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Abstract
Tensor-based morphometry is a powerful tool for automatically computing longitudinal change in
brain structure. Because of bias in images and in the algorithm itself, however, a penalty term and
inverse consistency are needed to control the over-reporting of nonbiological change. These may
force a tradeoff between the intrinsic sensitivity and specificity, potentially leading to an under-
reporting of authentic biological change with time. We propose a new method incorporating prior
information about tissue boundaries (where biological change is likely to exist) that aims to keep
the robustness and specificity contributed by the penalty term and inverse consistency while
maintaining localization and sensitivity. Results indicate that this method has improved sensitivity
without increased noise. Thus it will have enhanced power to detect differences within normal
aging and along the spectrum of cognitive impairment.
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I. Introduction
Detecting biological change in longitudinal pairs of magnetic resonance imaging (MRI)
brain images is a challenging task. Accurate estimations of change are confounded by many
factors. Some factors are inherent in the images themselves such as scanner induced
geometric distortion, intensity nonuniformities, and artifacts due to movement. Others are
intrinsic to the methods used, such as the inevitable effects of partial volume induced by
image realignment, biases inherent in computational algorithms and lack of definitive
approaches for modeling biological change. Additionally, the veracity of all methods is
difficult to determine due to limitations of current methods for simulating atrophy [1].

A major issue in brain change quantification is whether to model change in terms of strong
deformations at region boundaries that attenuate quickly with distance from the boundary
[2], or milder deformations that are more evenly distributed throughout the adjacent region
[3]-[5]. The former may provide more sensitive and localized measurement, but requires an
explicit definition of region boundaries (i.e., edges) and may misrepresent highly localized
artifacts (noise) that masquerade in follow-up images as true change. Conversely, the latter
approach typically uses a regularization or “penalty” function which counteracts too-abrupt
movement, enhancing robustness to noise. The strength of the regularization term is adjusted
by a weighting factor, but this does not vary by location (it is not spatially adaptive) and thus
the method may be less sensitive to actual subtle, localized changes.

In this paper we will employ the terms sensitivity and specificity in a way consistent with
the statistical concepts of binary classification rates, but referring here to tracking
differences in serial images that represent real brain changes. An ideal method would
possess high sensitivity (i.e., identifying image differences due to actual brain changes),
high localization (i.e., representing change in regions conforming to where differences
actually occur), and high specificity (i.e., minimizing the effect of image differences due to
noise or other artifacts).

The goal of this work is to combine the localization and sensitivity advantages of boundary-
based approaches with the specificity of smoother region-based approaches.

We focus on tensor-based morphometry (TBM), a commonly used and evolving technique
[5]-[14] that computes a deformation field between a pair of images and then uses the log-
Jacobian determinants to map local volume change. TBM starts with vector “force fields”
derived from voxel intensity mismatch functions, adds a penalty term to discourage
excessive deformation, and solves for velocity “flow fields” which drive the deformation.

Recent work has shown that in addition to noise sensitivity, TBM algorithms also possess an
inherent bias that overstates volume change [3]-[5]. This problem is particularly evident
when TBM methods are applied to longitudinal images with short intervals between scans,
in which no actual brain atrophy should be expected [5]. Log-Jacobian images of such warps
should be uniformly close to zero, yet patterns of nonzero volume “changes” typically
appear at tissue boundaries and also in homogeneous brain regions. The skewness of the log-
Jacobian field distribution was hypothesized to be one reason for this overestimation and a
novel method has been developed to counteract its effect [4], [5] by penalizing the
Kullback–Liebler divergence [15] of the log-Jacobian determinants from the identity
distribution. The effect of an additive Kullback–Liebler penalty term (called RKL) is to
smooth the Jacobian fields, especially in homogeneous brain regions remote from areas of
high tissue contrast [16].

A recent debate in the literature [14], [17] has also pointed out that even in the presence of
the Kullback–Liebler penalty, significant inherent bias toward indicating nonbiological
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differences in images remains. This apparent bias, however, can be significantly reduced by
imposing inverse consistency [18]—the simultaneous calculation of forward and backward
deformations that are constrained to be inverses of one another.

Thus penalty terms and inverse consistency are each indispensible. But in addition to
reducing bias, each of these also reduces sensitivity to real differences between successive
images. By spreading change over larger areas, the penalty term diminishes localized
sensitivity even as it enhances specificity. By reducing magnitudes the inverse-consistency
constraint also may contribute to under-reporting of real change. As a result the TBM
method may either fail to record change or attribute change too broadly throughout the
image, leading to estimates that do not reflect actual differences.

This raises the question whether sensitivity and localization can be maintained without
losing specificity. We propose to incorporate a notion of tissue boundary location from an
established boundary-based technique [2] into the energy functional for an inverse-
consistent TBM, so that deformations near a boundary are allowed to be large while
deformations away from boundaries are dampened. Force fields due to mismatch and
penalty terms are each locally modified by the likelihood of edge presence. Our hypothesis
is that the combination of boundary terms and RKL penalty will enhance sensitivity and
localization while retaining specificity.

This hypothesis is illustrated in Fig. 1, an experiment on change within synthetic images that
will be described fully in the data analysis and results sections. The results of this
experiment suggest that it is indeed possible to record localized real change while retaining
reasonable robustness against noise and algorithm bias.

To summarize, this paper presents our method for change detection, called G-KL, and
compares it to a TBM method having no boundary information (KL). Each method is so
named because it incorporates the RKL penalty term while G-KL also uses additional
boundary information. We test the hypothesis that boundary-based information can improve
the sensitivity-localization versus specificity tradeoff. We compare estimates of brain
change from KL and G-KL with prior estimates from independent methods of automatic
brain segmentation and manual delineation. We further compare change detection between
KL and G-KL in subjects having normal cognition, mild cognitive impairment and
Alzheimer’s disease, using data obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Results suggest that our proposed method is able to obtain good
specificity while maintaining localization and sensitivity, out-performing the method that
uses only the penalty term.

