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Abstract
The long-standing interior problem has important mathematical and practical implications. The
recently developed interior tomography methods have produced encouraging results. A particular
scenario for theoretically exact interior reconstruction from truncated projections is that there is a
known subregion in the region of interest (ROI). In this paper, we improve a novel continuous
singular value decomposition (SVD) method for interior reconstruction assuming a known
subregion. First, two sets of orthogonal eigen-functions are calculated for the Hilbert and image
spaces respectively. Then, after the interior Hilbert data are calculated from projection data
through the ROI, they are projected onto the eigen-functions in the Hilbert space, and an interior
image is recovered by a linear combination of the eigen-functions with the resulting coefficients.
Finally, the interior image is compensated for the ambiguity due to the null space utilizing the
prior subregion knowledge. Experiments with simulated and real data demonstrate the advantages
of our approach relative to the projection onto convex set type interior reconstructions.
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I. Introduction
AT THE present time, the computed tomography (CT) theory is undergoing rapid
development. In many applications of CT such as biomedical imaging, industrial
nondestructive testing, and security screening, situations are common in which a region of
interest (ROI) is small and located strictly inside the object support (interior ROI). Clearly,
the ROI-focused scanning and subsequent reconstruction may minimize radiation dose,
handle large objects, shorten scanning time, and reduce engineering cost [1]. Over the past
decades, many efforts were spent on developing local reconstruction algorithms which take
only ROI data, but produce qualitative, rather than quantitative, images [2]-[6].

For a long time, due to the nonlocal property of the Radon transform inversion, it has been
widely believed that theoretically exact local reconstruction cannot be done only from
projection data through an ROI, and indeed a counter example was explicitly constructed
showing the nonuniqueness of the solution to the interior problem [7]. Interestingly, this
problem has been recently revisited with important theoretical and practical results [8]-[10].
In the differentiated back-projection (DBP) framework, the solution to the interior problem
was proved to be unique if there is a known subregion inside a ROI [11]-[13]. A theoretical
basis was laid down in early 1990s when Gelfand and Graev established a fundamental
relationship between the Hilbert transform of an image along a line and differentiated
projection data of the image [14], [15].

For interior reconstruction, there are several DBP methods available, most of which are
based on the projection onto convex sets (POCS) (usually add one more constraint of L1

norm minimization to the image) [16], [17]. However, the iterative process is
computationally expensive and can be prohibitively slow for real-world applications. As an
alternative, an SVD-based DBP approach was proposed, which allows a noniterative interior
reconstruction [18], [19]. The SVD approach is much faster than its iterative counterpart and
produces encouraging preliminary results.

In this paper, we further develop the SVD approach for interior tomography. Based on the
latest continuous SVD formulation setup by Katsevich [20], here we propose a new interior
tomography algorithm. First, two sets of orthogonal eigen-functions are calculated for the
Hilbert and image spaces respectively. Then, after the interior Hilbert data are calculated
from truncated projections through the ROI, they are projected onto the eigen-functions in
the Hilbert space, and an interior image is recovered by a linear combination of the eigen-
functions in the image space with the resulting coefficients. Finally, the quality of interior
reconstruction is improved using a compensation method which utilizes prior subregion
knowledge. Numerical and clinical experiments are performed to show the advantages of
our approach relative to the POCS iterative reconstruction algorithms.

The rest of this paper is organized as follows. In the next section, the basic facts about the
truncated Hilbert transform (THT) and its SVD are summarized. In the third section, the
SVD method is introduced for the ROI-focused reconstruction, which utilizes a continuous
SVD theory and a null-space compensation technique. In the fourth section, numerical and
pre-clinical experimental results are presented. Finally, relevant issues are discussed and the
paper is concluded in the last section.

II. SVD-THT Theory
Very recently, Katsevich developed an analytical SVD method for the truncated Hilbert
transform (THT). It can be directly used to solve the interior problem from the DBP data.
The major results can be summarized as follows.
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For any two real numbers ai, aj ∈ R, and any ω(y) ∈ C∞([ai, aj]), define a transform Hij:
L2([ai, aj]) → L2(R) that

(1)

Also, for any four real numbers, a1 < a2 < a3 < a4, define a differential operator L

(2)

where ω ∈ C∞(R) and

(3)

and dx represents a derivative operator with respect to x. Then a Sturm–Liouville boundary
value problem can be described as

(4)

This is a singular Sturm–Liouville problem with limit-circle nonoscillatory end-points [19].
It is known that its eigenvalues satisfy

(5)

and the associated normalized eigen-functions {φn(y), a2 < y < a3}, n ≥ 0, are orthogonal
and complete in L2([a2, a3]). From (1) and (2) it can be deduced that for any φ(y), which is
sufficiently smooth

(6)

Define ψn (x) ∈ L2([a1, a4]) in terms of φn as

(7)

where ‖·‖14 is the norm in L2([a1, a4]). By (4) and (6), we have

(8)

With (8), the orthonormality of the set {ψn, n ≥ 0} in L2([a1, a4]) can be proved [19]. Using
the results in [21]

(9)

Thereby, given that

(10)

one has
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(11)

Therefore, the set {φn, ψn, νn}, n ≥ 0 forms an SVD of the operator H23 : L2([a2, a3]) →
L2([a1, a4]). Let ψ(x) and φ(y) denote functions compactly supported on ([a1, a4]) and ([a2,
a3]), respectively. Suppose also ψ(x) and φ(y) satisfy

(12)

We can decompose φ(y) according to

(13)

and recover ψ(x by the formula

(14)

in the SVD sense (i.e., the difference between the true solution and the right side of (14) is a
function from the null-space of the operator H14 : L2([a1, a4]) → L2([a2, a3]).

