., PET scan, gated MRI scan with fixed k-
space sampling, or a video sequence).

B. Basic warp model

For a given spatial transformation , we can define a warp operator τm,n as
follows:

(2)

where  belongs to an image domain  at time tm and d is usually 2 or 3. We can discretize
the warp τm,n to define a map from the image fn to the image fm as follows:

(3)

For applications with periodic motion, we can additionally define  and

. The N × N matrix Tm,n can be implemented with any interpolation method;

we used a B-spline based image warp [31] for our empirical results. Let  denote

the determinant of the Jacobian matrix of a transform  for a warp Tm,n. Throughout
we assume the warps Tm,n (or equivalently Tm,n or Tm,n) are known.

C. Total activity-preserving warp model
In many medical imaging applications, total activity (or total mass) is preserved during the
scan [32], [33] and this property has been used in some MCIR methods [34]. To enforce this
constraint, the operator τm,n must not change the total activity of an image. To preserve total
activity (or mass), one can define a modification of the operator τm,n that uses the Jacobian
determinant of Tm,n:

(4)

where p = 1. To verify that total activity is preserved, note that
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(5)

where . Similarly, we can define a discrete-space warp corresponding to (4) that
approximately preserves total activity:

(6)

where

(7)

and  is a N × N diagonal matrix with elements , j = 1, …, N
and p = 1. We use (4) and (6) for the analyses in this paper, but one can simply let p = 0 if a
total activity-preserving model is not needed.

The warp operator τm,n in (2) acts pointwise, so its discretized version in (3) also acts
approximately pointwise. Therefore, the diagonal matrix in (7) that is applied to the left
hand side of Tm,n can be replaced (approximately) by a closely related diagonal matrix on
the right hand side of Tm,n by simply adjusting the spatial coordinates as follows:

(8)

where  by the chain rule.

In some cases, we assume that invertibility, symmetry, and transitivity properties hold for
T̊m,n,, i.e.,

(9)

(10)

(11)

These assumptions are reasonable for usual patient motion such as respiratory or cardiac
motion. In practice, one can estimate motion models that satisfy these conditions [35], [36].

III. Local Impulse Response for Mcir
We consider three MCIR methods: PMC [3]–[5], PMM [8]–[14], [17], [19], and MTR [6],
[7], [20], [37]. Here we treat the nonrigid motion information as predetermined (known). In
this section, we derive the LIRs for regularized versions of these MCIR methods.
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A. Single gated reconstruction (SGR)

Often one can reconstruct each image  from the corresponding measurement ym based on
the model (1) and some prior knowledge (e.g., a smoothness prior). A single gated (frame)
reconstruction (SGR) can be obtained as follows:

(12)

where L is a likelihood function derived from (1), R is a spatial regularizer, and η is a spatial
regularization parameter.

For any single-frame estimator , one can define the LIR for the jth pixel as

(13)

where  is the mean of ym and ej is a unit vector with one at the jth element. If L in (12) is a
negative Poisson log-likelihood function (i.e., L(y, u) ≜ Σi[u]i−[y]i log[ui]), then one can
show that the LIR in (13) can be approximated [21]:

(14)

where  is a diagonal matrix, the Hessian of the regularizer is

, , “′” denotes matrix transpose, and the Fisher information
matrix is

Equation (14) implies that the LIR of (1) for a Poisson likelihood can be approximated with
the LIR of (1) for a penalized weighted least square (PWLS) likelihood. Thus, the analysis
in the paper also applies to any PWLS model. Sometimes, a regularizer depends on the

noiseless projection , which is unavailable. However, as shown in [21], a plug-in

approach that replaces  by ym (or smoothed ym) works well for the regularization
design since Am contains blurring operator. In the simulation, we will show that this is also
the case for MCIRs.

B. Post-reconstruction motion correction (PMC)

Once the frames  are reconstructed individually from (12) for all m, one way to
improve the SNR would be to average all of them. However, the resulting image would be
contaminated by motion blur due to the mismatch between frames. Using the motion
information to map each image fm to a single image's coordinates can reduce motion
artifacts. Without loss of generality, we chose f1 as our reference image. Using (6) and (12),
a natural definition for the PMC estimator is the following motion-compensated average:
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(15)

Using (14), (10), and (6), one can derive the LIR for the PMC estimator (15) at the jth pixel
of the first frame as follows:

(16)

where  and . We used  instead of ej as an
impulse for the mth frame, which corresponds to an impulse in the first frame.