II. Theory—Incorporating Boundary Information Into TBM
A. Problem Formulation

Let Ω be a bounded 3-D image space. T1 and T2 are real valued intensity functions on Ω
representing our images at time 1 and time 2, respectively. The images T1 and T2 have been
pre-aligned using an optimized linear transformation. To compute a deformation of T2 onto
T1 , we compute an inverse-consistent deformation g : Ω → Ω such that for each location x
in Ω, T1(g(x)) should equal T2(x). The deformed imageis therefore T1 ° g. Let u(x) be the
displacement from a position in the deformed image back to its source in T2. Then g(x) = x
− u(x). Matching T1 and T2 means finding an optimal g or equivalently an optimal u for the
deformation between the images.
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B. Outline of the Standard TBM Algorithm
The usual TBM algorithm optimizes an energy functional E to generate a matching u
between the images. E has the format

(1)

where M is an image dissimilarity term and R is a regularizing penalty term, both dependent
on the deformation u. Common image dissimilarity metrics are mutual information (MI) [5],
[8] or least squares [19]. For our experiment, we use a dissimilarity term consisting of cross-
correlation (CC) because this is easy to compute and robust in the presence of noise. It is
maximized when the image intensity arrays lie along a regression line [20] and this is
appropriate for registering images of the same MRI modality. The adaptation for our G-KL
method inserts a voxel-varying weighting factor based on probabilistic estimates of
boundary locations into the CC formula, creating a new dissimilarity functional G-CC.
These dissimilarity functionals will be fully defined below in (11) and (14). They are
integral to the two methods (KL and G-KL) which we will be comparing.

For KL the penalty term will be RKL and for G-KL we will define a modified term G–RKL
which also makes use of the boundary estimates. We present details below. The parameter λ
governs the strength of the penalty term.

The algorithm solves the Euler–Lagrange equation ∂uE = 0, at least approximately,
obtaining a u to optimize E [21]. The variational derivative of the matching term M takes the
form

(2)

where m is a scalar function and ▽T1(g(x)) is the intensity gradient of T1 at the location
specified by g(x) (in our implementation T1 is the target image). The variational derivative
of M has an inherent asymmetry because it depends explicitly only on the gradients of T1.
We will explain below how our proposed method partially balances this asymmetry by
introducing terms derived from the gradient of T2. Additionally, inverse consistency restores
symmetry in the sense that it solves for deformations in both directions, with each the
inverse of the other; the “backward direction” deformation depends on ▽T2.

The combined variational derivative of E is a force field ∂uE = F1 + λF2, with F1 and F2
being the variational derivatives of the matching term and penalty term, respectively. F1 is a
force generated by intensity mismatch of the two images at each voxel, driving the solution
toward image matching. F2 is a force driving the solution to reduce the penalty term.

1) The Fluid Flow Method—Instead of solving the Euler–Lagrange equation by gradient
descent, fluid flow methods [5], [6], [8] solve for the flow velocity field v, then use it to
update the deformation u iteratively over small time interval increments via Euler
integration

(3)

This formula is based on a discrete approximation to the total time derivative of u [6]. The
size of the time increment Δt is often varied so that a maximal u displacement is not
exceeded at each iteration [5], [8].

The velocity v is derived in [6] by using successive over-relaxation (SOR) to solve the
Navier–Stokes partial differential equation
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(4)

Citing the computational complexity of the Navier–Stokes equation, other authors [5], [8]
prefer obtaining v as a convolution of the force term by a Gaussian

(5)

In sum, the fluid flow method consists of iterated steps, each step generating v from the
current force field, updating u and checking to see whether a termination condition is
satisfied.

2) The Kullback–Liebler Penalty Term—Yanovsky et al. [5] use a fluid-flow
implementation in which the matching term is MI, the velocity v is computed by Gaussian
convolution, and the penalty term RKL is based on the Kullback–Liebler divergence metric
[15] for the log-Jacobian distributions. RKL is a measure of the divergence between
probability densities Pid and Pg, the identity distribution and log-Jacobian distribution for g,
respectively. Since RKL penalizes deviation from a uniform distribution, it tends to
homogenize the Jacobian field in the absence of strong mismatch forces. RKL is expressed as

(6)

Thus, the total energy functional has the form

(7)

3) Fluid Flow Incorporating Boundary Information—In this study, the “baseline”
(KL) method has the RKL penalty term, uses CC for its matching function, and computes the
velocity v using SOR to solve the Navier–Stokes PDE. Our proposed method G-KL is the
same as KL except that its energy functional incorporates spatially varying a priori estimates
for the likelihood of tissue edge presence at each location x, based on intensity gradient
magnitudes. Because T2 does not move while T1 is iteratively pulled toward it by g, we use
T2 to generate these estimates. To assess edge likelihood, we create a probabilistic map of
edge locations in T2 from the cumulative distribution function (CDF) of slightly smoothed
T2 intensity gradient magnitudes. The function GradCDF(x) is defined as the percentile of
the gradient magnitude of T2 at location x in this CDF. High values, close to 1, occur at
locations of strong gradients and almost always at edges. The GradCDF image appears very
similar to an intensity gradient magnitude image, but the values between 0 and 1 indicate
probabilities of edge proximity rather than the actual magnitude of the intensity gradient.

The respective forces for KL and G-KL are defined here and summarized in Table I. Define

(8)

to be the mismatch and penalty forces in the KL implementation. The formula for F2 is
provided in [5].

To derive corresponding forces fields for G-KL, we will define energy functionals G-CC
and G–RKL which contain the GradCDF multipliers at appropriate positions as voxel-based
weighting terms. Then the corresponding forces will be
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(9)

a) Derivation of Mismatch Forces for KL and G-KL: For simplicity of computation we
internally set the means of T1 and T2 to zero before starting the solution. Since the working
version of T1 changes as it is iteratively pulled toward T2, its mean intensity also changes at
each iteration, but in practice these deviations from zero are small (on the order of 1% of the
maximum intensity at most) and are ignored. Then the formulas for CC and G-CC can be
expressed as follows.

Define

(10)

Then

(11)

Using the rules for variational derivatives [21] which in this situation parallel the usual
quotient, product and chain rules

(12)

This gives the mismatch force for KL. Now define G-CC as follows, using similar notation
as for CC but with modified formulas:

(13)

Then

(14)

Since GradCDF(x) is derived solely from T2 and is therefore constant with respect to g, the
variational derivatives become

(15)

Thus, formally ∂uG–CC resembles “GradCDF(x) times ∂uCC” but the correspondence is not
exact because the constants gv12 and gv1 are not equal to their counterparts v12 and v1.
Nonetheless the resemblance is instructive because it shows that the mismatch force
magnitudes are explicitly modulated by GradCDF.
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b) Derivation of Penalty Forces: The derivation of the penalty forces for G–RKL is
simpler. We define

(16)

Then as with the mismatch forces, since GradCDF is independent of g

(17)

in other words

(18)

where, as above, F2 is the penalty force vector field for KL.