III. Image Reconstruction
A. DBP Reconstruction Theory

Let f(x, y) denote a 2-D compactly supported piecewise continuous function. The Radon
transform of f(x, y) can be expressed as

(15)

where θ is a projection angle, and s is the offset between an arbitrary X-ray path and the
origin. The projection geometry is shown in Fig. 1. Let L(s, θ) denote the line defined by
L(s, θ) = {x ∈ R2 : x · (cos θ, sin θ) = s}. Referring to the DBP reconstruction theory, the
DBP data along L(s, θ) are calculated as [16]

(16)

To simplify notations, we introduce a 1-D coordinate t along L(s, θ). The function f(x, y)
restricted to L(s, θ) is denoted as fL(t). In particular, if (x, y) ∈ L(s, θ), then

(17)

Similarly, the restriction of g(x, y) onto L is denoted gL(t). Assume that along L the object is
supported on the interval a1 < t < a4. Then, the Hilbert transform of fL(t) equals gL(s, θ) [16]:

(18)

Equations (16) and (18) establish a relationship between the object function and its DBP
data. Given, p(s, θ), one can compute the DBP data and invert the Hilbert transform along
any line L in the field-of-view (FOV). In our paper, we call such a line a chord. This process
gives us f(x, y) on different chords.
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By (16), the calculation of DBP data requires that p(s, θ) covers at least a 180° range for any
point on the chord L. In the case of interior reconstruction, p(s, θ) is truncated along s and
only an interior ROI meets the data requirement. In other words, interior DBP data are
truncated. In the following, we use the SVD-THT method to address the interior
reconstruction.

B. Inversion of the Truncated Hilbert Transform
Let us choose a chord L through an ROI. We represent an object along this line as f(t), and
its DBP data as g(t). Let t = a1, a4 denote the boundary of the object support, and let t = a2,
a3 denote the boundary of the ROI. With the interior problem, we have a1 < a2 < a3 < a4, and
the available DBP data g(t) are truncated. The available part of DBP is denoted by g23(t), t ∈
(a2, a3). According to the SVD-THT theory, fSVD(t) the estimation of f(t), can be done using
the following steps:

1. Solve the Sturm–Liouville problem defined by (4). The result is a set of eigen-
functions φn(t), n ≥ 0, which are orthonormal on (a2, a3). Then, apply (7) to obtain
functions ψn(t), n ≥ 0, which are orthonormal on (a1, a4).

2. Compute the DBP data g23(t) using (16).

3. Choose N and decompose g23(t) in terms of φn(t), 0 ≤ n ≤ N

(19)

4. Compute fSVD(t) by a linear combination of ψn(t), 0 ≤ n ≤ N, following (14) as

(20)

5. An estimated solution of ROI along the line L is given by fSVD(t), a2 ≤ t ≤ a3.

C. Null Space Compensation
Theoretically speaking, truncated DBP data (ROI data) do not provide suf cient information
for exact reconstruction of the ROI image. The missing data lead to a nontrivial null space
associated with the truncated Hilbert transform (THT). To compensate for the
nonuniqueness of SVD-THT reconstruction, a set of basis functions on the null space is used
to estimate the missing information.

Suppose there are M basis functions in the null space. Denote each of them as fnull,m(t), m =
1, 2,…,M. The compensation can be performed by adding a linear combination of fnull,m(t)
to fSVD(t). The compensated ROI can be expressed as

(21)

where km is the weighting factor for the mth null space base function. The values of km can
be estimated using an optimization method which will be described in the following section.

Generation of fnull,m(t) can be done in various ways. As the DBP data are known inside the
ROI, the only requirement for generating fnull,m(t) is that the Hilbert transform of fnull,m(t)
be equal to zero on the ROI. In our work, this is done as follows. First, along the chord L
select the regions which are inside the object support but outside the ROI. In our case these
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are the regions (a1, a2) and (a3, a4). Then divide them into M sub-segments seg1, seg2,
…,segM without overlapping. To avoid singularities at the four boundary points the actual
regions are chosen as (a1 + δ, a2 − δ) and (a3 + δ, a4 − δ) where δ > 0 is a small number. On
each subsegment, a linear function gnull,m(t) in the DBP space is created

(22)

where bm is a number corresponding to the mth subsegment. When gnull,m(t) are generated
in the range of the nite Hilbert transform (FHT), the original functions in the image space
can be calculated by the following inverse nite Hilbert transform (iFHT) equation:

(23)

Here,  is a weight function. Equation (23) is a special version of the
iFHT that requires no line integral constant of fnull,m(t) [22]. As fnull,m(t) is unknown in our
problem, using (23) avoids the calculation of the integral constant. The fact that gnull,m(t) is
in the range of FHT implies that the Hilbert transform of fnull,m(t) on (a1, a4) is precisely
gnull,m(t). It also guarantees that fnull,m(t) is in the null space, and the ROI region of the DBP
data is not affected by the compensation. According to the reference, insuring that the range
condition is satisfied requires [22]

(24)

The first equation in (24) can be ful lled by adjusting bm for each gnull,m(t). This derivation
is trivial and is omitted. The second equation in (24) is satisfied automatically for functions
of the type in (22).