C. Parametric motion model (PMM)
To derive the LIR of the PMM approach, we first must choose a reference image frame
among {f1, …, fM}. With-out loss of generality, we assume that f1 is our reference image
frame. Then, combining the measurement model (1) with the warp (6) yields a new
measurement model that depends only on the image f1 instead of the all images fm:

Stacking up these models yields the overall model

(17)

where the components are each stacked accordingly:

(18)

The PMM estimator for the measurement model (17) with a spatial regularizer is

(19)

where L is a negative likelihood function and R is a spatial regularizer.

For the linear measurement model (17) with a negative Poisson log-likelihood function L,
similar to (14) one can approximate the LIR (as defined in (13)) for the PMM estimator (19)
at the jth pixel as follows:
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(20)

where  is a block-diagonal matrix, 

is a diagonal matrix,  is the mean of yc, , and . Note
that

(21)

Using (20) and (21), we can rewrite the LIR of the PMM estimator at the jth pixel as

(22)

D. Motion-compensated temporal regularization (MTR)
The MTR method incorporates the motion information that matches two adjacent images
into a temporal regularization term [6], [7]:

(23)

for m = 1, …, M − 1. This penalty is added to the cost function in (12) for all m to define the
MTR cost function.

Equations (12) for all m and (23) can be represented in a simpler vector-matrix notation.
First, stack up (1) for all m as follows:

(24)

where  and Ad, ∊c were defined in (18). Then, the MTR estimator based on
(23), (24), and a spatial regularizer is where L is

(25)

where L is a negative likelihood function from the noise model of (24), R is a spatial
regularizer, ζ is a temporal regularization parameter, and the temporal differencing matrix is

(26)

We may also modify Ttime for periodic (or pseudo-periodic) image sequences by adding a

row corresponding to the term . Note that unlike the PMM method that
estimates one frame, MTR estimates all image frames.
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For the MTR estimator (25) with a negative Poisson log-likelihood function L, one can
derive the LIR of the MTR estimator at the jth pixel as follows:

(27)

where Rd ≜ diag {R1, …, RM}, , and we define an impulse vector for all
frames at jth voxel of the first frame as

(28)

which is the same as the impulse for the PMC in (16). We can interpret the LIR of MTR
(27) as follows. For ζ = 0, the LIR of MTR at the jth pixel would be the same as the LIRs of

SGR (14) for all m. For  term in (25) encourages each LIR of the mth frame
to be the same as one another, which can result in different spatial resolution for different ζ.

E. Local impulse response (LIR) summary
The main results of this section are the LIR expressions (16), (22), and (27) for the PMC,
PMM, and MTR methods for MCIR respectively. Readers familiar with [21] will recognize
that these LIR expressions reflect non-uniform and anisotropic spatial resolution, both due to
heteroscedastic noise and due to nonrigid motion for standard regularizers. The next section
presents regularization design methods that can provide approximately uniform and
isotropic spatial resolution.

IV. Spatial regularizer designs for MCIR
In this section, we present ways to design spatial regularizers of MCIR methods to provide
approximately uniform and isotropic spatial resolution that does not depend on object-
specific measurement statistics and given object-specific non-rigid motion. We extend the
so-called analytical approach for regularizer design [29] to MCIR cases.

For the analysis in this section, we focus on 2D PET. We consider an ideal tomography
system, i.e., we ignore detector blur; nevertheless we conjecture that the regularization
designs are also useful in the presence of detector blur. We assume that

(29)

where Dm denotes a diagonal matrix for patient-dependent attenuation and detector
efficiency for the mth frame, and A0 is a system geometry. We assume known and well-
aligned attenuation map (i.e., Dm is given), which can be the case for PET-CT [38] or PET-
MR [39]. We still allow the warp Tm,1 to differ for each m.

For nonrigid motion, we assume that given nonrigid motion is locally affine [40]. This can
be viewed as a first order Taylor expansion of general nonrigid motion, which can be a good
approximation locally for smooth motion. We limit our analysis to 2D cases and focus on
using a first-order difference matrix as a spatial regularizer.

