
1

An Efficient Optimization Framework for
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Abstract—We introduce a multi-region model for simultaneous
segmentation of medical images. In contrast to many other
models, geometric constraints such as inclusion and exclusion
between the regions are enforced, which makes it possible to
correctly segment different regions even if the intensity distri-
butions are identical. We efficiently optimize the model using a
combination of graph cuts and Lagrangian duality which is faster
and more memory efficient than current state of the art. As the
method is based on global optimization techniques, the resulting
segmentations are independent of initialization. We apply our
framework to the segmentation of the left and right ventricles,
myocardium and the left ventricular papillary muscles in MRI
and to lung segmentation in full-body X-ray CT. We evaluate our
approach on a publicly available benchmark with competitive
results.

Index Terms—Image segmentation, discrete optimization, car-
diac segmentation, lung segmentation.
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I. INTRODUCTION

The field of medical imaging is full of challenging segmenta-
tion tasks. The aim of the present paper is to segment multiple
regions with a model that encompasses both the underlying
appearance and shape of the different regions as well as their
geometric relationships. This is often overlooked in present
methods. For example, many successful approaches to cardiac
segmentation concentrate on segmenting the left ventricle (LV)
as this part is the most interesting for diagnostic purposes.
Still, quantifiable information about the cardiac function is
gained from segmenting the right ventricle (RV) as well. Our
framework allows for the construction of a joint model of the
whole heart where the final result is improved compared to
segmenting the parts independently.

A. Optimizability and fidelity

Models in medical image analysis have two important
desiderata: optimizability and fidelity [31]. Optimizability
specifies how amenable the model is to optimization techniques.
For instance, models involving curvature and geometric shape
priors tend to be harder to optimize than models only based
on image intensities. On the other hand, these more complex
models often describe the reality better and have the potential
for better results — they have higher fidelity. There is a natural
trade-off between optimizability and fidelity. In this section,
we categorize and review related work based on these two
criteria.

Most segmentation approaches rely on local descent tech-
niques, e.g. [28], [32], [35], and may get stuck in local optima

(a) Region of interest. (b) Forced separation. (c) No separation.

Figure 1. In (a) the region of interest is marked with a rectangle. In (b) the
model has constraints that force the two regions to be separate. In (c) the
exclusion constraint is removed. This results in a segmentation where one
region wrongly overflows into the other. Note that the image data for the
correct segmentation is very weak and hence it is necessary to encode this
prior information into the model.

which make them less reliable. These methods do not have good
optimizability, but their fidelity can still be excellent. On the
other hand, it is possible to apply global optimization techniques
to make the segmentation more robust to poor initialization,
e.g. [8], [27], [2]. These methods have great optimizability,
but often the model is less sophisticated and impoverished.
Another example is the random walker model [16]. Although
the model is quite restricted, for example, there is no way to
control the smoothness of the segmentation boundaries, the
approach has proven effective for interactive segmentation.

During the last decade, optimization techniques for segmen-
tation have greatly improved [11],[25],[26].In particular, graph
cuts methods have become a standard tool, see the recent book
[4] and the references therein. This is mainly due to their ability
to compute globally optimal solutions in an efficient manner.
However, the models are required to be submodular which
is a strong limitation in practice and makes the models less
faithful. More specifically, optimization problems for multi-
region models are typically not submodular. An exception is the
Markov random field model with convex priors introduced in
[22]. In order to cope with more faithful multi-region models,
so-called move-making algorithms have been developed that
iteratively refines an initial segmentation where a submodular
graph-cut problem is solved in each step [11]. The downside
of such approaches is of course the dependence on a good
initial solution.

The purpose of this paper is to increase the fidelity of
models in medical image segmentation without sacrificing
optimizability. For example, the human heart is composed
of several interacting geometric parts — this fact should
be reflected in the model. Secondly, the model should be
complete in the sense that every voxel of the image should be
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modeled, both in terms of geometry/shape and appearance using
statistical principles. We are able to achieve this for cardiac
segmentation in MRI while still computing close to optimal
segmentations in an efficient manner. As another demonstration
of the generality of the optimization framework, we consider the
problem of segmenting lungs in full-body X-ray CT. Popular
methods for this problem use multiple steps where first an
initial segmentation is found, then the left and right lungs are
separated in a subsequent step. In some cases [20], [3], the lungs
are separated in each slice individually and in other cases they
are separated for the whole volume at the same time [39]. In
contrast, we are able to solve the resulting optimization problem
for our model optimally, without having to resort to multiple
phases. This is what we mean by increased optimizability
without sacrificing fidelity, see Figure 1.