D. Constrained Optimization
In this section, we develop an optimization method, which incorporates a known subregion
as well as other forms of prior knowledge into the null space compensation.

First, a known subregion inside the ROI is considered. Assume that the known part of f(t) is
represented in the form f(t) = fpri(t), t ∈ [a5, a6] where [a5, a6] is a subinterval inside the
ROI. Then, the optimization problem can be described as

(25)

The second form of prior knowledge is based on the following observation. Inside the ROI
fcmp(t, {km}) becomes more unstable when t moves away from the known subregion [a5,
a6]. This effect is the most pronounced when t is close to the ROI boundary. To reduce such
instability we introduce another minimization term, which equals to the integral of the
absolute value of the first-order derivative of fcmp(t, {km})

(26)
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where δ > 0 is sufficiently small. Because the DBP data are truncated at a2 and a3 the
calculation of the truncated Hilbert transform leads to singularities at the ROI boundaries.
To avoid such singularities δ is added in (26), which makes the minimization more stable.
Combining (25) and (26) we get a new optimization objective

(27)

where β ∈ (0, 1) is a relaxation factor.

Third, for a stable solution constraints can be applied during the optimization step. Inside the
ROI, the non-negativity is required

(28)

as well as the integral constraint

(29)

E. 2-D ROI Reconstruction
The SVD-THT reconstruction of a 2-D ROI is achieved by merging multiple 1-D chord-
based reconstructions. When the DBP data are not truncated, a set of parallel chords
covering the whole object is sufficient. For an interior problem, however, the chords need to
be chosen in a careful manner. The reason is that interior reconstruction requires that each
chord pass through a prior known subregion. In most clinical cases possible prior known
subregions are the aorta, large artery, lung airways, and muscles. Most frequently they are
all located in small inner regions in CT images. Therefore, a group of parallel chords passing
through a known subregion cannot cover the whole ROI. Several papers addressing this
issue have been published. Possible solutions consist of either choosing two sets of parallel
chords, or using radial chords which all pass through a common point inside the subregion
[16]. Since the latter one leads to radial artifacts, the former is chosen in our work and a
three-step reconstruction scheme is designed.

Step 1, a set of horizontal parallel chords that pass through the subregion is chosen, and the
SVD-THT with compensation is performed along each chord. Step 2, the region
reconstructed in Step 1 is regarded as a known subregion, and a set of vertical parallel
chords which cover the entire ROI is reconstructed. Step 3, it is well known that images on
parallel chords are reconstructed independently leading to artifacts and poor noise stability.
To overcome this problem, a least squares tting algorithm is designed. Utilizing the ROI that
is reconstructed at the second step, a new set of horizontal chords passing through the full
ROI is chosen and the tting process can be described in the following fashion. For each
chord, we compute

(30)

where

(31)
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An illustration of the proposed three-step reconstruction scheme is shown in Fig. 2. Note
that to reconstruct along each chord the four boundary points need to be determined in
advance. To reduce computational cost, it is suggested that chords along the same direction
share the same boundary points. In this case the three-step scheme requires a total number of
eight boundary points (four for the vertical chords and four for the horizontal chords).
Accordingly, two sets of {φn} and {ψn} are required (one set for the vertical chords, and one
for the horizontal chords).

IV. Numerical Experiments
In this section, numerical simulation and pre-clinical experiments and results are presented.
First, we focus on the validation of the THT-SVD algorithm by showing a 1-D
reconstruction test. Then we give 2-D reconstruction results on both simulated and real CT
data.

A. 1-D Profiling
The proposed SVD-THT method is implemented on a single line. The four boundary points
are a1 = −2.56, a2 = −1.0, a3 = 1.0, and a4 = 2.56. The ROI data g23(t) are obtained by
computing the Hilbert transform of a predetermined function f(t) on (a1, a4). The function
f(t) that contains 1024 samples is selected from a central column of the Shepp–Logan
phantom. Also, g23(t) contains 400 samples.

The required Sturm–Liouville problem is solved using a MATLAB toolbox called
MATSLISE [23]. Because MATSLISE does not support singular boundary conditions [cf.
(4)], the functions φn(t) are computed by solving the regular Sturm–Liouville problem with
zero boundary conditions on the interval (a2 + ε, a3 − ε) where ε > 0 is sufficiently small.
Visual comparisons of the eigen-functions computed using MATSLISE and the eigen-
functions computed using a more accurate algorithm designed specifically for this problem
showed almost no difference. Since the latter code was much more cumbersome and did not
result in any noticeable gain of accuracy, we always used MATSLISE in our experiments.
After the eigen-functions are computed, an orthonormality check is performed. Fig. 3 shows
the first eight φn(t) calculated by MATSLISE. As one can see from the figure, eigen-
functions with larger index n contain more high frequency information.