In G-KL the multiplier functions GradCDF and 1 – GradCDF guide the warp using
anatomical knowledge of T2, based on the following considerations. Mismatch forces F1
occurring at or near tissue boundaries are more likely to represent real biological change [2]
and should be preserved. On the other hand, F1 forces at a distance from edges are more
probably due to noise and should be attenuated. The formula of GF1 at each voxel
accomplishes both these aims since GradCDF will be close to 1.0 near edges and lower
away from them. Likewise the penalty force should be dampened near edges while allowing
its full effect away from them, and this is accomplished by (1 − GradCDF)F2.

We note that G-KL partially redresses the asymmetry of the original Euler–Lagrange
equation resulting from the presence of only T1 gradients. Gradient-derived information
from both of the images, i.e., ▽T1(g(x)) from T1 and GradCDF(x) from T2, is now present
in G-KL, although they are not in the same form. Rather than being an actual gradient,
GradCDF is a scalar multiplier related to the boundary mask concept described by
Freeborough and Fox. [2].

4) Inverse Consistency—We have implemented inverse-consistency based on work by
Leow et al. [22] and summarized in [14]. We present a brief outline here and refer the reader
to these references for a fuller explanation. Let g and h be deformations in the forward and
backward directions, respectively, with corresponding displacement fields u and w.

We optimize the energy functional

(19)

The subscripts “F” and “B” refer to the forward and backward directions. In this setting MF
and MB are formally the same but the roles of T1 and T2 are opposite, and MF depends on u
while MB depends on w.

The algorithm calculates g and h concurrently, imposing the constraint that at each iteration
the composition of the current g and h, incorporating the updates being computed at this
iteration, must to second order equal the identity function [14].

The derivatives ∂uE and ∂wE are each a sum of two variational terms because of the
summation EF of and EB. Updates to the forward deformation g come from solutions to the
Navier–Stokes equation (4) for ∂uE = ∂uEF = ∂uEF + ∂uEB, while updates to h come from
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solutions for ∂wE. It is straightforward to compute ∂uEF and ∂wEB, as described above in
(12) or (14), but the dependences of EF and EB on their “opposite” deformations are not
explicitly known, so the derivatives ∂wEF and ∂uEB are inferred by imposing the identity
constraint mentioned above. The result of this constraint is a pair of linear equations
involving the Jacobians Dg and Dg−1, by which we solve for ∂wEF and ∂uEB in terms of the
already computed ∂uEF and ∂wEB [22]. This avoids the necessity of actually inverting g and
provides the updates for both g and h at the current iteration.

For inverse-consistent versions of our two methods, we use MF = MB = CC and R = RKL for
KL, with MF = MB = G–CC and R = G–RKL for for G-KL.

5) Summary—In summary, we compare our method G-KL that involves gradient
information from both images against a baseline method KL that is identical except for
lacking the T2-based GradCDF factors. These estimators are built into the energy potential
of G-KL, producing local attenuation of mismatch or penalty forces, depending on the
estimation of edge likelihood.

III. Data Analysis
A. Change in Synthetic Images

Our first experiment used synthetically generated images with simple tissue structure
(simulated gray, white and CSF) and fine detail cortical “gyri” to illustrate the performance
of our TBM methods with and without tissue boundary information (G-KL and KL,
respectively). These are designed to simulate gray matter “atrophy” in serial images where
ground truth is known so that performance can be accurately evaluated. Each image includes
additive gaussian noise having magnitude 4.67% of white tissue intensity. Fig. 1(a) shows
“baseline” (left panel), “time 1” (middle), and the difference (right) depicting about 3%
volume loss in the outer gray matter rim.

B. Longitudinal Image Data
Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit organizations, as a $60 million,
five-year public-private partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults, ages 55–90, to participate in the
research—approximately 200 cognitively normal older individuals to be followed for three
years, 400 people with MCI to be followed for three years, and 200 people with early AD to
be followed for two years.

We tested each of our TBM algorithms in several warping experiments. All ADNI images
were subjected to a correction protocol described by Jack et al. [11]. This included 1) the
Grad-Warp correction procedure for gradient nonlinearity [23], 2) a “B1-correction”
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adjusting for intensity inhomogeneities due to B1 nonuniformities [11], 3) “N3” bias field
correction [24], and 4) geometric scale adjustment using a phantom scan acquired with each
image [11].

We used two sets of data in our experiments. The first consisted of a developmental data set
with a “no-change” group of 12 subjects having two scans made on the same day, and a
second “change” group of 20 subjects diagnosed with Alzheimer’s disease having scans
approximately one year apart. Demographic characteristics of the “change” subjects are
shown in Table II(a). The developmental dataset tested our fundamental hypothesis that G-K
reduces noise and bias almost as much as KL for images in which no biological change is
expected.

The second group was a validation dataset. It consisted of a larger number of subjects
having repeated imaging separated by one year with varied degrees of cognitive ability at
baseline. This dataset included 106 normal (CN), 65 AD, and 93 mild cognitive impairment
(MCI) subjects. The subjects of the validation dataset did not overlap with any of the AD
subjects in the developmental data set. Among the validation dataset, CSF measures of beta-
amyloid were available for four CN, 48 AD, and 93 MCI, and we used these to test voxel-
wise correlations of log-Jacobians with levels of beta-amyloid. Finally, we also used a
subset of 50 AD, 38 MCI, and 37 normals to measure cumulative longitudinal changes over
time intervals of six, 12, and 24 months. Demographic characteristics of the validation group
are shown in Table II(b).

C. Statistical Analyses
1) Group Comparisons—All group analyses were based upon log-Jacobian images of
the deformations. Group analyses required a deformation of all subjects onto a “minimal
deformation template” (MDT) constructed to be minimally distant from images in the group
[25]. We used an MDT made from 29 clinically normal individuals 60 years of age or older.
Each subject T2 image (on which the Jacobian change maps were computed) was warped to
the MDT using a cubic B-spline warp [26], [27]. Such a warp is standard procedure in cross-
sectional image registration, where a more powerful large-deformation warp like fluid-flow
would inappropriately crush together structures in regions of topological mismatch with the
template. The native Jacobian determinant change maps were then deformed into MDT
space to facilitate group analysis.

