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Abstract

Direct reconstruction of kinetic parameters from raw projection data is a challenging task in

molecular imaging using dynamic positron emission tomography (PET). This paper presents a

new optimization transfer algorithm for penalized likelihood direct reconstruction of nonlinear

parametric images that is easy to use and has a fast convergence rate. Each iteration of the

proposed algorithm can be implemented in three simple steps: a frame-by-frame maximum

likelihood EM-like image update, a frame-by-frame image smoothing, and a pixel-by-pixel time

activity curve fitting. Computer simulation shows that the direct algorithm can achieve a better

bias-variance performance than the indirect reconstruction algorithm. The convergence rate of the

new algorithm is substantially faster than our previous algorithm that is based on a separable

paraboloidal surrogate function. The proposed algorithm has been applied to real 4D PET data.

Index Terms

Image reconstruction; kinetic modeling; penalized maximum likelihood; parametric imaging

I. Introduction

Parametric imaging using dynamic positron emission tomography (PET) provides important

information for biological research and clinical diagnosis [1]–[3]. Direct reconstruction

methods combine kinetic modeling and emission image reconstruction into a single formula

and estimate parametric images directly from raw projection data (see [4], [5] for surveys on

this topic). Compared with conventional indirect methods which reconstruct a sequence of

emission images first and then estimate kinetic parameters from time activity curves (TACs)

in a separate step, direct reconstruction methods can accurately model the statistics of noise

in the kinetic parameter estimation process.

One drawback of direct reconstruction with compartment models is that the optimization

algorithms are usually more complex than indirect methods, because the kinetic parameters

are related to the expectation of PET data nonlinearly. Most existing algorithms [6]–[12]

were derived for a specific kinetic model. Recently, a generalized algorithm [13] was

proposed for direct reconstruction. It uses a paraboloidal surrogate function [15] in the

sinogram domain to transfer the penalized maximum-likelihood (ML) problem at each

iteration into a pixel-wise nonlinear least squares (NLS) formulation. However, the

paraboloidal surrogate function requires the expectation of the background events (randoms
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and scatters) to be nonzero in all sinogram bins, which may limit its applications.

Furthermore, the convergence rate of this algorithm can be very slow if the level of

background events is low.

In this paper, we present a new algorithm that uses the expectation-maximization (EM) [16]

based surrogate function in the image domain for direct reconstruction of nonlinear

parametric images in dynamic PET. Compared with the paraboloidal surrogate, the EM

surrogate does not require a positive background. We have previously used the same EM

surrogate for the ML reconstruction of linear parametric images and achieved fast

convergence rate [17]. For linear parametric models, the EM surrogate function can be

easily maximized by using the well-known ML EM update [18], [19], which results in the

so-called nested EM algorithm [17]. The penalized likelihood reconstruction of nonlinear

parametric images is more challenging because of the nonlinear relationship between the

kinetic parameters and noisefree data. Here we developed a modified Levenberg-Marquardt

algorithm to maximize the surrogate function of the penalized likelihood. Part of this work

was previously presented at the 2010 IEEE Nuclear Science Symposium and Medical

Imaging conference [20]. A similar work was also presented for maximum likelihood

reconstruction at the same conference by Matthews et al [21]. Rather than solving the ML

problem directly, the method by Matthews et al converts the ML problem to a weighted

least squares problem and determines the weight using a one-step-late approach. Without a

proper line search, the one-step-late approach does not guarantee a monotonic convergence

to the ML solution, although convergence has often been observed empirically. In

comparison, the proposed method guarantes monotonic convergence and is able to

regularize image reconstruction through the penalized likelihood formulation.

The rest of the paper is organized as follows. Section II describes the general formulation of

direct reconstruction for dynamic PET data. Section III presents the details of the proposed

algorithm under the optimization transfer framework. Computer simulations are given in

Section IV to validate the performance of the proposed algorithm and to compare with our

previous algorithm and other algorithms. An application of the proposed algorithm to real

data is given in Section V. Finally conclusions are drawn in Section VI.