By applying (19) g23(t) is projected onto each φn(t). During decomposition the total number
of eigen-functions N can be chosen experimentally by taking into account noise level in the
data, detector sampling rate, and the desired spatial resolution. A larger N can be used to
recover smaller details for low noise data, while a smaller N is better for data with strong
noise. For high accuracy we regard g23(t) as a continuous function, which can be obtained by
performing linear interpolation between neighboring sampled pixels. Then all coefficients kn
(n ≤ N) are computed.

The calculation of ψn is done by a continuous Hilbert transform instead of the FFT
convolution method. Consider two neighboring sample points ti and ti+1. The contribution of
φn(t) on the interval [ti, ti+1] to the Hilbert transform H23(φn)(x) can be expressed as

(32)

where

(33)
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All ψn are normalized using (7). Finally, by applying (20) we get the interior ROI
reconstruction without null space compensation. Results with two different choices of N are
shown in Fig. 4, where (a) is the true profile. In (b) and (c) N equals 80 and 160,
respectively. Next the null space compensation is performed. The minimization problem in
(27)–(29) is solved using MATLAB Optimization Toolbox. The prior known subregion is
the interval, [−0.1 0.1], which constitutes 10% of the total ROI width. The number of null
space functions M is set to 10. Results are shown in Fig. 5: (a) is the true prfile; (b) and (c)
are the compensated profiles with N = 80 and 160, respectively.

To test the robustness of the SVD-THT method, three different locations of the prior known
subregion are chosen. They are[−0.35, −0.55], [−0.30, −0.10], and [0.35, 0.55]. The width of
the known subregion is 0.2, which is also 10% of the total ROI range. The number of eigen-
functions is set to N = 200, and the number of null space functions is set to M = 10. The
results are shown in Fig. 6. Besides, two more tests are carried out. One is to demonstrate
the in uence of the number of null space functions. Six groups of reconstructions with
different M are compared. The prior known subregion is located in the center of the ROI and
its width is 10% of the total ROI range. The results are given in Fig. 7. From (a)–(f), M is set
to 4, 6, 8, 10, 12, and 14, respectively. The other is to investigate the stability with respect to
the location of the ROI inside the object support. Three sets of boundary points are selected.
The first set is the standard ROI con guration in which the boundary points are a1 = −2.56,
a2 = −1.0, a3 = 1.0, and a4 = 2.56. In the other two sets the ROI area occupies a large portion
of the object support or is close to the object boundary. The four boundary points for the
second set are a1 = −2.56, a2 = −2.0, a3 = −0.4, and a4 = 2.56, and for the third set are a1 =
−2.56, a2 = −2.0, a3 = 2.0, and a4 = 2.56. In each case the prior known subregion is assumed
to be in the center of the ROI. The number of eigen-functions is set to N= 200 and the
number of null space functions is set to M = 10. The reconstruction results are shown in Fig.
8.

B. 2-D Numerical Simulation
The 2-D numerical reconstruction is first verified using the well-known Shepp–Logan
phantom. Similar to the previous section, the phantom is magni ed by a factor of 2.78. A
rectangle of width 4.0 and height 5.12 is considered as the image support, and an interior
ROI is defined inside the phantom. We assume that the interior ROI is a rectangle of size 2.0
× 2.0 located at the center of the image. A prior known subregion inside the ROI is selected
whose size is 0.4 × 0.4. The configuration of the experiment is illustrated in Fig. 9, where
the ROI region is marked with a solid rectangle and the prior known subregion is marked
with a small dotted rectangle. The horizontal line segments with arrows indicate the four
horizontal boundary points for the SVD-THT that are a1 = −2.0, a2 = −1.0, a3 = 1.0, and a4 =
2.0. The vertical line segments with arrows indicate the vertical boundary points that are a1
= −2.56, a2 = −1.0, a3 = 1.0, and a4 = 2.56.

The projections are analytically generated based on the parameters of the phantom assuming
a parallel beam geometry. The length of the detector array is 5.12, which consists of 1024
pixels. A total number of 1200 views are uniformly acquired in a range of 180°. During the
course of projection simulation, only the rays passing through the ROI are computed. The
DBP ROI data are calculated from the truncated sinogram. The boundary points for the
horizontal and vertical chords are determined as shown in Fig. 9. In the compensation
process, the number of null space functions is set to M = 8 for the two groups of chords.
Finally, the SVD-THT with compensation is applied to obtain the ROI reconstruction. The
results are shown in Fig. 10. The ROI image consists of 400 × 400 pixels of size 0.005 ×
0.005 each. The number of eigen-functions N is set to 80 in (a) and 160 in (b). For each
reconstruction two plots are drawn. One is along a vertical line and the other is along a
horizontal line. Both of the lines pass through the ROI center. For each plot, the longer axis
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stands for the locations of image pixels, while the shorter axis stands for pixel values. On
each plot the reconstructed result is shown as a solid curve, and the exact profile is shown as
a dashed curve. Furthermore, the results are quantitatively evaluated in term of root mean
square error (RMSE). The RMSE is calculated with respect to the true Shepp–Logan
phantom using the central 90% of the ROI. This is done to avoid the singularity at the ROI
boundary. The most notable effect of changing the value of N is the sharpness of edges.
Hence, we also present a spatial resolution term, which is statistically estimated
orthogonally across the edge of an ellipsoid as the full-width at half-maximum (FWHM) of
the line response function tted into the Gaussian function [24], [25]. The edge that is used
for calculation is marked by a white rectangle shown in Fig. 10(a). Quantitative results are
listed in Table I.