2) Comparison of Methods on No-Change Images—In order to compare the
performance of KL and G-KL on our dataset of no-change images we compared
distributions of log-Jacobian values between KL, G-KL, and an inverse-consistent TBM
algorithm without penalty term (called NF for “no filter”).

3) Significance Testing of Voxel Log-Jacobian Values—To assess locations of
significant change in the log-Jacobian images in template space, we performed permutation
testing for correction of multiple comparisons [28]. There were several contexts in which we
used this technique. We used permutation testing on the log-Jacobian values to compute
significant change within a group, to find group-difference t-values for the log-Jacobians in
order to compute areas of significant differences between diagnostic groups, and finally to
test for significant regression associations between log-Jacobians and metadata such as
MMSE or CSF amyloid-beta. We used permutation testing for voxel-wise significance of
Jacobian values as well as size significance for contiguous clusters of Jacobian values above
or below a preassigned threshold. In all our tests we performed 10 000 permutations.
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4) Statistical ROIs and Power Analysis—We use statistically defined ROIs [29], [30]
as another measure of statistical power. The statistically defined ROI (statROI) is intended
to focus measurements to a brain region most strongly associated with change in a given
method [29], and therefore statROIs differ for each method. We defined our statROI for
each method following Hua et al. [30] using voxel-wise t-values for the log-Jacobians

(20)

where μlogJ(x) and σlogJ(x) are the mean and variance, respectively, over all subject log-
Jacobian values at x.

The statROI for a given method consisted of voxels in brain tissue for which the voxel-wise
t-probability over the 20 “change” images was p ≤ 0.001 (uncorrected). Thus in each method
the statROI represents regions of change strongly recorded by that method for the one-year
change images in the developmental dataset.

We used the statROI for each method to perform a power analysis in the validation dataset,
distinct from the images on which it was generated. As described in Hua et al. [14], mean
change and standard deviation for log-Jacobians over the statROI yield the minimum sample
size needed to detect 25% change with 80% power at α = 5% significance level, according
to the formula

(21)

Here the zb variables refer to thresholds in the standard normal distribution such that P[Z <
zb] = b; μ is the log-Jacobian mean over the statROI and σ is its standard deviation. We have
implemented this formula slightly differently, however, following recommendations of
Holland et al. [31] to use change differences between the target group and normal subjects,
rather than total mean change in a group. The concept is that of measuring reduction in
potentially treatable effects, i.e., effects due to pathology beyond those of normal aging.
Thus, for the AD group as an example, our μ is the log-Jacobian mean of that group minus
the corresponding mean of the normal group over the statROI for a given method. These are
termed age corrected rates by Holland et al. [31].

5) Bias Toward Nonzero Intercept for Change in Multiple Time Points—
Thompson and Holland pointed out [17] that algorithmic bias can exist in which change
appears proportionally higher over a smaller time interval than over a larger interval that
includes it, such as baseline to six months as compared with baseline to one year. This
manifests as a nonzero intercept for a line fitted to change estimates over two or more time
points. Inverse-consistency largely corrects this bias, as reported in [14]. We tested G-KL
and KL by computing change over statROIs for each method in populations of AD, MCI
and Normals at six, 12, and 24 months, comparing the sizes of their nonzero intercepts to
those reported for the inverse-consistent methods in [14].

6) Correlation of Change With Cognitive or Clinical Data—We examined voxel
level and statistical ROI correlations with clinical data as a heuristic assessment of the
biological relevance for our method. We performed voxel-based regressions of log-
Jacobians with cognitive data (MMSE one-year change) and clinical biomarkers (CSF beta-
amyloid). At each voxel we set up a regression model involving the log-Jacobian values for
subjects in a group and their corresponding clinical data. We measured the significance of
the associations using permutation tests as described above. In addition, we analyzed
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associations for the mean Jacobian of each method statROI on a variety of clinical tests
including longitudinal differences in cognitive performance.

7) Diagnostic Group Difference Testing—A final statistical test measured the ability
of log-Jacobians to distinguish clinical diagnostic groups. For a given method we compute
the t-value of log-Jacobian difference at each voxel for two clinical groups (for example AD
minus CN). We use permutation tests to evaluate the null hypothesis of no difference by
randomly varying the assignments to the two groups. We also assessed the ability of each
method to detect group differences using average Jacobians from their respective statROIs.
Differences in the methods were further assessed by their ability to discriminate MCI
subjects who converted to dementia from nonconverters.

IV. Results
In this section, we present the results of several experiments testing the properties of G-KL
in comparison to KL. The value of λ= 4 used in both G-KL and KL was determined
heuristically by looking at the quality of image detail in no-change and change images (Fig.
2(b) and Fig. 3). Higher values of λ suppress noise better in the no-change images, but also
reduce sensitivity and localization in the change images. We determined that this value was
a reasonable compromise for both methods.

Experimental results can be summarized as follows: A) synthetic image changes; B) bias
and noise evaluation in no-change images; C) estimates of change in 20 one-year AD
images, including generation of statROIs for each method; D) bias analysis of nonzero
intercepts from trajectories of change over three time points; E) minimum sample size
computations (power analysis) for each method; F) validation of reported change in the full
ADNI data set of 106 normal, 93 MCI, and 86 AD subjects, by comparison of each method
with applicable results in the literature.

A. Synthetic Image Changes
Fig. 1 illustrates our experiment with synthetic longitudinal images. Fig. 1(a) shows the
image pair including a profile of “loss” at “time 2.” Fig. 1(b) shows the log-Jacobians of G-
KL compared with those using KL. Fig. 1(c) provides a log-Jacobian intensity cross section
for each method, graphing the relative sensitivities to longitudinal change. These figures
illustrate the greater localization of change inherent in G-KL. Table I gives log-Jacobian
estimates of tissue change for these synthetic images compared to the ground truth values.
The G-KL method captures almost all the actual change in the “cortical gray” layer as
compared to KL, which records about half the change. G-KL also more accurately estimates
the zero change in white matter, while overstating the zero change in CSF by about 0.1%.