II. Direct Reconstruction of Parametric Images

Dynamic PET can monitor the spatiotemporal distribution of radioactive tracers in vivo. The

concentration of the radiotracer at a given pixel at time t can be described by the following

tracer kinetic model [22]

(1)

where κ is a vector that contains all the kinetic parameters that determine the tracer uptake

in the tissue, fv is the fractional volume of blood in the tissue, h(t; κ) is the impulse response

function, Cp(t) is the tracer concentration in plasma, Cwb(t) is the tracer concentration in

whole blood, and “⊗” denotes the convolution operator. The model in (1) is general and

includes compartmental models and simplified linear models as special cases. For example,

the impulse response h(t; κ) of the commonly used three-compartment model is given by
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(2)

where κ = {K1, k2, k3, k4} are the transport rate constants between compartments, Δα = α2 −

α1 with

, and e−α(t) = (e−α1t, e−α2t)T. For simplicity, we will use θj ∈ IRnp to denote the collection of

transport rates and fractional volume {κ, fv} for pixel j and θ ≡ {θj } to denote the

parametric images. np is the total number of kinetic parameters in a kinetic model.

A dynamic PET scan is often divided into multiple consecutive time frames, with each

frame containing coincidence events recorded from the start of the frame till the end of the

frame. The image intensity at pixel j in time frame m, xm(θj ), is then given by

(3)

where tm,s and tm,e denote the start and end times of frame m, respectively, and λ is the

decay constant of the radiotracer. PET measured data can be modeled as a collection of

independent Poisson random variables with the expected projection ȳm(θ) in time frame m

related to the dynamic image xm(θ) through an affine transform [13],

(4)

where the ith element of ȳm(θ), ȳim(θ), denotes the expected measurement of detector pair i

in frame m, the (i, j)th element of P ∈ IRni×nj, pij, is the probability of detecting an event

originated in pixel j by detector pair i, and rm ∈ IRni is the expectation of scattered and

random events in the mth frame. ni and nj are the total number of the detector pairs and

voxels, respectively.

The goal of dynamic PET is to estimate θ from dynamic PET measurements. Let yim denote

the coincidence data detected by detector pair i in time frame m and  be

the collection of all the measurements. The log-likelihood function of the dynamic PET data

set, omitting constants that are independent of θ, is

(5)

where nm is the total number of time frames. Direct reconstruction finds the solution by

maximizing the penalized likelihood function
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(6)

where U (θ) is a smoothness penalty and β is the regularization parameter that controls the

tradeoff between the resolution and noise. The smoothness penalty can be applied either on

the kinetic parameters θ or on the dynamic image {xm(θ)}, depending on the application.

Here we use the following quadratic penalty applied on the dynamic image

(7)

where  denotes the neighborhood of pixel j and γjl is the weighting factor equal to the

inverse distance between pixels j and l. We use the eight nearest neighboring pixels in 2D

and 26 nearest neighbors in 3D.

III. Proposed Algorithm

A. Maximum likelihood reconstruction

For a concave function f, we have the following inequality [14]

(8)

where {wj }, {aj } and {bj } are positive vectors.

Using the above inequality and setting wj = pij, aj = xm(θj ),  for j > 0 and w0 =

rim, a0 = b0 = 1, we get

(9)

where the superscript n denotes the estimate at iteration n. The constants

 and  depend on the known estimate θn,

but are independent of the unknown parameter θ and hence will be omitted in the following

optimization.

Then the following surrogate function can be obtained for the original likelihood function

L(y|θ):
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(10)

where

(11)

and { } is an intermediate dynamic image given by

(12)

Equation (12) resembles the ML EM update for a dynamic PET image.

It is easy to prove that the surrogate function in (10) satisfies

(13)

(14)

where ∇ denotes the gradient with respect to θ. The optimization of the original likelihood

function can now be transferred to the maximization of the surrogate function

(15)

which guarantees

(16)

and the equality holds only when θn achieves the maximum of L(y|θ) because of the matched

gradient condition in (14).

It is worth noting that the optimization in (15) is separable for pixels and can be solved by

the following pixel-wise optimization:

(17)

where  and
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(18)

with φ ∈ IRnp and f em ∈ IRnm.

Note that  shares the same form as the Poisson log-likelihood function.

However, it does not suggest that  follows an independent Poisson distribution because

 is just a surrogate function for the optimization.