A. Single gated reconstruction (SGR)
We first briefly review the “conventional” analytical approach for designing a regularizer
that provides approximately uniform and isotropic spatial resolution for static image
reconstruction [27], [29]. This SGR method is also suitable when reconstructing an
individual frame, e.g., fm, from the corresponding measurement ym. However, the empirical
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results in Section V show that this conventional regularizer does not provide the intended
spatial resolution for any of the MCIR methods described above, so we provide new
regularization designs for MCIR methods in subsequent subsections.

We focus on quadratic regularization methods using first-order finite differences as follows:

(30)

where ** denotes 2D convolution, fm[ ] denotes the 2D array corresponding to the

lexicographically ordered vector fm, j is the lexicographic index of the pixel at  and

(31)

where { } denote the spatial offsets of the jth pixel's neighbors and δ2[ ] denotes the 2D
Kronecker impulse. For our empirical results, we used the usual 8-pixel 2D neighborhood

with .

For the single-frame estimator  in (12) with (29), one can rewrite the LIR (14) for
SGR as

(32)

where  and  is a diagonal matrix. We would like to design

the regularizer Rm (i.e., to select { } in (30)) so that the LIR closely matches some target
point spread function (PSF). A reasonable target for the jth pixel is

(33)

which is the (often shift-invariant) LIR of a penalized un-weighted least square (PULS)
estimator, and R0 denotes the Hessian of a standard shift-invariant quadratic regularizer. If

we assume slowly varying weights in  at the jth pixel, then  becomes

approximately a locally circulant matrix. One can show that “ ” approximately reduces
to

(34)

Therefore, our regularization design becomes an optimization problem with respect to Rm

(or { }) for all j and m:

(35)

where Rm is the function of { } for all l and j as given in (30).

An analytical formulation can simplify (35) by using a frequency domain representation. For

polar coordinates (ρ, φ) in frequency space, we write  to indicate that
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 is a locally shift-invariant operator with local frequency response |B(ρ)|2 /ρ where
B(·) denotes the frequency response of a typical radial blur function b(r) (e.g., the blur at the
center of a single projection view). For a standard quadratic penalty function R0 (i.e.
∫∥▽fm∥2), one can show that R0 ≡ (2πρ)2, and the quadratic function (30) becomes

, where . One can also show by using the Fourier

slice theorem and assuming the local shift invariance of  (slowly varying )
that [41]

(36)

where  denotes the (local) frequency response of the detector response  at angle φ
local to where the jth pixel projects onto the detector at that angle, and the angular-

dependent weighting  for the jth pixel is

(37)

where  is the set of rays at the angle φ, aij, ≜ [A0]ij, and . We simplify (35)

to the following cost function with respect to { } for each m and j

(38)

where

(39)

We can solve (38) analytically using Karush-Kuhn-Tucker conditions or iteratively using an
iterative non-negative least squares method. This summarizes [27], [29] for static 2D
imaging. We extend these methods to MCIR next.

B. Post-reconstruction motion correction (PMC)

We would like to design regularizers Rm that can approximate  for all j. Equations
(16) and (33) show that if we design a regularizer Rm such that

(40)

for all m where , then, we can achieve . Equivalently, we want to design

Rm (or ) such that

Chun and Fessler Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(41)

for all m. For small η, [F0+ηR0]−1F0 will be approximately diagonal, so by (7) and (8), we

can cancel the diagonal matrices in  and  so that (41) becomes

(42)

By assuming the warp is locally affine and  is approximately circulant locally,
(42) becomes the following optimization problem for each m and j:

(43)

We need to determine an analytical form for Tm,1R0T1,m and Tm,1F0T1,m to solve (43)
efficiently. With the results of Appendices A and B (assuming locally affine transforms Tm,1
and T1,m), one can show the equivalent continuous forms of Tm,1F0T1,m and Tm,1R0T1,m at
the jth pixel are as follows:

(44)

(45)

where we ignore detector blur (i.e., b(r) ≈ δ(r) or B(ρ) ≈ 1) in (45). Thus, using a procedure
similar to Section IV-A, we perform (43) by minimizing the following cost function with

respect to  for each m and j:

(46)

where the angular-dependent weighting for the jth pixel is

and  is defined in (37).  describes the non-uniformity and anisotropy of
the spatial resolution due to the interaction between the likelihood and the regularizer, which

is also observed in (38) for SGR.  is an additional term to
explain the non-uniformity and anisotropy due to motion. As mentioned in Section IV-A,
one can solve optimization problems of the form (46) analytically or iteratively [27], [29].