B. Contributions

The main contribution of our work is a multi-region seg-
mentation framework with good optimizability. Our framework
builds on the multi-region scheme presented in [14] where it
is shown that geometric relationships, for example, when one
object is included in another, can be modeled and globally
optimized via graph cuts. The key property that makes this
possible is that the resulting energy minimization problem is
submodular. We also identify submodular relationships; how-
ever, we go beyond submodularity to enable other geometric
relationships and priors to be incorporated into the model. In
[14], the focus is on characterizing when the problem becomes
submodular.

The standard technique for solving non-submodular energies
of this type is so-called Roof Duality (RD) [18] which is
also proposed in [14]. However, the method is quite memory
intensive and can be slow [7],[36]. We develop a Lagrangian
dual approach to solve these non-submodular energies. The
method is advantageous over roof duality; it uses almost half
as much memory and we empirically show that it is faster. The
speedup is likely and the memory usage is definitely due to
the fact that, although both methods solve a min cut problem,
our graph has only half the number of nodes compared to RD.
At the same time our method computes a solution which is
virtually identical to that of RD.

Another contribution is the evaluation of the optimization
framework for medical segmentation problems. We apply our
cardiac segmentation model on publicly available data sets and
our optimization framework is compared to RD both in terms of
memory and speed. This work is based on a previous workshop
paper [40], which was focused on cardiac segmentation only.
Here, we take a more general approach and demonstrate that
the framework is applicable to other segmentation tasks as well.
In addition, more qualitative and quantitative data measures
are now given in the experiments.

II. MULTI-REGION FRAMEWORK

Before introducing the general framework we present an
example of a construction using the framework as shown
in Figure 2. Each model is built up as an energy function

where the minimizer of the energy function gives the desired
segmentation.

Let R be the set of region labels excluding the background
and let P be the set of voxel indices. Each voxel p should be
assigned a region label r ∈ R∪{0} where 0 is the background
region. We introduce x ∈ B|R|×|P|, where B = {0, 1} and x
is indexed as xrp with r ∈ R and p ∈ P . Further, xr represents
all Boolean variables associated with region r and xp represents
all Boolean variables associated with voxel p. Each voxel in
the image is represented by |R| Boolean variables, which will
make it possible to directly encode geometric relationships
between regions, like inclusion and exclusion.

Figure 2(c) shows the correspondence between r and xp for
the cardiac model. Here, the fact that for instance regions 2 and
3 should be contained in region 1 is encoded in the Boolean
representation by the fact that the first Boolean variable is set
to one. Similarly, region 4 is contained in both region 1 and
region 2 and consequently, the first two Boolean variables are
set to one.

The energy function to be minimized is:

E (x) = D(x) + V (x) +W (x), (1)

whose three components are, in order, the unary terms, the
pairwise terms (regularization) and the geometric interaction
terms. For every voxel p, the unary terms introduce a cost for
each labeling of xp:

D(x) =
∑
p∈P

∑
r∈R

Dr
p

(
xrp
)
. (2)

The pairwise terms use a connectivity N to favor smooth and
correctly located boundaries:

V (x) =
∑

p,q∈N

∑
r∈R

V r
p,q

(
xrp, x

r
q

)
. (3)

The geometric interaction terms associate a cost with labeling
voxel p in region i with different labellings for voxel q in
region j. These terms are used either to attract or repel different
regions to each other:

W (x) =
∑

p,q∈N

∑
i,j∈R
i 6=j

W i,j
p,q

(
xip, x

j
q

)
. (4)

For any voxel p, we denote the probability of this voxel to
belong to region r by P

(
xrp = 1

)
.

A. Unary terms

The unary terms are constructed from the probability of each
voxel belonging to any of the regions. We define

µr(p) = − log
(
P
(
xrp = 1

))
, (5)

for voxel p and region r.

Definition 1. We say that a region i is parent to region j if
region j is forced to be contained inside i directly.

By directly we mean that if region j is forced to be contained
inside region i via another region k, we only consider k as a
parent to region j. Regions not forced to be contained inside
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(a) Four-region model (b) MR view

r xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 1, 0, 1)

(c) Representation

1

2
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∞

∞

∞
µ1 − µ0 st

µ4 − µ2

µ2 − µ1

µ3 − µ1

(d) Graph

Figure 2. (a) A constructed short-axis view showing how the heart is modeled. Region 0 is the background, region 1 contains myocardium and the left and
right ventricular cavities. Region 2 is the left ventricular cavity and region 3 the right ventricular cavity. Region 4 is the papillary muscles of the left ventricle.
(b) An example of a slice from a short-axis image acquired with MRI where all four regions have been manually delineated. (c) The Boolean representation
of the four regions reflect their geometric relationships as given in (a). (d) Graph construction for one voxel. The circled number corresponds to a vertex
associated with the region number. The directed arrows are the directed edges in the graph. Best viewed in color.

any specific regions is defined to have the background r = 0
as parent.