Compared with the formula given by Carson and Lange in [23], the introduction of 

simplifies the implementation of the maximum likelihood estimation. When xm(θj ) is a

linear model of θj, an EM algorithm can be used to maximize , which results in

the nested EM algorithm in [17]. For nonlinear parametric image reconstruction, the fitting

problem in (17) can be solved by the modified Levenberg-Marquardt algorithm to be

presented in Section III-C.

B. Penalized likelihood reconstruction

The penalized likelihood function Φ(θ) contains a penalty term U (θ) defined by (7). Using

De Pierro’s decoupling rule [14], [24]

(19)

we can construct a separable surrogate function Q2(θ; θn) for the regularization term U (θ):

(20)

where

(21)

and { } is an intermediate smoothed dynamic image obtained at iteration n by

(22)

It is easy to verify that the surrogate function satisfies

(23)
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(24)

Combining the surrogate functions for the log-likelihood and regularization terms gives us

the overall surrogate function

(25)

for the penalized likelihood function Φ(θ). Again, the surrogate function Q(θ; θn) is

separable for pixels, so the large-scale optimization of the penalized likelihood function Φ(θ)

with respect to θ can be transferred into the following small-scale pixel-wise optimization:

(26)

where  and

(27)

with freg, ωreg ∈ IRnm. Note that .

The objective function in (26) resembles a penalized Poisson likelihood for one-dimensional

curve fitting. It can be solved by many existing nonlinear optimization algorithms. Here we

use the modified Levenberg-Marquardt algorithm.

C. Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm [25] is usually used to solve nonlinear least

squares problems. Here we modify it slightly to solve the penalized Poisson likelihood curve

fitting problem in (26) which is equivalent to solving the following minimization problem

(28)

(29)

Given an estimate at iteration k, the second-order Taylor approximation of q(φ) is

(30)

where g ∈ IRnp is the gradient vector and H ∈ IRnp×np is the Hessian matrix:
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(31)

where J ∈ IRnm×np is the Jacobian matrix of time activity curve with the (m, p)th element

being . The vectors q̇k ∈ IRnm and q̈k ∈ IRnm are the first and second derivatives of

the function q(φ) with respect to xm(φ) at iteration k, respectively:

(32)

(33)

A new estimate of φ can be obtained by minimizing the following objective function

(34)

subject to the bound constraints φ ≤ φ ≤ φ̄, where φ and φ̄ are the lower and upper bounds of

the parameters, respectively. μ is the damping parameter. D[Hpp] is a diagonal matrix with

the pth diagonal element being Hpp. We use a coordinate descent algorithm for the quadratic

optimization in (34). The method described in [26] is used to find the optimal damping

parameter μ* that results in the maximum decrease in the original objective function, i.e.,

(35)

Then the estimate at iteration (k + 1) is set to

(36)

The nonlinear fitting optimization therefore guarantees monotonic convergence to a local

optimum.

The generalized algorithm and the modified LM algorithm are summarized in the

algorithmic tables 1 and 2, respectively. A comparison with our previous algorithms [13] is

given in Table I.

D. Convergence

The modified LM algorithm guarantees an increase in the surrogate function given in (26).

Using the property of the surrogate function, we then have

Wang and Qi Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(37)

If θn is the maximizer of Q(θ; θn), i.e. θn+1 = θn, we have

(38)

according to the Karush-Kuhn-Tucker condition. Combining the above equation with

equations (14) and (24), we get

(39)

indicating θn also maximizes the original objective function Φ(θ).

Thus, the whole algorithm guarantees a monotonic convergence to a local optimum for the

nonlinear parametric image reconstruction. When a linear kinetic model is used, the

convergence is also global because the penalized log-likelihood function is concave.

IV. Computer Simulations

We performed computer simulations to validate the proposed algorithm. A 60-minute 18F-

FDG brain scan was simulated using one slice of the Zubal phantom [27] that consisted of

gray matter, white matter and a small tumor inside the white matter, as shown in Fig. 1(a).

The scanning schedule of dynamic PET data consisted of 24 time frames: 4×20 s, 4×40 s,

4×60 s, 4×180 s and 8×300 s. The time activity curve of each region was generated using a

three-compartment model and an analytical blood input function in Feng’s model [28], and

shown in Fig. 1(b). The activity is shown in an arbitrary unit (a.u.) that is proportional to Bq.