C. Parametric motion model (PMM)
For uniform and isotropic spatial resolution, we would like to design RPMM (which is of the

form (30) with ) to satisfy  from (22) and (33). By assuming a locally affine
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transform,  in (22) will be a locally circulant matrix at the jth voxel, which reduces

 to the following simpler optimization problem:

(47)

for all j. Ignoring detector blur, one can use Appendix B to show that the analytical form for

 is

(48)

where . With the similar procedure as in Section IV-A, one

can reduce (47) to minimizing the following cost function with respect to  of RPMM:

(49)

for all j where Ψ was defined in (39) and

The term  accounts for displacement of the activity due to motion and the

term  accounts for activity changes due to
local volume change. Unlike PMC, for PMM, the non-uniformity and anisotropy of spatial
resolution due to motion and due to the interaction between likelihood and regularizer are
closely related. Note that the non-uniformity and anisotropy of the spatial resolution due to
motion can be more severe when the warp is not total activity-preserving (i.e., p = 0). One
can solve the optimization problem (49) analytically or iteratively [27].

D. Motion-compensated temporal regularization (MTR)
For MTR, we would like to design Rm for all m to achieve

(50)

which means that we want to approximately match the LIR of the “first” frame at the jth

pixel to  and the LIRs of other frames should satisfy the given motion relationships related
to the first frame.

We can simplify this design problem (50) as follows. For ζ = 0 in (25), equation (50) is
equivalent to (41) for all m. In Section IV-B, we designed the regularizer (46) for each
frame m to approximately match the spatial resolution to the PULS estimator (uniform and

isotropic), i.e., satisfying (41). After we design Rm for all m using (46), then the 

Chun and Fessler Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



term in (25) is approximately zero due to the transitivity (11). Therefore, as we increase ζ >
0, we can still satisfy (50) with the regularizers Rm from (46) without affecting the cost
function in (25). The temporal regularizer only increases the correlation between image
frames and ζRtime does not affect the LIR of all frames in MTR under the assumption (40).
Therefore, we can approximately match the spatial resolution of MTR with our target spatial
resolution of PULS estimator using the proposed PMC regularizer design (46).

V. Simulation results
The general analyses provided in the previous section apply to nonrigid motions that are
approximately locally affine. We performed two simulations with digital phantoms: one is a
simple phantom with global affine motion between frames and the other is a XCAT
phantom [42] with general nonrigid motion that is modeled using B-splines [35].

A. Simulation setting
We used two digital phantoms, each with four frames of 160 × 160 pixels with 3.4mm pixel
width. We forward-projected these original images using a PET scanner geometry with 240
detector samples, 3.4 mm spacing, 220 angular views, and 3.4 mm strip width. We used
400K, 200K, 300K, 300K mean true coincidences for each frame (1.2M total) with 10%
random coincidences. We used simple uniform attenuation maps for the first simulation and
ignored attenuation for the second simulation. We scaled the image intensities to preserve
the total activity as described in Section II-C.

We investigated various reconstruction methods as follows. Target refers to a PULS
estimator (33) that shows our target spatial resolution with η = 104. SGR-S refers to a
standard gated (single frame) reconstruction method (12). PMC-S, PMC-C, and PMC-P
refer to PMC estimation results using a conventional static regularizer, a certainty-based
regularizer [21], and our proposed regularizer designed using (46) respectively. PMM-S,
PMM-C, and PMM-P also refer to PMM reconstructed images using a conventional static
regularizer, a certainty-based spatial regularizer, and our proposed regularizer from (49)
respectively. Lastly, MTR-S and MTR-P refers to MTR results using a conventional static
regularizer and our proposed spatial regularizer (46) respectively. PMC and PMM were
reconstructed using a regularized expectation-maximization (EM) algorithm with Poisson
likelihood [43]. PULS and MTR were reconstructed by using preconditioned conjugate
gradient with PWLS for simplicity.

B. Simple phantom with affine motion
In this simulation, we used a simple digital phantom with known affine motion (anisotropic
scaling between frame 1 and 2, rotation between frame 2 and 3, and translation between
frame 3 and 4) as shown in Fig. 2.