Fig. 1 and Table III illustrate the interaction of the RKL and boundary information terms.
The RKL term alone (KL method, Fig. 1(b), right panel) smoothes the Jacobian images and
spreads out estimated change, even across tissue boundaries as seen in the consistent green
colorization over the image. This indicates diffuse contraction throughout the image, not
only over the gray layer where the actual atrophy occurs. And it leads to an overestimate of
losses in the neighboring white matter. In contrast, the boundary information interacting
with RKL (G-KL, left panel) retains smoothness within tissue layers but prevents contraction
from crossing tissue boundaries, as evidenced by the blue-green coloration restricted to the
outer gray only. Localized areas of large change in the gyral “fingers” are more faithfully
rendered by G-KL while the overall estimate of gray matter loss (Table I) is very close to
ground truth. White matter change (which should be zero) is also more accurately captured
by G-KL because contraction from the gray atrophy has not “bled” across into the white.
There is, however, a small price to pay using the G-KL approach. By containing the
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smoothed change within tissue boundaries, the boundary information induces a sign change
across tissues in which no actual change occurred. In the current example, this produces less
of an error in the white matter than the residual smoothness from the KL method, but it
contributes to a slightly worse estimate in the central CSF.

B. Assessments of Bias in G-KL Compared to KL on No-Change Images
Fig. 2 summarizes voxel patterns of KL and G-KL for the twelve subjects in the no-change
dataset. Fig. 2(a) shows histograms of log-Jacobian values over the average Jacobian images
for KL, G-KL and also, for comparison, fluid flow having no penalty correction (NF). The
histogram of NF is left-skewed while those for KL and G-KL are more symmetric, with
peaks close to zero. The leftward skew of NF results from the non-negativity of the
Kullback–Liebler divergence metric (KLDiv). As shown in [3], the integral of the log-
Jacobian is the negative Kullback–Liebler divergence [15] between the probability density
functions of the identity distribution and the Jacobian field of the deformation, and hence is
nonpositive

(22)

Here, the nonpositive inequality on the right follows from Gibbs’ Inequality, which has a
corollary that KLDiv(pdfid, pdfj) = 0 if and only if J(x) = 1 at all voxels [15]. This implies
that any uncorrected nonconstant Jacobian field will necessarily be negatively skewed. The
RKL penalty term is designed to correct this skew [3], [5]. The zero peaks for both KL and
G-KL in Fig. 2(a) suggest that the correction is effective and is not weakened by the
presence of boundary terms in G-KL. Thus G-KL and KL are equally free from the bias
expressed by (22).

Regarding noise suppression, the histogram for G-KL is slightly wider than KL, for values
above about 0.01. The images of log-Jacobians in Fig. 2(b) show the occurrence of higher
edge values in G-KL, principally at ventricle boundaries. Magnitudes there are 0.01–0.02.
Similarly, higher negative values occur in the ventricles in reaction to the higher expansions
at the edges. These each account for the slightly wider right and left tails of the G-KL
histogram. In sum, the histograms of KL and G-KL are similar, though G-KL has a slightly
wider distribution. Both are considerably narrower than the histogram of the uncorrected
TBM, suggesting that G-KL achieves almost as much noise reduction as KL on this dataset.

From Fig. 2(a) and (b) we conclude that on no-change images G-KL and KL have
comparable lack of bias as in (24) and comparable reduction of Jacobian magnitudes except
near edges and inside ventricles. We address the source of these differences and possible
future solutions in the discussion section.

C. Estimates of Change in 20 One-Year AD Images. Creation of StatROIs
Fig. 3 shows patterns of log-Jacobian change in the 20 one-year AD subjects. Both methods
show extensive cortical and subcortical loss throughout the brain, but G-KL identifies more
localized change visible in the splenium, cingulate, and temporal-parietal cortices.

Fig. 4 shows the statROIs constructed as described previously for G-KL and KL. Comparing
Figs. 3 and 4, we see that the patterns of heightened cortical and subcortical atrophy in G-
KL (Fig. 3) are reflected in the extended areas within the statROIs of G-KL as compared to
KL (Fig. 4). These include higher and more extensive Jacobian values in the retrosplenial
area, thalamus, basal ganglia and striatum, genu and anterior cingulate, and frontal cortex.
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The results from sections A, B, and Fig. 3 of C suggest that G-KL has increased sensitivity
to localized changes while losing only a small amount of specificity, mainly within and at
the edges of the ventricles in the no-change images. Because of these results suggesting
greater localization for G-KL, it may seem paradoxical that its statROI is more extensive
(less localized) than that of KL (Fig. 4). In cortical areas or ventricle edges having tissue
boundaries (gray-CSF or gray-white) the statistically significant changes of G-KL are due to
stronger log-Jacobian values. We have seen in section A that change values are spread
throughout homogeneous areas of the synthetic image by the penalty term, but do not cross
strong tissue boundaries. In the brain the periventricular regions are relatively homogeneous
and experience this spreading effect. These account for most of the greater extent in the G-
KL statROI.

D. Bias Analysis of Nonzero Intercepts From Trajectories of Change Over Three Time
Points

Fig. 5 shows log-Jacobian fields of a single AD subject for each method, over intervals of
six, 12, and 24 months. This illustrates the relative ability of each method to record localized
changes and increasing atrophy over longer intervals. G-KL displays enhanced ability to
depict atrophy in small structures such as temporal and cingulate gyri as well as more
broadly in the thalamus. Fig. 6 shows trajectories of change over periods of baseline to six,
12, and 24 months, derived from mean change estimates at each time point in populations of
50 AD, 38 MCI, and 37 normals. Jacobians were averaged over the statROI of each method
intersected with the temporal lobe, following the method reported by Hua et al. [14].

Trend lines were regressed against the three change values. Fitted lines all have small
nonzero intercept values (in the range of 0.1%–0.3%) that are almost identical in each
diagnostic group across the methods. The range of these intercepts coincides with that
reported in Fig. 5 of Hua et al. [14] and is considerably lower than the corresponding
intercepts for noninverse-consistent TBM as reported in [14] and [17]. The trajectories of G-
KL have slopes that are consistently higher than their counterparts in KL, but corresponding
intercepts are still almost the same in both methods. This suggests that the presence of
boundary information in G-KL does not introduce new bias in reporting longitudinal
differences.

E. Minimum Sample Size Computations (Power Analysis) for Each Method
Table IV gives n80 minimum sample calculations using (21) for MCI and AD groups by
each method over its statROI for six, 12, and 24 month time intervals. Mean changes
inserted into (21) are the difference values or age corrected rates described by Holland et al.
[31], i.e., mean AD or MCI minus mean normal changes. For each time interval and group,
the smaller sample size of the two methods is printed in boldface. We see that G-KL has
smaller sample sizes for all times except MCI at 12 months. G-KL shows a marked decrease
compared to KL for AD at six months and smaller decreases for AD at 12 and 24 months.
Sample sizes for both methods are also comparable or smaller than age corrected sample
sizes reported in Holland et al. [31] (Tables II and III).