As an example, consider our cardiac model in Figure 2.
Region 4 has just one parent — region 2. Now consider any
region r and let Gr denote the set of all parents to r, then we
construct the unary term as

Dr
p

(
xrp
)
= xrp

µr (p)−
∑
g∈Gr

µg (p)

 , (6)

for all p ∈ P and r ∈ R. Examples of these constructions are
given in Figures 2 and 11. The reason this construction works
is most easily explained through an example.

Example 2. Consider our cardiac model in Figure 2. According
to (6) we end up with:
4∑

r=1

Dr
p

(
xrp
)
= x4p (µ4 (p)− µ2 (p)) + x3p (µ3 (p)− µ1 (p))

+ x2p (µ2 (p)− µ1 (p)) + x1p (µ1 (p)− µ0 (p)) .
(7)

Now consider a voxel assigned to region 4 from the model.
We know that x1p = x2p = x4p = 1 and x3p = 0 . It follows that

D1
p (1) +D2

p (1) +D3
p (0) +D4

p (1) =

1 (µ4 (p)− µ2 (p)) + 0 (µ3 (p)− µ1 (p))

+1 (µ2 (p)− µ1 (p)) + 1 (µ1 (p)− µ0 (p)) =

µ4 (p)− µ0 (p) . (8)

The reason this construction works is that Boolean variables
with parents are linked to their parents by the geometric
interaction term. The final cost for assigning a voxel to a
region is added up like a telescopic sum resulting in µr − µ0

for each region r.

B. Pairwise terms

The regularization weights are chosen differently for each
region in a method related to the discussion in [17]. For each
region i we choose the pairwise terms as:

V r
p,q

(
xrp, x

r
q

)
=

wp,q

1 + β
(
P
(
xrp = r

)
− P

(
xrq = r

))2 , (9)

Figure 3. The 18-connected neighborhood visualized. The 18-connected
neighborhood consists of all 18 nodes of distances at most

√
2 from the center

node. In the image the center node is black and the 26 nodes closest to the
center node in gray. A dashed line connect the nodes belonging to the same
plane. The two types of edges have multipliers wp,q equal to 0.18714 and
0.16954, respectively, when not taking the anisotropic resolution into account.

where β can be used to tune the regularization. The neighbor-
hood N for the regularization is in the experiments chosen
as 18-connectivity, see Figure 3. The multipliers wp,q give
different weights to different types of edges. One common
choice is wp,q = 1/ dist (p, q); however, we instead use the
arguably more correct way described in [9] based on solid
angles. The fact that MRI has anisotropic resolution is very
important to take into consideration both when calculating the
distance between voxels and when using the method from [9].

C. Geometric interaction terms

We would both like some regions to be contained inside other
regions, while forcing other regions apart. This is controlled
by the geometric interaction terms. An energy function is
submodular if it can be expressed as the sum of pairwise
functions Eij (xi, xj) that satisfy:

Eij (0, 0) + Eij (1, 1) ≤ Eij (0, 1) + Eij (1, 0) .

The task to minimize such a function can be transformed into
a min-cut problem on a s-t graph and is thus easily optimizable.

1) Submodular interaction terms: Suppose we would like
region j to be contained inside region i. We then set

W i,j
p,p (0, 1) =∞ for all p ∈ P. (10)
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This term is clearly submodular with our representation. It
is also possible to enforce a margin between two regions by
setting

W i,j
p,q (0, 1) =∞ for all p ∈ P, (11)

where q is taken in some neighborhood Np of p. As an example,
let Np be the 8-connected neighborhood of p. Now region j
will not only be forced to be inside region i, it will be forced
to be slightly smaller than region i. Using this we can enforce
a margin such as a minimum distance between ventricles.

2) Non-submodular interaction terms: Similarly if we want
region i to be excluded from region j we can set

W i,j
p,p (1, 1) =∞ for all p ∈ P. (12)

This term is non-submodular. In some special cases the Boolean
variables can be transformed in order to allow for a submodular
construction with exclusion constraints [14]. However, this is
possible for neither model in this paper. We will show in
the next section that it is still possible to effectively optimize
energy functions containing such non-submodular terms.

III. SOLVING THE OPTIMIZATION PROBLEM

The standard approach for minimizing non-submodular
functions of this type is to use roof duality. In this paper
we present a new way to solve this using Lagrangian duality.

A. Solving using roof duality

The roof duality bound [5], [18] is a polynomial-time
computable lower bound to the minimum of quadratic energy
E. While a good lower bound can be interesting in many
applications, for example, when using branch and bound,
another property of roof duality is arguably even more useful:
persistency. Each variable in the solution obtained via roof
duality is equal to one of three possibilities: {0, 1, ?}. It is
guaranteed that a global solution exists corresponding to the
parts of the solution not equal to ‘?.’ Therefore, the roof duality
solution is said to be partially optimal. The unknown variables
can then sometimes be assigned with a technique called probing,
while still ensuring global optimality [7].