A major advantage of the SVD type methods is the stability with respect to noise. To test
our method, reconstructions are performed from the noisy data. Following Fuchs [26], a
0.1% Gaussian noise is added to each of the original projection data sets as an acceptable
approximation to Poisson noise in numerical simulations. The results are shown in Fig. 11.
The number of eigen-functions N is 80 in (a) and 160 in (b). The gray scale window is [1.0,
1.05]. Similar to the noise-free tests, the RMSE and spatial resolution are quantitatively
analyzed in each case, and the results are presented in Table II.

C. Challenging Interior Problems
To evaluate the robustness of the proposed SVD-THT method, three challenging interior
problems are tested. First, a new ROI inside the Shepp–Logan phantom is selected. The new
ROI is very close to the phantom boundary. It is well known that the boundary of the
Shepp–Logan phantom consists of a high density ring to simulate a human skull. However,
the interior ROI mainly contains low density objects with very low contrast. This may
challenge the algorithm stability and reconstruction accuracy. The new configuration is
shown in Fig. 12. The four horizontal boundary points are a1 = −2.0, a2 = −0.8, a3 = 0.8, and
a4 = 2.0. The four vertical boundary points are a1 = −2.56, a2 = −2.0, a3 = −0.4, and a4 =
2.56. The ROI region is marked with a solid rectangle with a size of 1.6 × 1.6. The prior
known subregion is marked with a small dotted rectangle with a size of 0.32 × 0.32. The
projections are analytically simulated in the same way as in Section IV-B. Reconstruction
parameters are N = 160 and M = 8. Pixel size in the reconstructed image is 0.05 × 0.05.

While the Shepp–Logan phantom mainly contains low contrast objects, high contrast objects
such as bones and air cavities are commonly found in many clinical CT applications. In the
presence of high contrast objects, it makes the reconstruction algorithms sometimes difficult
to properly recover the soft tissues even when the projection data are not truncated. For the
interior problems, the situation is even severe. To make the experiments more challenging,
the FORBILD Thorax phantom [27] is also considered with two additional small disks in the
heart [11]. The phantom is scaled down eight times to t into a 5.12 × 5.12 rectangle. For
interior reconstruction two ROIs are selected as shown in Fig. 13. While the vertebra is
excluded from the ROI but is located close to the ROI boundary in the configuration Fig.
13(a), part of the vertebra is covered in the configuration Fig. 13(b). In both configurations
the low-density air cavities are partially covered. The prior known subregions are as follows.
In (a) it is a 0.28 × 0.28 rectangle located close to the ROI boundary. In (b) it is a 0.32 ×
0.32 rectangle located in the ROI center. All the boundary points are calculated before the
reconstruction. For (a) the horizontal boundary points are a1 = −1.6, a2 = −1.0, a3 = 0.36,
and a4 = 1.6, and the vertical boundary points are a1 = −2.56, a2 = −0.8, a3= 0.8, and a4 =
2.56. For (b) the horizontal boundary points are a1 = −1.6, a2 = −0.72, a3 = 0.88, and a4 =
1.6, and the vertical boundary points are a1 = −2.56, a2 = −0.8, a3 = 0.8, and a4 = 2.56.
Projections are analytically simulated as in the Section IV-B, and the parameters are set as N
= 360 and M = 6. A large N is used because of the high contrast objects, which require more
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eigen-functions to recover the sharp edges and reduce the Gibbs effect. The value of M is
chosen experimentally. The pixel size of the reconstructed images is 0.05 × 0.05.

The results for the above three challenging interior problems are shown in Fig. 14, where (a)
is the reconstructed image for the Shepp–Logan interior problem in Fig. 12, (b) is for the
Thorax interior problem in Fig. 13(a), and (c) is for the Thorax interior problem in Fig.
13(b). In addition, reconstructions are repeated from noisy data. A 0.1% Gaussian noise is
added to the original projections in the Shepp–Logan interior problem, and a 0.3% Gaussian
noise is added to the Thorax interior problems. Corresponding results are shown in Fig.
14(d)–(f), respectively. For the reconstruction of (d) N = 120. And for (e) and (f) N = 280.
The gray scale window for (a) and (d) is [0.95, 1.05]. The gray scale window for (b), (c), (e),
and (f) is [0.92, 1.07].

D. Preclinical Application
Thorax scans of a living sheep from a SIEMENS 64-slice CT scanner are employed to
demonstrate the applications of the proposed algorithm (under the approval of Virginia
Polytechnic Institute and State University IACUC committee). The thorax scans are
necessary for pneumal and cardiac disease therapy and surgery assistance. Interior
tomography will bring benefits to the related clinical applications as it can reduce X-ray
dose. Two sets of projections are selected. One uses a normal dose protocol, and the other
uses a low dose protocol. For the normal dose scan, the tube voltage and current are set to
100 kV and 150 mA. For the low dose scan the tube voltage and current were set to 80 kV
and 17 mA. The scanning is in a typical fan-beam geometry after appropriate cone-beam
weighting. The scanning radius is 570 mm. A total number of 1160 projections are
uniformly acquired over 360°, and each projection contains 672 equiangular detector
elements.