Since the scaling factor has no effect on image reconstruction algorithms, we did not

estimate it here. The kinetic parameters fv, K1, k2, k3, k4 used for gray matter and white

matter are taken from [29] and listed in Table II. The TACs were integrated for each time

frame and forward projected to generate dynamic sinograms. The forward projection model

included object self-attenuation. The expectation of scatter sinogram was obtained by using

the SimSET simulation. The scatter fraction was set to 20%. A 20% uniform randoms was

also included. Poisson noise was then generated, resulting in an expected total number of

events over the 60 minutes equal to 20 million.

Fifty independent and identically-distributed noisy datasets were generated and processed

independently by the direct reconstruction method and indirect method to estimate the

images of kinetic parameters. The regularization parameters in both reconstruction methods

were the same and covered a wide range of values: 0, 1 ×10−4, 3 ×10−4, 1 ×10−3, 3 ×10−3, 1

× 10−2. Both methods used 200 iterations in the reconstruction step to guarantee

convergence. At each iteration of the direct algorithm, two iterations of the modified

Levenberg-Marquardt algorithm were used. In the indirect method, dynamic images were

first reconstructed frame-by-frame using the regular MAP-EM algorithm [24] for static

image reconstruction, then followed by the usual Levenberg-Marquardt algorithm with 100

iterations to estimate the kinetic parameters pixel-by-pixel. The weighting factor in the
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kinetic fitting in the indirect method was chosen to be the squared frame duration divided by

the count of the frame. The initial values of the kinetic parameters in both reconstructions

were set to 0.01 for all pixels. The lower bounds were set to 10−5 and the upper bounds were

1.0 for all the kinetic parameters. The influx rate

which is the major parameter of interest in FDG PET studies [30], was calculated from the

estimated micro-parameters for evaluating the two methods.

A. Comparison between direct and indirect reconstructions

Fig. 2 shows the true and reconstructed Ki images by the direct method and indirect method.

The regularization parameter used in this case was β = 3 ×10−4. In comparison, the result of

the direct reconstruction is less noisy. The corresponding bias and variance images of the

reconstructions are shown in Fig. 3. While the two methods have similar biases, the variance

of the direct reconstruction is much lower than that of the indirect method. Fig. 4 plots the

total squared bias against the total variance in the whole brain, by varying the regularization

parameter β with β = 1 ×10−2 corresponding to the leftmost point and β = 0 to the rightmost

point. It shows that the direct reconstruction results in less variance at any given bias level

than the indirect method.

We also calculated the bias versus standard deviation tradeoff curve for region of interest

(ROI) quantification, which takes into account of spatial correlation between image pixels.

The ROI was chosen to be the tumor region. The trade-off curves are plotted in Fig. 5.

Again, the standard deviation of the direct reconstruction is less than that of the indirect

method at all bias levels.

All of these results indicate that the direct reconstruction has a better quantification

performance for Ki than the indirect reconstruction. While direct reconstruction using the

Patlak model [31]–[33] can also generate Ki image for irreversible tracers, the Patlak model

itself may introduce bias when applied to reversible tracers with k4 > 0 (see [39] for

example). In addition to the estimation of Ki, the proposed method can offer better

parametric images of other kinetic parameters as well. As an example, Fig. 6 shows the

reconstructed k3 images by the direct approach and the indirect approach, both with the same

regularization parameter β = 0.0003. Cleary the direct reconstruction result has much less

noise than the indirect reconstruction result while maintaining the same spatial resolution.

B. Comparison with previous optimization transfer algorithm

The convergence rate of the proposed algorithm (the optimization transfer with EM

surrogate, OT-EM) was compared with one of our previous algorithms (optimization

transfer with separable paraboloidal surrogate, OT-SP) [13]. We used two different

measures to evaluate the convergence speed: normalized difference of the penalized log-
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likelihood and mean squared error (MSE) of reconstructed Ki images. The normalized

likelihood difference at iteration n is calculated by

(40)

where Φref is the reference value obtained at convergence. The advantage of using the

normalized likelihood difference is that we can easily compare the convergence rate of

different algorithms using a log-scale plot. The mean squared error of a reconstructed image

at iteration n is calculated by

(41)

where xn is the image reconstructed at iteration n, xref is the reference image obtained at

convergence.