In [36] a complementary method to assign the unknown
variables called improve was introduced. It works by randomly
assigning variables to any given value and then run the
algorithm again with these assumptions. By persistency results
the old and the new solution can be combined in a way that is
guaranteed to give a solution at least as good as the old one.
Improve does not guarantee a globally optimal solution.

The fastest method of computing the roof dual for the energy
function we are aware of is by using graph cuts [6]. The number
of nodes in the graph will then be twice the number of variables,
increasing the memory requirements significantly. In this paper,
we use the implementation from [36].

One approach to solving our problem is to directly add the
non-submodular terms to the energy function. It is then no
longer graph-representable, but we can incorporate these energy
terms using roof duality.

B. Using the Lagrangian dual

In this section we show how the problem of minimizing E
can be reformulated using Lagrangian duality. The reformulated
problem is then solved using the projected supergradient
method.

a) Reformulating the problem: If we let E′(x) be our
energy without the non-submodular term, E′ will be easy to
minimize. Let g (x) ≤ 0 be all non-submodular constraints.
Adding these constraints gives us the new problem

min
x

E′(x)

subject to g (x) ≤ 0.
(13)

This is the primal problem. We have now separated the easy
part from the difficult non-submodular constraints. The primal
problem can in principle be solved as an integer programming
problem. However, this is not a tractable approach due to the
large number of variables. Instead, we look at the Lagrange
dual problem:

max
λ

d(λ) = max
λ

(
min
x

(
E′(x) + λTg (x)

))
subject to λ ≥ 0,

(14)

where d(λ) is the Lagrange dual function. Let d? denote the
optimal value for (14) and p? the optimal value for (13). By
weak duality we then have that d? ≤ p?. For any solution to
the dual problem we get a labeling x which we can project
onto the set of feasible solutions. Using this labeling we get
a primal energy p. If d = p we know that we have found the
global solution to problem and we can stop. If not we can
look at the quantity p− d which is known as the duality gap,
which tells us how far away our solution x is from the global
optimal solution. Since the energy function can be arbitrarily
scaled by simply multiplying each cost with some constant we
introduce the relative duality gap.

Definition 3. The relative duality gap is defined as (p−d)/|p|,
were p and d are the currently best primal and dual energies
for any iteration of the supergradient algorithm.

b) Solving the reformulated problem: The Lagrange dual
function d is always concave. However, it is not differentiable
in general, which precludes gradient ascent methods for its
maximization. We can, however, use the projected supergradient
method [33]. This method is similar to a gradient ascent method
but has some key differences. Specifically, the method is easy
to implement, but in general has worse convergence properties
than first-order gradient-based methods. We refer the reader to
[33], [38] for more details.

Definition 4. A supergradient to a function f at a point x0 is
a vector v fulfilling f (x)− f (x0) ≤ (x− x0)

T
v, for every

point x.

Lemma 5 ([38]). Let λ0 be given and let x? be the optimal
solution to d(λ0) = minx

(
f(x) + λT

0g(x)
)
. Then g(x?) is a

supergradient to d at λ0.
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Proof: For any λ we have that

d (λ) ≤f (x?) + λTg (x?)

=f (x?) + λT
0g (x

?) + (λ− λ0)
T
g (x?)

=min
x

(
f (x) + λT

0g (x)
)
+ (λ− λ0)

T
g (x?)

=d (λ0) + (λ− λ0)
T
g (x?) .

To solve (14) we use the projected supergradient method:
1) Let λ0 be an initial guess of the optimal value of the

concave function d.
2) In each step i a new possible solution λi+1 is calculated

as λi+1 = [λi + τivi]
+, where vi is any supergradient

to d at λi, τi is a step-length and [·]+ is a projection
onto the feasible set {λ ≥ 0}.

For any inequality constraint g (x?) ≤ 0 we can use Lemma 5
and choose a supergradient for any given λ as v = g (x?)
where x? is the optimal solution of d (λ) . We can now add any
number of non-submodular constraint by simply introducing
more Lagrange multipliers, one for each constraint.

In each step, the optimal solution x? for a chosen λi can
be calculated via a minimum graph cut. Furthermore, as the
edges will be very similar in each step, the graph structure can
be reused, reducing the running time [24].

There are several ways of choosing the step-length. One
family of step-lengths with favorable theoretical properties are
the non-summable diminishing step-lengths.