To construct an interior ROI problem, necessary preprocessing is performed on the original
projection data. First, the projection data are rebinned from the fan-beam to parallel beam
geometry, which allows a direct calculation of the Hilbert space data using (16). Then the
ltered back-projection algorithm is used to obtain full reconstructions to serve as
benchmarks for the interior problems. After that, the interior problems are specified as
shown in Fig. 15. The reference images containing 1024 × 1024 pixels are reconstructed.
The actual physical size of the image is 41.08 × 41.08 cm2. The ROI is located in the image
center and has a size of 12.8 × 12.8 cm2 containing 320 × 320 pixels. For the normal dose
scan, a small inner area of trachea is selected as a known subregion, whose actual size is
0.87 × 0.87 cm2 containing 22 × 22 pixels. We assume that the CT value inside the
subregion is a constant and equals to the CT number of air. For the low dose scan, an inner
area of an artery is selected. We assume that pixel values inside the subregion are known as
an average value calculated from the FBP result. The actual size of the region is 1.14 × 1.14
cm2 and it contains 28 × 28 pixels. The boundary points for the SVD-THT method are
determined in advance, and they are the same in both problems. Along the horizontal chords,
they are a1 = −16.0, a2 = −8.0, a3 = 8.0, a4 = 16.0, and along the vertical chords they are a1 =
−20.5, a2 = −8.0, a3 = 8.0, a4 = 20.5. All ai here are given in centimeters.

Once the interior ROIs are selected, the projection data are manually truncated accordingly.
The SVD-THT reconstruction scheme is the same in both of the experiments with N = 160
and M = 6. The results are provided in Fig. 16, where (a) corresponds to the normal dose
reconstruction, and (b) corresponds to the low dose reconstruction. The gray scale window
for each result is set to [−1000, 320] HU.
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E. Comparative Studies
To demonstrate the advantages of the proposed SVT-THT algorithm, comparative studies
are performed with respect to a POCS-type algorithm. According to the work by Yu et al.
[28], the implementation of the POCS-type algorithm consists of two major steps. In the first
step the ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is used
to reconstruct an ROI image from truncated projection data. In the second step one performs
iterative minimization of the L1 norm of the ROI gradient image. Note that all the results
reconstructed by the POCS algorithm in this paper were added the constraint of the
minimization of the L1 norm of the ROI gradient image. For a more detailed description
please refer to the original paper. To deal with truncated data better, prior knowledge is
utilized in order to improve stability [11], [12]. To make a fair comparison, the following
prior knowledge is added: information about the object boundary, prior known subregion,
and non-negativity. The additional constraints are imposed on the intermediate images after
each L1 norm minimization step as follows. First, a new region is determined by enlarging
10% of the object boundary. All pixels outside this region are set to zero. Second, the values
inside the prior known subregion are set to the known (or estimated) values. Finally, all
negative values in the intermediate image are set to zero. Besides, the parameters are
adjusted for each interior problem for a best performance.

The interior problems described in the previous subsections are tested. Among them four are
based on the phantoms and two are based on real CT data. For numerical phantoms,
reconstructions from noise-free and noisy projections are compared. All reconstruction
results are shown and compared in multiple gures. The reconstructions of the Shepp–Logan
phantom are shown in Figs. 17 and 18. The reconstructions of the Thorax phantom are
shown in Figs. 19 and 20. The results with real CT data are presented in Fig. 21.

V. Discussions and Conclusion
From Fig. 4, it is noticeable that the reconstructed profile is smoother in (b) than in (c). It
may be concluded from the comparison that when N increases, more high frequency details
such as sharp edges can be found, i.e., the recovery of high frequency information is
improved. This phenomenon is especially visible in Fig. 5, where the compensated profiles
are plotted. We notice also that the reconstructions suffer from the prominent Gibbs effect
with a smaller N. For the specific case of our numerical results, we suggest that N should be
chosen no less than 160.

The results in Fig. 6 show that the proposed null space compensation is capable of
recovering the missing information about an ROI aided by a prior known subregion. The
compensated profiles are close to the exact ones in most of the ROI. However, the
reconstruction accuracy decreases in places which are far away from the known subregion
and close to the ROI boundaries. This is caused by the sharp DBP data truncation at the ROI
boundaries.