F. Validation of Reported Change in Full ADNI Data Set
This section reports outcomes from exploring whether G-KL has increased power for
detecting biological results in the full ADNI validation dataset. These experiments are
summarized as follows: 1) comparison of change estimates for G-KL and KL with prior
published longitudinal results; 2) voxel-based differences of each method between clinical
diagnostic groups; 3) differences between clinical groups in the statROIs; 4) voxel-based
regressions of log-Jacobians against clinical data.
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Demographics of the subjects in the validation group are summarized in Table 2(b). In
general, our subset of subjects was similar to published baseline data for the entire ADNI
dataset. The age of the MCI group was slightly lower than the CN and AD subjects whereas
the AD subjects had substantially less educational achievement. The percentage of ApoE4
genotype carriers in our CN and AD groups were, however, slightly higher than the entire
cohort.

1) Comparison of Change Estimates With Prior Results—We computed
volumetric change factors for KL and G-KL over a set of brain ROIs representing
anatomical structures for which previous longitudinal change values are available. Results
are displayed in Table V along with comparable results from other previously published
studies. Our goal was to evaluate whether KL and G-KL appear to compute “reasonable”
levels of change by reference to what has already been reported.

Selected ROIs included cerebral gray and white masks, corpus callosum, thalamus, striatum
(gray tissue) consisting of caudate, putamen and globus pallidus, lateral ventricles, frontal
and temporal lobar regions and cerebellum gray and white masks. For each ROI we obtained
the average change over the 106 normal subjects in the validation group. These percentage
changes appear in the left-most columns of Table V. We gathered comparable data from
other studies. Two studies [32], [33] examined changes in healthy normal subjects using
hand-drawn ROIs on native subjects to measure volumes at different times. Three others
[34]-[36] also used normal subjects but the ROIs were generated by automatic labeling
techniques: the first from the Center for Morphometric Analysis [37], the second by atlas-
based template matching, and the third using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu). Details of the time intervals and number of subjects for these
studies are given in the caption of Table V.

The results show that the volume change percentages for G-KL are consistently larger than
those of KL and also appear to be in the same range as many of those from the automatic
labeling studies. For lateral ventricles the G-KL value is within 10% of Walhovd et al. [35].
In cerebral and cerebellar gray and white, G-KL is within 10%–20% of the corresponding
values in an earlier study [34]. KL is within 10% of cerebellar gray measured by [35].
Frontal and temporal lobar values are larger in G-KL than in KL. The G-KL temporal
volume change is within 20% of that in the atlas-based study [36].

In summary, Table V shows that results from G-KL are similar to previously reported
findings for change in ventricular CSF, temporal lobe, cerebral gray matter and cerebellar
gray and white matter. For each of these regions, G-KL estimates of change were within
20% of previously published values. Conversely, KL meets similar approximation only for
change in cerebellar gray matter (Table V, boldfaced values). The table also indicates that
both methods tend to under-report changes in subcortical brain structures compared to
previous automated or hand-traced measurements, though in these regions G-KL
consistently shows greater similarity to the other methods than does KL.

2) Clinical Group Differences in the Validation Dataset—Fig. 7(a) shows average
changes over each group by method. Little difference is visible between G-KL (top row) and
KL (bottom) for CN (right column) but in MCI and AD, G-KL shows increasingly larger
loss estimates in temporal and cingulate regions. Fig. 7(b) depicts contiguous clusters of
cortical loss exceeding 1% in AD subjects. Clusters are significant (p < 0.05 for size,
corrected by permutation analysis [28]). G-KL (left panel) shows more extensive patterns
including parietal loss not recorded in KL.

Fletcher et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 7(c)-(d) shows group difference analyses for KL and G-KL. We generated voxel t-
values for the mean log-Jacobian differences between pairs of groups: AD-CN, AD-MCI
(not shown), and MCI-CN. We analyzed these t-images for voxel-wise significance
(correcting for multiple comparisons using 10 000 permutations).

Fig. 7(c) shows voxel level results for the AD-CN comparison and 7(d) shows results from
the MCI-CN comparison. All colored voxels are significant to p < 0.05 (corrected) for voxel
t-value. No significant voxel differences were found for AD-MCI.

For the AD-CN comparison, each method shows extensive regions of greater brain tissue
loss and CSF space expansion in AD. The G-KL method, however, depicts more extensive
and more significant p-values in the striatal and retrosplenial areas. The G-KL also identifies
significant differences in the anterior cingulate, not seen with the KL method. For the MCI-
CN comparison the G-KL voxel images show greater localized splenium and retrosplenial
differences.

3) Clinical Group Differences in the StatROIs—Fig. 8(a) summarizes the results of
diagnostic group analyses by method (G-KL versus KL) showing mean log-Jacobian over
the statROI for each method. Using repeated measures MANOVA, there was a significant
main effect of clinical group (p < 0.0003) indicating significant differences in volume
change according to baseline clinical diagnosis, a significant effect of method (p < 0.0001)
indicating that the G-KL method measured greater rates of change on average as compared
to the KL method, and a significant interaction of group × method (p < 0.0003) indicating
that the differences in method varied by group. Differences in Jacobian estimates between
methods varied substantially according to diagnostic category. For example, mean Jacobian
difference (G-KL versus KL) was only 5% for cognitively normal individuals, but 9% and
11% for MCI and AD subjects respectively indicating that sensitivity to change increased
with degree of expected difference.

Recognizing that MCI is a clinically heterogeneous group [38], we performed further
analysis to assess group differences in rate of statROI change comparing those who
converted to dementia to those who did not over 24 months. Of the 88 MCI subjects
included in this study, 38 (43%) converted to dementia over the 24-month period of the
ADNI study with an average time of conversion of 19.8 months. Fig. 8(b) summarizes the
results of mean Jacobian differences at one year comparing converters to nonconverters for
both methods. Using repeated measures MANOVA, there was a significant main effect of
conversion status (p < 0.013), a significant effect of method (p < 0.0001) and a significant
interaction of conversion status × method (p = 0.015) indicating that converters had
significantly greater Jacobian differences in the G-KL method but not with KL. Direct
comparison by method also showed that mean Jacobian values in the statROI for converters
were significantly different (p = 0.0004) by method type, but a similar comparison of
methods for nonconverters was not statistically significant.