Definition 6. A non-summable diminishing step-length τk
satisfies

lim
k→∞

τk = 0,

∞∑
k=1

τk =∞. (15)

A simple example of a non-summable diminishing step-
length is τi = 1/i where i is the iteration number. For non-
summable and diminishing step-lengths and any given ε > 0
we are guaranteed that our solution f (x) fulfills

lim
k→∞

∣∣∣∣ min
i=1,...,k

f
(
x(i)

)
− f (x?)

∣∣∣∣ < ε, (16)

where x? = argminx f (x) [37].
However we have found the scheme employed by [38] to

converge faster for our data. In this scheme each xp is given
its own step-length τp initialized at τp = 1 and each time
g (xp) changes sign we set τp = τp/2. In this scheme each
time a constraint in (13) changes from feasible to unfeasible
the step-length for the variables xp gets decreased. This is
the scheme we have used for all experiments in this paper.
Since supergradient methods do not guarantee improved value
in each step the best solution thus far is always saved and
once the relative duality gap is small enough the algorithm
terminates.

Theorem 7 (Worst case scenario for supergradient method).
For any integer k > 0 and point x0 there exists a concave
function f (x) with supergradients v (x) at point x such that
any optimization scheme for f for which xk is chosen as

Figure 4. Example how modeling the papillary muscles improved both the
segmentation of the left ventricle and the myocardium. (left) Complete model
and (right) without modeling the papillary muscles.

xk ∈ x0 + span {v (xo) , . . . , v (xk−1)} ,

needs O
(
1/ε2

)
iterations to achieve

|f (xk)− f (x?) | < ε,

where x? = argminx f (x).

Proof: Theorems 3.2.1 and 3.2.2 in [33].
It should be noted that the rate of convergence in our

applications is far better than the worst case of Theorem 7.

IV. CARDIAC SEGMENTATION

The heart below the atrioventricular plane is modeled by
four different regions as shown in Figures 2(a) and (b). The
joint model describes both the geometry of the different regions
and their appearances in the MR images. In the cardiac model,
region 1 contains both region 2 and region 3. This is modeled
by the use of geometric interaction terms as W 1,2

p,p (0, 1) =∞
and W 1,3

p,p (0, 1) = ∞, for all p ∈ P . Furthermore, the left
ventricular papillary muscle must be inside the left ventricle.
This is modeled as W 2,4

p,p (0, 1) = ∞ for all p ∈ P , see
Figure 2(d). We also want to exclude region 2 from 3; that
is, add terms of the form W 2,3

p,p (1, 1) = ∞. These terms,
however, become non-submodular and they can be handled by
one of the methods in Section III. If we want to handle the
non-submodular terms using Lagrangian duality we setup the
primal optimization problem as:

min
x

E′(x)

subject to x2 + x3 ≤ 1,

where E′ (x) is our energy function without the non-
submodular terms.

The unary terms construction as given in Figures 2(c) and (d)
results in:

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p), (17)

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ2(p),

and Dr
p(0) = 0 for all r ∈ R and p ∈ P .

For the heart model we split the spatial probability into
four categories: left ventricle, right ventricle, myocardium and
background. Similarly the intensity is split into three categories:
blood, muscle and background. The probability for each region
is then calculated with the assumption that the spatial and
intensity distributions are independent. An example of the
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(a) Slice (b) µ0 (c) µ1 (d) µ2 (e) µ3 (f) µ4
4

10

Figure 5. Example of µr for the slice shown in (a). Recall that µr (p) = − log
(
P
(
xrp = 1

))
. A lower intensity corresponds to higher probability.
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(a) Background.
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(c) Myocardium.

Figure 6. Estimated intensity distributions for the three classes of intensity. Every example in the training data is added together and put into histogram
of 500 bins from 0 to 1500 shown as the blue bars. The resulting 1D data is smoothed using a Gaussian kernel. For the smoothed data the bins are sorted
by occurrence and the bin where the cumulative sum is 90% of the total is chosen as threshold level giving the dashed red line. The final distributions are
normalized versions of the three lines.

final µr’s can be found in Figure 5. The spatial distribution
is estimated by first resizing each image in the training data
to the same size by bilinear interpolation. Then a binary mask
is constructed for each category. The masks are enlarged and
smoothed and then they are all added together constructing the
final probability mask. The intensity distribution for each region
is estimated by collecting all intensities from the examples in
the training data. The histogram of intensities is then smoothed
and a distribution is constructed, see Figure 6. For both the
location and intensity probability a lowest probability is set,
in order to capture occurrences unseen in the training data.
The user selects which slices to be segmented and selects a
center point of the right and left ventricle in one slice. The
two center points are used to roughly align the hearts in order
to get good spatial statistics. The algorithm can handle slices
lacking any of the regions. Badly captured MRIs are identified
by looking at the distribution of the intensities. If there are
multiple peaks in the histogram close to each other for the
lower intensities, the image is assumed to be too bright and
the intensity distribution is shifted to fit an average histogram.