The results in Fig. 7 illustrate how the total number of null space functions M affects the
compensation. It can be seen that a proper choice of M is important. When M is too small,
the few functions cannot adequately represent the null space, resulting in a biased profile.
On the other hand, when M is too large, there are too many unknowns in (27) and the
stability of compensation becomes poor. As a result oscillations may occur (see the case M
= 14). In our experiments a proper choice of M is between 8 and 12. The reconstructions
with different locations of the ROI in Fig. 8 show the reconstructions are stable in all three
cases. The change of the ROI location makes little or no in uence on the performance of the
proposed method.
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Next let us discuss the 2-D image reconstruction experiments. It can be seen from Fig. 10
that the inner ROI area of the Shepp–Logan phantom is accurately reconstructed. There are
no obvious artifacts in the ROI center, and dropdowns can be found close to the ROI
boundaries. The reason is that small intervals of length δ are excluded from the optimization
in (27) to reduce the in uence of boundary singularities. The effect of different choices of N
can also be well demonstrated in Fig. 10. Blurred edges can be seen in Fig. 10(a) where N
equals 80. The Gibbs effect is also visible in the image. However, the edges are sharper in
Fig. 10(b) where N = 160. This observation is consistent with the quantitative results in
Table I. According to Table I, the RMSE is reduced by 52% and the spatial resolution is
increased from 4.4 × 10−3 to 3.4 × 10−3 when N is changed from 80 to 160. In Fig. 11, when
noise is added to the original projection data, the results suffer from noise and artifacts. As
expected, image quality decreases farther away from the known subregion. Because the
known subregion is located close to the upper boundary of the ROI, noise leads to a larger
bias on the opposite side of the image. In the regions close to the known subregion, image
values are stable. Comparing the results with different N we infer that decreasing the
number of eigen-functions can reduce noise and make the whole ROI more uniform. Based
on the data in Table II, when N = 80 the RMSE is 87% of that of N = 160. A smaller N
improves stability. On the other hand, spatial resolution decreases when N decreases. When
N = 160, image resolution is higher. In summary, a balance between stability and spatial
resolution is achievable by adjusting N. From the additional interior reconstructions in Fig.
14, it can be seen that the SVD-THT method is sufficiently robust. It accurately recovers
both low and high contrast features inside the ROI. Moreover, it can be seen from Fig. 14(b)
and (c) that the presence of high contrast features does not lead to artifacts regardless of
whether the former are located inside or outside the ROI. With noisy data, image quality
decreases somewhat, especially near the ROI boundaries. However the central area remains
stable.

Fig. 16 shows the reconstruction results from real preclinical CT data. Blood vessels,
tracheas and other organs are clear and discriminable. For the normal dose data, a large N is
used to for high spatial resolution. For the low dose data, N is reduced to improve stability
and suppress noise. Besides, two different known subregions are tested. In Fig. 16(a), the
known subregion contains only air, whose CT value is accurately known and remains
constant throughout the subregion. In Fig. 16(b), the known subregion is inside an artery,
whose uniformity is only approximate. In the experiment, we assume that its CT value is
nevertheless constant and equals to some averaged value. Image quality is good in both
cases. Sometimes a prior known subregion with a constant CT number is not easy to nd,
because air, water, or other highly uniform media do not exist anywhere inside the animal or
human body. As an alternative choice, a relatively smooth area such as soft tissue, a large
artery, or vein can be chosen. Additionally, the size of the known subregion is important
because a larger one will result in higher stability and lead to better interior reconstruction.

The experimental results shown in Figs. 17–21 demonstrate the advantages of our SVD-
THT method. There are biases in some of the POCS results, especially in Fig. 18 where the
ROI is close to the object boundary and the biases are noticeable at the bottom of the ROI.
What is more, in Fig. 19(b) and (d), an intensity gradient can be seen from the horizontal
profile at the bottom of the images. In Fig. 17(d), a small gradient can be observed from the
vertical profile on the right of the image. These gradients are found in ROIs which are
located away from the center of the object support. The more one-sided a ROI is, the more
prominent the gradient becomes. Besides, the existence of high density objects can strongly
affect the reconstruction results. Comparing the POCS results in Figs. 19 and 20, the
gradient effect in Fig. 20 is much smaller than that in Fig. 19. Yet the main difference
between the two problems is the location of the vertebra. The vertebra is excluded from the
ROI in Fig. 19, while most of the vertebra is included in the ROI in Fig. 20. This indicates
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that a high density object outside the ROI degrades the image quality of the POCS
reconstruction results. On the other hand, biased values can be seen only close to the edge of
the ROI in the results reconstructed by the SVD-THT method, while stable image can be
found in most of the ROI. Compared to the POCS method, location of high density objects
relative to the ROI has much smaller influence on the proposed method. This is because the
proposed SVD-THT method does not need to reconstruct the object outside the ROI. POCS
methods reconstruct the entire object, both inside and outside the ROI. Hence any error in
the recovery of a high density object outside the ROI results in significant artifacts inside the
ROI. The real data reconstruction results are compared in Fig. 21. The SVD-THT method
tries to balance the noise stability and detail preservation. According to the theory of L1

norm minimization [29], the POCS reconstruction reduces image noise by finding a solution
with minimum L1 norm of its gradient. As a result the reconstructed images have some
blocky effects [see the local magnifications located in the upper-left corner of each ROI
result in Fig. 21, and also Fig. 17(d) and Fig. 18(d)]. For practical interior CT imaging, the
presence of noise is inevitable and it makes the problem more challenging. As discussed
above, several additional factors may influence the reconstruction stability such as the ROI
location relative to high density features inside the object. To suppress these interferences,
more iterations and more prior information are needed for the POCS based methods.
However, our SVD-THT method does a better job without either increasing computation
cost or taking into account additional prior knowledge.