To investigate the effect of background (randoms and scatters) fraction BF on the

convergence speed, we simulated three levels of background in the sinograms: BF = 10%,

BF = 20% and BF = 40%. The OT-EM and OT-SP algorithms used the same regularization

parameter β = 3 × 10−4 and started from the same uniform initials. The results of the OT-SP

at iteration 5000 were used as the reference for calculating the normalized likelihood

difference and mean squared error.

Fig. 7 shows the comparisons of the normalized likelihood difference and mean squared

errors of the two direct algorithms as a function of iteration number. Both results show that

the OT-EM algorithm is faster than the OT-SP algorithm. The speed-up of the OT-EM over

the OT-SP becomes greater as the background fraction reduces, because the OT-SP

algorithm uses a non-tight paraboloidal surrogate function and hence becomes slower when

the fraction of background is low. When the background fraction is at 10%, the OT-SP

requires more than 300 iterations to reach the same likelihood value and mean squared error

as that achieved by the OT-EM with 50 iterations. The computational costs per iteration of

the OT-SP and OT-EM are comparable. The former requires one more backprojection to

compute the curvature of the paraboloidal surrogate, while the latter takes more computation

time in the fitting step to calculate the logarithm. The real CPU times are about 9 seconds

per iteration for the OT-EM and 10 seconds per iteration for the OT-SP, when implemented

in MATLAB running on a 2.4 GHz CPU.

C. Comparison with other algorithms

We compared the OT-EM algorithm with two direct reconstruction algorithms proposed by

others [11], [21]. Both algorithms solve the image space maximum likelihood problem using

a weighted least squares formulation. Uniform weight was used in [11] and nonuniform

weight derived from an one-step-late approach was used in [21]. To our knowledge no proof

of convergence has been established for either of the algorithm.
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Fig. 8 compares the normalized likelihood difference and mean squared errors of the OT-

EM algorithm and the algorithms by [11] and [21] for the Zubal data. Three different count

levels (0.2M, 2M and 20M) were studied. The regularization parameter β in the OT-EM was

set to 0 because the other two algorithms are only applicable to maximum likelihood

reconstruction. The result of the algorithm in [21] at iteration 5000 was used as the

reference. The plots show that the OT-EM is faster than the algorithm in [11] at all the count

levels and can achieve faster convergence and lower MSE than the algorithm in [21] for

lower-count data.

To demonstrate the potential non-monotonicity of the empirical algorithms, we also

simulated a two-pixel toy example using a system matrix  and two-

tissue compartment model with the kinetic parameters [fv, K1, k2, k3, k4]T = [0.01, 0.1, 0.01,

0.01, 0.01]T for pixel 1 and [fv, K1, k2, k3, k4]T = [0.01, 1.0, 1.0, 0.01, 0.01]T for pixel 2. The

input function and scanning schedule are the same as those used in the Zubal phantom

simulation. One thousand events were simulated with a 20% background. Initial guess was

0.03 for all of the kinetic parameters. The lower bound for parameter estimate was set to

10−5 for all the parameters and the upper bound was 1.0 for fv and 2.0 for K1 to k4.

Fig. 9(a) shows the normalized likelihood difference of the OT-EM and the algorithms in

[11] and [21], using the result of the algorithm in [21] at iteration 5000 as the reference

point. The trajectories of the estimated k2 of the two pixels are plotted in figure 9(b) for the

three algorithms, where the isocontours of the likelihood were drawn by varying k2

parameter values while fixing other parameters at their reference values. The estimates by

the algorithms in [11] and [21] at iteration 5000 are also marked in the figure. Both the OT-

EM and the algorithm in [21] converged to the same optimum solution, but the OT-EM was

much faster. The algorithm in [11] was non-monotonic and converged to a solution away

from the optimum.