In all ground truth data we have come across, only the
left ventricular epicardium is delineated. In our model we do
not have this restriction — we segment the full myocardium.
In order to compare our results with the ground truth we
must remove all myocardium which is not part of the left
ventricular epicardium. To do this, the thickness of the septum
is approximated as the shortest distance between the left and
right ventricles in the resulting segmentation. Then the outlying
myocardium is removed based on this thickness approximation,
cf. Figure 2b(a). We also assume that the left ventricle and the
myocardium are convex. The resulting segmentation is taken

as the convex hull in each slice.
The regularization can sometimes make the segmentation

miss the apical slice. By user input we know which slices
the left and right ventricles are contained in and it would be
wasteful to throw this information away. We utilize the user
input by naturally extending the segmentation into the apical
slice. This is done by taking the segmentation from another
slice, shrinking it slightly and inserting at the bottom.

A. Experiments

The segmentation is only performed on the slices of the
heart which are fully below the atrioventricular plane. The
quality of the segmentation is measured by the dice metric.

Definition 8. The dice metric is given by
2 |A ∩B| / (|A|+ |B|), where A and B are the ground
truth and the computed segmentations, respectively.

The algorithm is evaluated on two data sets: Lund and
Sunnybrook. Each data set is trained and evaluated separately.

Lund consists of cine short-axis steady state free precession
MR images of 62 healthy normals captured on a Philips Interera
CV 1.5T with a five channel cardiac synergy coil. Each heart
has the left and right ventricular endocardium and the left
ventricular epicardium manually delineated by an expert. The
data set is split into two equally sized parts, one used for
training and one used for evaluation. Results are given in
Table I(a) and an example segmentation in Figure 7. We also
evaluate three clinical parameters: the left ventricular mass has
an error of 15.6±11.5 g, the left and right ventricular ejection
fraction errors are 5.6±2.9% and 7.1±5.2%, respectively.
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Figure 7. Example segmentation from Lund, (left) 3D rendering and (right) 10 slices

End systole End diastole

LV endo. LV epi. RV LV endo. LV epi. RV

Multi-region 0.87±0.05 0.88±0.05 0.80±0.11 0.96±0.02 0.93±0.03 0.91±0.07

Separately 0.47±0.25 0.86±0.04 0.42±0.14 0.62±0.12 0.90±0.03 0.57±0.14

Table I
RESULTS IN THE DICE METRIC FOR LUND REPORTED AS MEAN ± ONE STANDARD DEVIATION. NOTE THAT THE MULTI-REGION MODEL HAS A HUGE

INFLUENCE ON THE SEGMENTATION RESULTS.

We also compare our method to a simplified version where
we run the segmentation for each region separately, see
Table I(b). Without the complete multi-region model, the
localization of the ventricles becomes very difficult and the
blood pools are often overestimated. A few typical examples
where the multi-region model improves the segmentation are
given in Figures 4 and 8.

Sunnybrook consists of 30 patients with different heart
diseases and is split up into two equally sized parts, one for
training and one for evaluation. The data set was used in the
2009 MICCAI segmentation challenge [1]. Sunnybrook lacks
ground truth for the right ventricles, so this was manually
constructed by a non-expert. Therefore, this ground truth was
only used for training and not for evaluation. The results given
by the evaluation code used in the challenge are given in
Table III along with results from competing methods. The
evaluation in the challenge calculates the dice metric per slice
and averages over all slices.

The small training data of Sunnybrook gives our method a
disadvantage as there are just 15 hearts spanning over three
different diseases and one group of normals. Image-driven
methods do not suffer from the small training set as they
do not need to be trained. The limited number of training
examples impedes the model since there are too few examples
of variation in shape for each disease and the normals. The
intensity model is less effected by this but would still benefit
from a larger training set. Note that all diseases and normals
are covered by one model.

Our model was also optimized with roof duality (RD). If
RD was unable to label all variables, then the methods “probe”
and “improve” were used to obtain a complete labelling. We
call the method RD-I if first RD is calculated and then improve
is used to label the last variables and RD-P if probing is used
to label the unlabelled variables. For RD-I and our method we
used the same termination criterion: either the relative duality

gap was smaller than 10−4 or a maximum of 25 iterations.
RD-P terminated either if all variables have been labelled or
after a maximum of 12 hours running time. If some variables
still was unlabelled after 12 hours they were set to 0. Our
method was faster and used less memory than RD-I and RD-P.
The final results for all the optimization methods in terms of
quality of segmentation are virtually identical, see Table II.
In particular, all methods achieved small duality gaps. Only
RD-P encountered some problems on the Sunnybrook dataset,
where the larger duality gap is a result of 3 hearts that were not
completely labelled after 12 hours of probing. The progress of
the duality gap and dice over time for the different optimization
methods is depicted in Figure 9. In Figure 10, the progress
of probing over time is shown. It takes a relatively large
computational effort for probing to make a difference.