4) Regressions of Log-Jacobians Versus Clinical Data—We conducted two sets of
regressions for each TBM method. One regression model included one-year change in
MMSE as the outcome variable with voxel-wise log-Jacobian as the predictor variable. This
regression had 271 subjects. The other regression model examined the outcome of CSF beta-
amyloid as predicted by voxel-wise log-Jacobian. This regression had 159 subjects.

a) MMSE One-Year Change Versus Log-Jacobian: Voxel-wise significance results for
the MMSE change regressions are shown in Fig. 9. Both algorithms show extensive areas of
association between brain tissue loss, ventricle expansion and change in MMSE (all p <
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0.05, corrected for voxel-wise multiple comparisons). However, G-KL identified significant
associations in anterior cingulate and striatal/putamen regions, not detected by KL.

b) CSF Beta-Amyloid Versus Log-Jacobian Values: The associations between CSF beta-
amyloid and log-Jacobians, shown in Fig. 10, were modest. No significant voxels existed
after correction for multiple comparisons; therefore Fig. 10 shows cluster analyses. Both
methods show significant clusters (p < 0.05 by cluster size, corrected) posteriorly of
relatively weak association (t-thresholds at −3 and −4) between CSF beta-amyloid and brain
tissue loss. The principal difference is that G-KL shows stronger associations in the medial
retrosplenial area as illustrated in Fig. 10. Both methods also show significant associations
of ventricular expansion with lower CSF levels of beta-amyloid.

5) Clinical Correlations With StatROIs—Table VI summarizes age, education, and
gender adjusted associations between cognitive and CSF measures. In general, both methods
were highly associated with these various measures.

V. Discussion
We have described a new inverse-consistent method of brain change detection that combines
TBM methods for computing spatially-smooth and specific deformation fields [5] with edge
information akin to the boundary mask concept [2] for localizing change to region
boundaries.

We hypothesized that this approach would improve the inevitable tradeoff between
smoothness and localization. We tested this hypothesis in a pair of synthetic “serial” images
for which simulated atrophy of the cortical gray layer was known. Results showed that G-
KL had superior sensitivity, localization and specificity when compared to KL. We then
compared G-KL and KL on test-retest “no-change” brain images and on images where real
change is expected. A perfect algorithm should report zero log-Jacobians on the no-change
images, while being sensitive to even small longitudinal differences in images expected to
change. We found that the no-change image histograms of G-KL and KL are both narrow
and also free of the bias in the Kullback–Liebler divergence inequality (22). We also found
that G-KL shows increased sensitivity to change in one-year AD subjects (Fig. 3) by
comparison with KL. We next confirmed that there is low bias for both methods in
trajectories of cumulative atrophy over six, 12, and 24 month scans. G-KL and KL have
comparably low nonzero intercepts for trend lines fitted to these trajectories, and these
intercepts are also in the range of previously reported inverse-consistent methods [14]. We
also conducted power analyses for log-Jacobian change in each method over groups of MCI
and AD subjects, using age-corrected rates of change. G-KL had smaller minimum sample
size estimates in all but one case.

These results suggest that adding boundary terms has caused only a slight degradation of
performance for G-KL in no-change images while improving its performance in images
where change is expected. Nevertheless, comment is required for the better noise
suppression of KL at the ventricle edges in the no-change images. This is a direct
consequence of attenuating the RKL penalty term in G-KL at tissue edges. Results from the
validation dataset suggest that this may not be a serious issue in images of real change. For
example, G-KL shows increased ability to distinguish clinical diagnostic groups, including
more subtle expected differences in rates of change for MCI subjects converting to dementia
versus those who do not over a two-year interval [Fig. 8(a) and (b)]. As another example, G-
KL’s computed rates of volume change over selected brain ROIs are in accord with
published results from automated brain segmentation techniques (Table V). The
corresponding change rates for KL are consistently lower than G-KL and do not agree as
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closely with published values. For the ventricles in particular, G-KL’s rates of expansion are
in excellent agreement with previously published values, suggesting that edge-based error
seen in no-change images has not resulted in over-reporting of real change. These
comparisons also indirectly validate the statROI of G-KL. Regions such as the striatum and
thalamus fall within the G-KL statROI but not that of KL. And estimated change in these
regions is larger for G-KL, therefore closer to published estimates.

The issue of noise at tissue boundaries is important and requires further discussion. By using
intensity gradient vector fields as the basis of mismatch force vectors [(12) and (15)], TBM
is susceptible to errors at edges where these vectors are large. Interpolation during
preprocessing—before TBM is applied—creates intensity discrepancies between
longitudinal images, even for same-day scans. This introduces differences at corresponding
edges even though no biological change is present. Such differences could possibly be
reduced by modifications in our preprocessing pipeline to eliminate asymmetry inherent
when one image is aligned onto the other [39]. In any case, future research should be aimed
at quantifying likely residual edge-centered errors, so that models might be developed to
discount these without also diminishing mismatch forces from differences representing
actual brain changes.

In conclusion, our findings suggest that G-KL has benefited from the positive features of
both bias-correction and boundary localization while mitigating their limitations. The
Kullback–Liebler penalty by itself creates a smooth Jacobian field with reduced sensitivity
and localization at edges. The boundary shift approach requires careful user-delineated brain
masks in order to correctly locate edges and computes brain volume change only within the
edge masks. G-KL, combining these approaches, is by contrast completely automatic and
regains edge sensitivity without loss of much specificity.