We put an impulse at (101,61) and generated two noiseless projections with original and
impulse-added images. We obtained LIRs by subtracting a reconstructed original image
from a reconstructed impulse-added image as defined in (13). Figs. 3 and 4 show contour
plots of the LIRs of the different MCIR methods and different regularization schemes. Using
static spatial regularizers usually led to skewed LIRs (for PMC-S, PMM-S, and MTR-S) due
to the spatial-variant noise statistics and the motion. Certainty-based spatial regularizer
designs did not alleviate the skewness of LIRs for each MCIR method (PMC-C and PMM-
C) and the LIRs of PMC-C and PMM-C do not match the target well. However, our
proposed spatial regularization designs of (46) and (49) achieve approximately uniform and
isotropic spatial resolution that matches well with our target resolution (PULS estimator) for
each MCIR method (PMC-P, PMM-P, and MTR-P with a wide range of ζ). With the
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proposed regularizer designs, PMC, MTR, and PMM can have approximately the same
spatial resolution.

The skewed LIRs for conventional regularizers can cause non-uniform estimation bias in
small or narrow structures such as small lesions or rings as shown in Fig. 5. These mean
images were obtained from the noiseless projections [22]. Fig. 5 (a) shows profiles of the
relative image intensity around the right ring of the PMC reconstructed images. Our
proposed PMC-P is very close to the target compared to the other regularization methods
(PMC-S and PMC-C). The profile of Fig. 5 (b) shows that our proposed regularizer obtained
approximately the same quantitative result as that of the target for PMM. Fig. 5 (c) shows
that our proposed spatial regularizer (46) approximately achieved the same spatial resolution
regardless of ζ, while the spatial resolution of MTR-S changes over ζ.

We obtained the LIRs and the mean images of different MCIR methods by reconstructing
images from noiseless projection data. We also performed 100 noise realizations (regularizer
were obtained from each realization) and showed that (result not shown in here) the image
from one noiseless projection and the mean image from 100 noise realizations matched very
well. They confirm that we can also use the same plug-in technique for MCIR method as
that for static case [22] to predict spatial resolution properties.

C. XCAT phantom with nonrigid motion
In this simulation, we used XCAT digital phantom [42] with respiratory and cardiac motion
to generate 4 volumes with nonrigid motion and selected one slice per each volume (same
location) for the 2D simulation. We estimated the motion fields from frame 1 to 2, from
frame 1 to 3, and from frame 1 to 4 (for PMM) by using B-spline nonrigid motion
estimation [35] and used them as the true motion, leading to the images f1,⋯ , f4 shown in
Fig. 6. Then, we obtained the other related warps (e.g., motion from frame 4 to 1 for PMC
and from 3 to 4 for MTR) by using (54) and the composition of transformations (e.g., T̊4,3 =
T̊4,1T̊1,3). Thus, there is no motion model mismatch in this experiment, so that we can focus
on the spatial resolution properties.

To measure LIRs, we put 9 impulses as indicated in Fig. 6 (+ marks). Fig. 7 shows the LIRs
of PMC at the 9 locations. Fig. 7 (a) and (b) show that conventional and certainty-based
spatial regularizers lead to skewed LIRs as compared to the Target LIR. However, our
proposed regularizer for PMC yielded a good match to the Target LIR as shown in Fig. 7
(c). Fig. 7 (d) and (e) confirm that regularizers that do not strive for isotropic spatial
resolution lead to skewed LIRs as compared to the Target LIR. However, our proposed
regularizer for PMM shows a good match to the Target LIR as shown in Fig. 7 (f). Fig. 8
shows LIRs of MTR at 9 locations. Fig. 8 (a) and (b) show that conventional regularizer can
not achieve the matched spatial resolution to the Target for any ζ value, while our proposed
regularizer for MTR produced nearly uniform and isotropic LIRs as in Fig. 8 (c) and (d) for
a wide range of ζ values.