Our method found a globally optimal solution for 52% of
the hearts, and for the other hearts we can from the very small
relative duality gap be certain that the method found a solution
close to the global optimum. For 4 out of a total of 46 hearts
the probing took more than 12 hours and we terminated the
calculations after that time. This highlights the problem with
probing - there is no real guarantee that the computations will
be done within a reasonable time; on some problem instances
we had probing running for several weeks without returning a
complete solution.

It is possible to extend the cardiac model to also include pap-
illary muscles in the right ventricle; we need only to introduce
one more variable per voxel. If we let µ5 (p) = log P (xp = 5)
for this new region and follow the notation in Figure 2(d) we
need only to add one vertex corresponding to the new variable
and two edges: one s-t edge with value µ5 − µ3 and one
edge going from region 5 to region 3 with ∞ weight. Initial
experiments gave worse results for both the right ventricle
and myocardium segmentation with the added region. The
new region had a tendency to overflow into the septum since
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(a) (left) Complete model and (right) without modeling the right ventricle. (b) (left) Complete model and (right) only the right ventricle.

Figure 8. Examples of how modeling multiple regions improve the segmentation of the ventricular epi- and endocardium. The color scheme is the same as in
Figure 2b.
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Figure 10. The progress of probing as a function of time averaged over all
hearts. Most improvements occur within the first hour.

this would give region 3 a rounder shape giving a lower
regularization cost, and therefore it has not been incorporated
in the model.

The Lund data set was manually delineated using both short-
and long-axis images. For a number of hearts the most basal
slice for the short-axis images containing the left ventricular
cavity also cut through to the atrium. For these slices it was hard
or even impossible to even manually delineate the left ventricle
solely based on information from the short-axis images. When
the ground truth was produced, long-axis images were used to
properly segment them. It would be desirable for our algorithm
to incorporate information from long-axis images as well so
we also could handle these few slices.

V. LUNG SEGMENTATION

Our second application is the segmentation of lungs in a
full-body X-ray CT scan. The model is shown in Figure 11
and uses four regions: the body (region 1), the two lungs
(regions 2,3) and the heart together with the throat (region 4).
Regions 2, 3 and 4 are all forced to be contained inside region
1 by adding the terms W 1,2

p (0, 1) =∞, W 1,3
p (0, 1) =∞ and

W 1,4
p (0, 1) = ∞ for all p ∈ P. The major difference to the

cardiac model is that we now need to enforce more than one
separation of regions, that is,

min
x

E′(x)

subject to x2 + x3 + x4 ≤ 1.
(18)

Alternatively, the three-variable constraint could equivalently
be replaced with three constraints of the same type as in the

previous section:

x2 + x3 ≤ 1 (19)

x2 + x4 ≤ 1

x3 + x4 ≤ 1.

These two sets of constraints perform almost identically in our
experiments, but, obviously, the second set requires three times
as many dual variables.

The unary terms construction can be seen in Figure 11(d).
We get:

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p), (20)

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ1(p),

and Dr
p(0) = 0 for all r ∈ R and p ∈ P .

The user gives ground truth seeds only in one slice of the
data as shown in Figure 11(b). The background is removed
by thresholding on an intensity level between the seeds given
from the background and the body. The seeds are then used
to build intensity histograms for the five regions which are
used to estimate the intensity distribution. We do not build any
kind of spatial statistics; we simply give the probability for
the left to be to the right of the side each slice as a fading
gradient with respect to the center and vice versa for the left
lung. We construct the unary terms using the approximated
intensity distributions, see Figure 13 for examples.

A. Experiments

We test our algorithm on a full-body X-ray CT data set with
seed as shown in Figure 11. A sample result from a few slices
can be seen in Figure 12. The running time for roof duality
is 39 seconds and for our method 29 seconds. Both methods
give exactly same solution.

In the current implementation we used two different general-
purpose max-flow implementations [10], [15]. The performance
of the two algorithms was quite similar. One thing not taken
into account is the fact that the structure of the graph is highly
repetitive. For instance, all geometric interaction terms are
equal and they need not be explicitly stored in the graph. A
specialized-purpose solver for this problem could lead to a
large reduction of memory requirements.
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Method Memory (MB) Running time (s) Relative duality gap Dice (average)

Sunnybrook Lund Sunnybrook Lund Sunnybrook Lund Sunnybrook Lund

Our 2727±680 2103±788 46±27 30±27 0.00054±0.0013 0.00054±0.0021 0.888±0.0484 0.892±0.0815