V. Application to Real 4D Data

We have applied the OT-EM algorithm to a dynamic brain scan of a nonhuman primate. The

data were acquired on a microPET P4 scanner (Siemens, Knoxville, TN). The radiotracer

was 11C-SCH 23390 which binds to dopamine D1 receptors in the brain [34]. The scan

consists of 20 time frames over 45 minutes: 10×60 s, 5×120 s, 5×300 s. A transmission scan

was used for estimating the attenuation map. Randoms were pre-corrected using the delayed

window technique. The expected scatter sinograms were estimated by the single-scatter

simulation method [35]. Images were reconstructed using an array of 128 × 128 × 63 voxels

with a voxel size of 1.0 × 1.0 × 1.2 mm3.

The simplified reference tissue model (SRTM) was used for kinetic fitting of the 11C-SCH

23390 data [36]. The cerebellum was chosen as the reference region. The tissue time activity

curve is modeled by [37], [38]

(42)
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where θ1 is the relative delivery rate from plasma to tissue, θ2 and θ3 can be interpreted as

the transport rates of the target tissue relative to the reference region. Cr(t) is the reference

TAC. The distribution volume ratio (DVR) of interest is calculated by

(43)

which is related to the binding potential (BP) via DVR = BP + 1.

We used both the indirect and direct methods to reconstruct the DVR parametric image. In

the indirect method, the regular MAP-EM algorithm with 200 iterations was used to

reconstruct dynamic emission images, then followed by the LM fitting with 100 iterations to

obtain the weighted least squares estimates of the kinetic parameters θ1, θ2 and θ3. The

weighting factor in the fitting was set to the squared time duration divided by the total count

of each frame [37]. The initial estimates in both methods were θ1 = 1.0, θ2 = 1.0, θ3 = 0.1.

The lower and upper bounds of (θ1, θ2, θ3) were set to [10−5, 5.0], [10−5, 5.0] and [0.03,

0.6], respectively. In the direct method, the OT-EM algorithm was run for 200 iterations

with two sub-iterations of the modified LM algorithm in the penalized likelihood fitting

step.

Region-of-interest (ROI) quantification was performed on the DVR images estimated using

the direct and indirect reconstruction methods. To define ROIs, the dynamic sinograms were

summed up and reconstructed to form a single static image. One slice of the static

reconstruction is shown in figure 10. Two ROIs were drawn in the striatal regions and four

spheres of 8 mm in diameter were drawn in the brain background. Mean uptakes in the

striatal regions and the average standard deviation in the background regions were computed

for comparison.

Figure 11 shows the DVR images reconstructed using the indirect and direct methods. Both

methods used the same initial estimates of the kinetic parameters. The regularization

parameter β for the indirect reconstruction was 100. The regularization parameter for the

direct reconstruction was β = 200 in order to match the mean value of the striatal regions to

that of the indirect reconstruction. Fig. 12 plots the mean uptake of the striatal ROIs versus

background noise curve by varying the regularization parameter with β = 0 corresponding to

the rightmost point and β = 1000 corresponding to the leftmost point. The second rightmost

point on the indirect curve and the third rightmost point on the direct curve correspond to the

images shown in figure 11, respectively. In comparison, the direct reconstruction reduces

noise in the brain at any matched mean value of the striatum ROIs.

The brain data were also reconstructed using the OT-SP algorithm with β = 200. The

penalized likelihood of the proposed OT-EM is compared with that of the OT-SP as shown

in Fig. 13. Both algorithms started from the same initialization. The OT-EM is clearly faster

than the OT-SP algorithm.
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VI. Conclusions

This paper presents a new optimization transfer approach for penalized likelihood direct

reconstruction of nonlinear parametric images using the EM surrogate functions. Each

iteration of the proposed algorithm consists of an EM-like dynamic image update, a spatial

image smoothing, and a pixel-wise penalized likelihood kinetic fitting. The algorithm does

not require a positive background in sinogram data and hence complements our previous

generalized algorithm for direct reconstruction. Computer simulations validate that the direct

reconstruction algorithm can have a better quantification performance than the indirect

algorithm for estimation of parametric images. Application of the algorithm to a real brain

scan also showed promising results.
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Fig. 1.
The simulation settings. (a) a Zubal brain phantom composed of gray matter, white matter

and a small tumor; (b) regional time activity curves
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Fig. 2.
True and reconstructed Ki parametric images using the indirect and direct algorithms (β =