In conclusion, a new SVD algorithm is proposed for interior tomography. Both numerical
simulation and preclinical experiment results demonstrate the reconstruction capability. The
reconstruction results show high stability under some critical conditions even with noise.
Because interior tomography is a general approach, which can help to reduce radiation dose
and suppress scattering artifacts we believe that the proposed algorithm may have a
significant impact on the preclinical/clinical CT applications and be extended to some other
tomographic modalities such as SPECT, PET, etc.
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Fig. 1.
Illustration of projection geometry.
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Fig. 2.
Illustration of the three-step chord reconstruction scheme.
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Fig. 3.
The first eight eigen-functions of the Sturm–Liouville problem. The boundary points are a1
= −2.56, a2 = −1.0, a3 = 1.0, and a4 =2.56.
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Fig. 4.
Reconstruction results by the SVD-THT without compensation using different number of
eigen-functions N. (a) True profile. For (b) and (c) N equals to 80 and 160, respectively.
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Fig. 5.
Reconstruction results by the SVD-THT with null space compensation using different
number of eigen-functions N. (a) True profile. (b) and (c) Compensated profiles with N
equals to 80 and 160, respectively. Location of prior known subregion is marked with a bold
line segment in each panel.
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Fig. 6.
Reconstruction results by the SVD-THT with null space compensation using different prior
known subregions. From left to right: the known subregions are [−0.35, −0.55], [−0.30,
−0.10], and [0.35, 0.55], respectively. The location of prior known subregion is marked with
a bold line segment.
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Fig. 7.
Reconstruction results by the SVD-THT with null space compensation using different
number of null space functions M. From (a)–(f) M equals to 4, 6, 8, 10, 12, and 14,
respectively. The location of prior known subregion is marked with a bold line segment.
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Fig. 8.
Reconstruction results by the SVD-THT with null space compensation and different
locations of the ROI. The boundary points are a1 = −2.56, a2 = −1.0, a3 = 1.0, and a4 = 2.56,
in (a). In (b) they are a1 = −2.56, a2 = −2.0, a3 = 2.0, and a4 = 2.56. In (c) they are a1 =
−2.56, a2 = −2.0, a3 = 2.0, and a4 = 2.56. The location of prior known subregion is marked
with a bold line segment.
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Fig. 9.
An interior problem of the Shepp–Logan phantom. The gray scale window is [1.0, 1.05].
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Fig. 10.
The SVD-THT reconstruction results of the Shepp–Logan phantom from noise-free
projections. The number of eigen-functions N is 80 in (a) and 160 in (b). In (a), the white
rectangle indicates the subregion to measure the spatial resolution along the ellipsoid edge.
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Fig. 11.
The SVD-THT reconstruction of the Shepp–Logan phantom from noisy projections. The
number of eigen-functions N is set to 80 in (a) and 160 in (b).
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Fig. 12.
Challenging interior problem on the Shepp–Logan phantom.

Jin et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
Two interior problems on the FORBILD Thorax phantom. The ROI regions are marked by
solid rectangles. The prior known subregions are marked by small dotted rectangles. The
horizontal and vertical line segments with arrows indicate the four boundary points for the
SVT-THT method. The gray scale window is [0.92, 1.07].
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Fig. 14.
SVD-THT reconstruction results of the problems defined in Figs. 12 and 13. (a)–(c) Noise-
free reconstructions for Fig. 12 and Fig. 13(a) and (b), respectively. (d)–(f) Corresponding
reconstructions from noisy data.
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Fig. 15.
Two interior problems of real datasets from a sheep thorax perfusion study. (a) Normal dose
data set and (b) low dose data set. The images are reconstructed by an FBP algorithm from
the complete projection data. The gray scale window is [−1000 HU, 320 HU].
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Fig. 16.
The SVD-THT reconstructions from real CT data corresponding to the interior problems are
defined in Fig. 15. The gray scale window is [−1000 HU, 320 HU].
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Fig. 17.
Reconstruction result comparisons for the Shepp–Logan interior problem defined in Fig. 9.
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Fig. 18.
Reconstruction result comparisons for the Shepp–Logan interior problem defined in Fig. 12.
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Fig. 19.
Reconstruction comparisons for the Thorax interior problem defined in Fig. 13(a).
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Fig. 20.
Reconstruction comparisons for the Thorax interior problem defined in Fig. 13(b).
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Fig. 21.
Reconstruction comparisons of real sheep thorax study data sets for the interior problems
defined in Fig. 15. The gray scale window is set to [−1000, 320] (HU). The images indicated
by the dashed rectangles are magnified in the top-right corner to emphasize the difference
between the results reconstructed by the SVD-THT and POCS.
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TABLE I

Error Statistics for the Reconstructions in Fig. 10 in Terms of RMSE and Spatial Resolution

Index N RMSE Spatial
resolution

(a) 80 3.97×10−3 4.4×10−3

(b) 160 1.90×10−3 3.4×10−3
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TABLE II

Error Statistics for the Reconstructions in Fig. 11 in Terms of RMSE and Spatial Resolution

Index N RMSE Spatial
resolution

(a) 80 3.50×10−3 6.0×10−3

(b) 160 4.04×10−3 3.7×10−3
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