Fig. 9 shows absolute difference images between the mean image for each method and
Target. PMC-S differs the most from the Target especially for edges and relatively small
structures (near myocardium in our example) in Fig. 9 (a). PMC-C matches somewhat better
due to nearly uniform spatial resolution as seen in Fig. 9 (b). Fig. 9 (c) shows that PMC-P
best matches the Target. Fig. 9 (d–f) shows similar results for PMM. Similarly, the
agreement of PMM from the Target mean image improves as the spatial regularizer
encourages uniform and isotropic spatal resolution. Likewise, Fig. 10 shows that our
proposed spatial regularizer for MTR yielded the mean images closest to the Target mean
image for a wide range of ζ values as shown in Fig. 10 (c), (d), as compared to the results of
conventional regularizers in Fig. 10 (a), (b).
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VI. DISCUSSION
The analysis in this paper shows that MCIR for nonrigid (even affine) motion leads to non-
uniform and anisotropic spatial resolution properties when one uses conventional static
regularizers. We proposed quadratic spatial regularizers that approximately achieve isotropic
and uniform spatial resolution for three different MCIR methods for the case of known
nonrigid motion. Our proposed regularizers (46) and (49) yielded LIRs that match well with
the Target LIR which is isotropic and uniform.

The assumption that the motion is locally affine should be reasonable for any smooth organ
motion such as heart and lungs when the time resolution is sufficient (e.g., see [44], [45] for
local affine models to approximate cardiac motion). Mathematically, the Taylor
approximation of smooth nonrigid motion becomes more accurate as the region of interest
(ROI) shrinks. In our analysis, the effective ROI is very small (usually about 2 pixels in each
direction) because we focus on each LIR individually. Thus, even for non-affine nonrigid
motion, our proposed methods still produced LIRs that match fairly well with the Target
LIR. However, this assumption may break for sliding motion such as the motion near the
interface between diaphragm and rib cage. For lower resolution modalities like PET or
SPECT, this type of motion can still be approximated by smooth motion. For high resolution
imaging modalities, treating this sharp sliding motion should be further investigated along
with non-quadratic spatial regularizers.

Our analysis assumed `known true motion', but obtaining exact motion from multi-modal
imaging systems is challenging due to misregistration between two imaging modalities (e.g.
PET and CT) and the non-linear, non-convex nature of image registration problem. We
investigated the effect of motion error in our reconstructed images. We reconstructed the
simple phantom in Section V-B again, but with 1.7 mm (a half pixel) and 3.4 mm (1 pixel)
motion errors in the x-direction deformation. Additionally, we reconstructed PULS image

with motion errors by minimizing  with respect to f1 where C0 is
a first-order finite difference matrix for a standard shift-invariant quadratic regularizer.
When the motion estimation error was small (1.7 mm), the maximum absolute errors
between the reconstructed image and the target image for PULS, PMC-S, and PMC-P were
0.7, 1.9, and 1.1. In this case, the non-uniformity and anisotropy of the bias due to the
interaction between Poisson likelihood and regularizers was still significant. However, when
the motion estimation error was large (3.4 mm), the maximum absolute errors for PULS,
PMC-S, and PMC-P were 1.4, 2.2, and 1.7. The non-uniformity anisotropy of the bias due to
the motion error started to become a dominating factor for large motion error. PMM also
showed similar tendency. For small motion errors, our proposed regularizers can still reduce
the nonuniformity and anisotropy of the bias as expected because  is slowly varying and
we assumed local affine motion (i.e., smooth motion). For large motion errors, MCIR itself
may fail to yield images with good quantification accuracy for any regularization method.
There is much effort on improving the accuracy of motion estimation by using simultaneous
acquisition such as PET-MR, or by using joint estimation of image and motion. The issue of
the non-uniform and anisotropic spatial resolution will become increasingly important as the
accuracy of the motion estimation in MCIR models continues to improve.

The spatial resolution analysis and regularizer designs in this paper can provide the basis for
interesting future work such as analyzing the noise properties of MCIR methods [46] and
extending regularization design to 3D PET / CT and to nonquadratic regularizers. It is
straightforward to extend this work to 3D cylindrical PET with 6-voxel 3D regularizer [47],
which is relevent for 3D PET rebinning methods [48]. Extending this analysis to fully 3D
PET or fan-beam CT will be more challenging, just as [23], [27] extended [21], [29],
respectively. This analysis can also provide insights into the methods of joint image
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reconstruction and motion estimation (unknown motion) [7], [8], [11], [13]–[15]. One may
use the proposed regularizers in the joint estimation framework by using currently estimated
motion instead of using true motion. However, the effect of the proposed regularizer in this
case should be further analyzed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A ADJOINT OPERATOR OF A WARP T

This appendix analyzes the properties of the transpose warp matrix  considering its
continuous space analogue. Let  denote a spatial transformation with positive

Jacobian determinant. Let  denote the space of (square integrable) images over

 and define the warp operator  by  if and only if  for f,
 and all . This appendix determines the adjoint of , defined as the operator

 that satisfies  for all f, , where 〈⋅, ⋅〉 denotes the usual inner
product on .