0.0003).
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Fig. 3.
The bias and variance images of Ki image reconstructed using the direct and indirect

algorithms (β = 0.0003).
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Fig. 4.
The total squared bias versus variance tradeoff of the influx rate Ki image reconstructed

using the direct and indirect algorithms in the brain. Different points on the curves were

obtained by varying the parameter β.
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Fig. 5.
The bias versus standard deviation tradeoff of tumor ROI quantification on Ki images

reconstructed using the direct and indirect algorithms. Different points on the curves were

obtained by varying the parameter β.
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Fig. 6.
The true and reconstructed k3 images by the indirect and direct algorithms (β = 0.0003).
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Fig. 7.
Comparisons of normalized likelihood (first row) and mean squared error (second row) of

the penalized likelihood direct reconstructions using the optimization transfer approaches

with the SP surrogate and with the EM surrogate for three different background fractions:

(a) BF =10%, (b) BF =20% and (c) BF =40%.
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Fig. 8.
Comparison of the normalized likelihood difference (first row) and mean squared error

(second row) of the maximum likelihood reconstruction using the OT-EM algorithm and the

algorithms in [11] and [21] at three different count levels.
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Fig. 9.
Comparison of (a) the likelihood and (b) the trajectory of estimated k2 by different direct

reconstruction algorithms in the two-pixel simulation. The noise-free ground truth is marked

by ◇ in (b). All algorithms started from the same initialization.
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Fig. 10.
Striatal targets and background ROIs drawn on the reconstructed image of the sinogram

summed over the whole dynamic scans.
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Fig. 11.
The estimated DVR images of the real primate brain data using (a) the indirect and (b) the

direct methods. The three columns represent the transverse, sagittal and coronal slices of

each 3D volume, respectively.
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Fig. 12.
ROI mean of the striatum regions versus background standard deviation of the indirect and

direct reconstructions. The curves are plotted by varying the regularization parameter β.
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Fig. 13.
Comparison of convergence rate of the penalized likelihood direct reconstruction using the

OT-SP and OT-EM algorithms for the real 4D primate data. Both approaches start from the

same initialization.
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TABLE I

Comparison between the proposed algorithm and the previous algorithm for direct reconstruction.

Prevous Algorithms [13] Proposed Algorithm

Surrogate Function paraboloidal surrgoate EM surrogate

Monotonic Convergence yes yes

Reconstruction Step paraboloidal update EM update

Smoothing Step spatial filtering spatial filtering

Fitting Step least squares fitting by the Levenberg-Marquardt (LM)
algorithm

penalized likelihood fitting by the modified LM
algorithm

Compartment type any types any types

Background Events must be positive no requirement
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Algorithm 1

The generalized algorithm for direct reconstruction of parametric images

1: Input parameters: Maximum iteration number for reconstruction MaxIter; Regularization parameter β

2: Initialize the parametric images θ;

3: Compute the dynamic image x:= {xm(θj )} by Eq.(3);

4: for n = 1 to MaxIter do

5:  Frame-wise EM image reconstruction:

  

 where  and ȳim(θ ) is calculated by Eq. (4);

6:  Frame-wise image smoothing if β > 0:

  

 where the weight  is calculated by Eq.(21);

7:  Pixel-wise penalized likelihood fitting

  

8: end for

9: return the parametric images θ
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Algorithm 2

PLFit φ0, fem, freg, ωreg: the Levenberg-Marquardt algorithm for penalized likelihood fitting

1: Set the parameters τ and ε to small values, e.g. τ = 10−3, ε = 10−9

2: Set initals: v = 2, φ = φ0

3: Calculate the gradient g and Hessian H by Eq. (31)

4: μ: = τ max p{[H]pp}

5: for k = 1 to kmax do

6:  Get φnew by solving the quadratic optimization (34)

7:  if ||φnew − φ|| ≤ ε (||φ || + ε) then

8:
  return φ and 

9:  else

10:

   

11:   if ρ > 0 then

12:    φ:= φnew

13:    Update g and H using Eq. (31)

14:

    

15:   else

16:    μ:= μv; v:= 2v

17:   end if

18:  end if

19: end for

20:
return φ and 
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