RD-I 5038±985 3913±1407 135±165 80±113 0.00016±0.00034 0.00049±0.0021 0.888±0.0485 0.892±0.0816

RD-P 5041±1014 3949±1402 6109±12451 1934±7984 0.0011±0.0030 0.00056±0.0021 0.888±0.0484 0.892±0.0825

Table II
MEMORY CONSUMPTION OF THE OPTIMIZATION IN MEGABYTE AND THE RELATIVE DUALITY GAP. THE RESOLUTION OF THE DATA FED TO THE METHOD
WAS FOR SUNNYBROOK ON AVERAGE 146× 146× 10× 2 VOXELS AND FOR LUND ON AVERAGE 126× 126× 10× 2 VOXELS, THE THIRD DIMENSION,
THE NUMBER OF SLICES, VARIED FROM HEART TO HEART. COMPARING EACH PROBLEM INSTANCE, INSTEAD OF THE TOTAL MEAN, BOTH VERSIONS OF RD

USES ≈ 1.9 TIMES MORE MEMORY THAN OUR METHOD. DICE WAS TAKEN AS AN AVERAGE OVER PARTS WHERE THE DATASET HAD GROUND TRUTH.

Method Dice LV Mass (g) LV ejection fraction (%)

LV endo. LV epi.

Our 0.86±0.05 0.92±0.02 27.1±28.3 12.5±8.7

Mark et al. [30] 0.86±0.04 0.93±0.01 23±? 14±?

Lu et al. [29] 0.89±0.03 0.94±0.02 21.6±14.6 8.08±5.06

Wijnhout et al. [41] 0.89±0.03 0.93±0.01 28.7±18.7 7.02±4.78

Casta et al. [12] ? 0.93±? † ?
O’Brien et al. [34] 0.81±? 0.91±? ? ?
Constantinides et al. [13] 0.89±0.04 0.92±0.02 † †
Huang et al. [21] 0.89±0.04 0.94±0.01 ? ?
Jolly [23] 0.88±0.04 0.93±0.02 31.8±17.7 8.35±5.78

Table III
RESULTS FOR SUNNYBROOK. “?” MEANS NOT REPORTED IN THE CORRESPONDING PAPER. “†” MEANS THAT THE RESULT IS NOT DIRECTLY COMPARABLE.

MASS AND EJECTION FRACTION IS REPORTED AS DIFFERENCE BETWEEN MANUAL AND AUTOMATIC VALUE.
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(a) Our method converges fast to a solution with
small duality gap (70%).
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(b) RD-P and RD-I is effective (6%).
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(c) RD-P is slow while our method and RD-I converge
relatively fast. (24%).

Figure 9. The typical progress for all methods, each iteration is shown by a marker with the first and last iteration shown as a larger marker. For all methods
the resulting dice are virtually identical. The results can be divided into three different categories. In a) all iterations of our method are done before the initial
RD calculations are completed. This happened for 70% of the hearts. In b) RD managed to label all nodes before our method terminated, which occurred for
6% of the hearts. In c) RD was unable to label all nodes and RD-P converged very slowly, which happened for 24% of the hearts. The top images show
relative duality gap and the bottom images show dice as a function of time for the three methods. The first and last iterations for each method are highlighted
and for RD-P we limited the number of iterations to 25.
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(a) Four-region model (b) CT scan with seeds pro-
vided by the user
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Figure 11. (a) A diagram showing the model used for lung segmentation. Region 0 is the background, region 1 the body, regions 2 and 3 are the right and
left lungs, respectively, and region 4 is the throat. (b) The seeds in one slice used for the segmentation. In a clinical setting, these are provided by a physician.
(c) The Boolean representation of the four regions. (d) Graph construction for one voxel, showing the geometrical relationships. Best viewed in color.

Figure 12. Sample results from the segmentation, the same color coding as in Figure 11 is used.
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Figure 13. An example slice from the data set with the 5 calculated unary terms for this slice.

VI. CONCLUSIONS

Based on the experimental results we can draw the following
three conclusions:

1) We have demonstrated that a multi-region model achieves
significantly better results, all else being equal, than
segmenting the regions one at a time (Figures 1,4 and 8).
Enforcing geometric constraints, and more generally,
incorporating prior information into the model, result
in qualitative improvements. This is not always captured
by quantitative measures such as the dice metric.

2) The optimization method based on Lagrangian duality
outperforms roof duality, both in terms of speed and

memory consumption.
3) Application of the multi-region framework for cardiac

segmentation achieves results on par with dedicated LV
methods on a publicly available data base. There are fine-
tunings one can make to improve performance, better
unary term and better parameter choices. However we
still find these results encouraging.

The model can simply be modified to fit other medical imaging
tasks by adding and removing regions as demonstrated by the
small difference between the heart and the lung model.
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