By a simple change of variable , we have

(51)

where  denotes the determinant of Jacobian of T. We define an operator 
such that

Then, by (51), the adjoint operator  is given by

(52)

Therefore, in continuous space, the adjoint of an invertible nonrigid warp is the product of
the inverse of the warp with a diagonal operator based on the local Jacobian determinant of
the warp. The discrete approximation that matches (52) is

(53)
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Now we use the result (53) and (8) to approximate the transpose of the discrete space

matrices  in (6) as follows:

(54)

APPENDIX B EQUIVALENT FREQUENCY FORM FOR AFFINE
TRANSFORMATION

This appendix analyzes the behavior of a gram matrix or a quadratic regularizer that is
sandwiched in between the transpose and forward affine transformation operators such as

 and  in (16). We consider the continuous-space analogue as follows:

(55)

where  denotes the frequency response with frequency domain variables ,  is a

Fourier transform operator, and  corresponds to the total activity-preserving affine
transform operator that is associated with the affine transform

(56)

Here, L is a d × d invertible matrix,  is a translation vector, and  is spatial domain

coordinates in . If  has Fourier transform , then the Fourier transform of

 is

After multiplying  by  and matching a change of variables, the inverse
Fourier operator  will result in the following continuous function:

Lastly, by Appendix A, an operator  will change  into  and multiply by .
Therefore, (55) simplifies to

(57)
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Note that the translation  does not affect the equivalent frequency response (57). For

example, if  in the polar frequency coordinate , the frequency response

of  will be .
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Fig. 1.
Contours of LIRs: Target, SGR-S (single gate), PMC-S (four gates with motion).
Incorporated motion information may introduce additional non-uniform and anisotropic
spatial resolution to the static case.
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Fig. 2.
Four true images with anisotropic scale, rotation and translation.
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Fig. 3.
LIRs (images and contours) at pixel (101, 61) for different MCIR methods. Our proposed
spatial regularization designs can match well with the uniform and isotropic target LIR.
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Fig. 4.
LIRs (images and contours) at pixel (101, 61) for MTR. Our proposed spatial regularization
designs can match well with the target LIR regardless of ζ while LIRs of MTR-S depend
strongly on the ζ values.

Chun and Fessler Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Profiles around the ring on the right of the reconstructed images of PMC, PMM, and MTR
(with different ζ values) with different spatial regularizers from the noiseless projection
data. Nonuniform and/or anisotropic LIRs lead to non-uniform estimation bias in small or
narrow structures such as small lesions or rings. Reconstructed images are shown in
supplimentary figures.
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Fig. 6.
Four XCAT phantom images with nonrigid motion.
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Fig. 7.
Contours of LIRs for PMC and PMM. Our proposed PMC-P and PMM-P approaches
approximately match with Target spatial resolution for general nonrigid motion.
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Fig. 8.
Contours of LIRs for MTR. Our proposed MTR-P approximately matches with Target
despite general nonrigid motion and different ζ.
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Fig. 9.
Absolute difference images between PMC/PMM and Target. PMC-S/PMM-S show severe
non-uniform bias near edges or relatively small structures. PMC-C/PMM-C alleviate this
bias using nearly uniform spatial resolution and PMC-P/PMM-P performed best by nearly
uniform/isotropic spatial resolution.
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Fig. 10.
Absolute difference images between MTR and Target. MTR-S with any ζ values show
significant non-uniform bias in small or narrow structures such as small lesions or rings, but
MTR-P reduces this bias for a wide range of ζ values.

Chun and Fessler Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chun and Fessler Page 31

TABLE I

Acronyms

Acronym

MCIR motion-compensated image reconstruction

LIR local impulse response

Acronym Reconstruction method

SGR single gated reconstruction

PMC post-reconstruction motion correction

MTR motion-compensated temporal regularization

PMM the parametric motion model

Acronym Regularization method

-S standard quadratic regularizer

-C certainty-based regularizer

-P proposed regularizer
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