Our derivation has indicated how a family of energy functionals may be constructed by
incorporating prior image information. The functional G-CC in the G-KL method is one
example. Future research will explore how functionals such as this—using improved edge
detection or other information together with models of spurious change—may restore even
more sensitivity without losing specificity.
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Fig. 1.
(a) Synthetic “longitudinal” image pair in which the second “time point” has cortical atrophy
of about 3%. Both synthetic images have additive Gaussian noise with magnitude 4.67% of
underlying white matter intensity. The right panel shows the extent of “atrophy.” (b)
Comparison of log-Jacobian fields computed by KL (right panel)—incorporating the RKL
penalty term, against our proposed method G-KL (left panel) incorporating RKL plus prior
boundary information. Log-Jacobian values are displayed in translucent color allowing
underlying tissue structure to be visible. Same color scales apply to both images.
Contractions (“atrophy”) are in cool colors (left color bar) and expansions in warm (right
color bar). Jacobian values outside the image have been suppressed. Left panel: G-KL.
Right: KL. (c) Cross section of log-Jacobian values along the horizontal line drawn in Fig.
1(b). Intensities for G-KL are in blue, those for KL in red. G-KL shows increased boundary
discrimination and increased sensitivity to change over small structures.
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Fig. 2.
(a) Intensity PDF for log-Jacobians corresponding G-KL (blue), KL (red), and TBM (“NF”
or no filter) having no penalty corrections (orange). G-KL and KL are symmetric about y-
axis with G-KL showing slightly greater variance than KL. NF is very wide and asymmetric
to the left, demonstrating the inherent bias in the uncorrected log-Jacobians as explained in
the text. (b) Average log-Jacobian values for each method displayed in cool colors for
contractions and warm colors for expansions. Most values are low in magnitude (in the
range of 0.001–0.005 magnitude; 0.1%–0.5% change), but are higher at the edges for G-KL
as would be expected through reduction of RKL penalty at tissue boundaries. Left panel: G-
KL. Right: KL.
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Fig. 3.
Average log-Jacobian values over 20 one-year AD “change” images. This figure shows that
increased magnitude of brain change as evidenced by higher Jacobian values, particularly in
the posterior temporal lobes, genu, splenium, as well as broader lower-level changes in
subcortically. Left panel: G-KL. Right: KL.
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Fig. 4.
StatROIs for G-KL (left panel) and KL (right). Yellow areas show voxels with t-value p <
0.001 (uncorrected). These ROIs differ mainly with G-KL showing more extensive areas of
significant change in the striatum and subcortical nuclei.
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Fig. 5.
Single-subject log-Jacobian image of an AD subject over (left to right) 6, 12, and 24 months
scan intervals, showing patterns of increasing atrophy. This figure illustrates enhanced
ability of G-KL to capture greater differences in regions expected to change with the
disease. Top row: G-KL. Bottom row: KL.
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Fig. 6.
Change trajectories for each method, computed for three time intervals, averaged over 50
AD, 38 MCI, and 37 normals. Slope and intercept values of fitted trend lines are also
displayed. Intercepts of fitted lines of the two methods are similar. Range of intercepts for
both methods, from 0.15% to 0.28%, is also similar to the range of intercepts for statROIs
reported by Hua et al., [14]. Top panel: G-KL. Bottom: KL.
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Fig. 7.
(a) Average patterns of change recorded by method for each diagnostic group, for 65 AD
(left panels), 93 MCI (middle), and 106 CN subjects (right). Upper row: G-KL. Lower row:
KL. (b) 3-D display of significant cortical atrophy by method over AD group of 65 subjects.
Clusters aresignificant by size (p < 0.05, corrected) for log-Jacobian values less than −0.01.
Left panel: G-KL. Right: KL. (c) Voxel locations of significant difference between AD and
CN. Significant voxel differences (p < 0.05, corrected) for clinical diagnostic groups by
method. Warm colors denote positive differences (greater expansion of group 1 compared to
group 2); cold colors denote significant contractions. AD or MCI has significantly greater
brain loss than CN, signified by cold colors, and greater CSF expansion, signified by warm
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colors. There were no significant voxel-based differences between AD and MCI. Left panel:
G-KL. Right: KL. (d) Voxel locations of significant difference between MCI and CN. Same
color scales as Fig. 7(c). Left panel: G-KL. Right: KL.
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Fig. 8.
(a) Mean Jacobian differences according to baseline clinical diagnosis. Using MANOVA,
there was a significant main effect of diagnosis and method as well as a significant method
by diagnosis interaction (see text for details). Paired t-tests identified significant differences
between methods for each diagnostic category. The magnitude of the between-method
differences increases with increasing cognitive severity (Normal = 5%, MCI =9% and AD=
11%). (b) Mean Jacobian differences according to conversion status (MCI to AD) among 88
MCI subjects during 24 months of the ADNI study. There was no significant difference by
method for Jacobian rate of change measures among the nonconverters. Method related
differences, however, were highly significant (p = 0.0004) among those converting to
dementia within 24 months.
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Fig. 9.
Voxelwise significance images of correlation between one year change in MMSE versus
log-Jacobian values. Cool colors (magenta, blue) indicate significant associations (p < 0.05,
corrected) between brain atrophy and MMSE. Warm colors (yellows) indicate significant
associations (p < 0.001, corrected) of CSF expansion and MMSE. Left panel: G-KL. Right:
KL.
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Fig. 10.
Voxelwise cluster significance images for the association between baseline CSF A-β and
log-Jacobian values by method. Individual clusters at thresholds of t = −3 (light blue), t = −4
(dark blue), and t = +4 (orange) are displayed. All clusters are significant to p < 0.05
(corrected). Cool colors indicate association of brain loss with levels of CSF A-β . Warm
indicates association of CSF expansion versus CSF A-β . Left panel: G-KL. Right: KL.
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TABLE I

Summary of Force Adjustments for Various Methods

Method Description Mismatch Force Penalty Force

NF No corrections F1, =
∂uCC(T1,T2,u)

0

KL Kullback-Leibler
penalty

F1, =
∂uCC(T1,T2,u)

F2 = ∂u RKL(u)

G-KL Gradient
correction to both
F1, and KL penalty

GF1 =
∂uG-CC(T1,T2,u)

GF2 = ∂uG-RKL =
(l-GradCDF)F2
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TABLE II

(a)Demographic Characteristics of the Development Group “Change”Subjects. All Are AD Subjects With
Two Scan Dates One Year Apart, (b) Demographic Characteristics of the Validation Group Subjects

AD

No (F/M) 20(8/12)

Age, y 78.2 ± 6.0

Educ 14.3 ± 2.6

MMSE 21.3 ± 4.4

CN MCI AD

No (F/M) 106 (52/54) 93 (34/59) 65 (31/34)

Age, y 75.7 ± 5.4 73.4 ± 7.2 75.8 ± 7.6

Educ 15.8 ± 2.7 15.6 ± 3.1 14.9 ± 3.2

ApoE4% 32 51 74

MMSE 29.2 ±0.8 27.0 ± 1.7 23.2 ± 1.8

ADAS-
Cog

5.8 ± 2.9 11.3 ± 4.9 18.4 ± 5.6
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TABLE III

Ground Truth Tissue Change Values for Synthetic Images Compared to G-KL and KL Estimates. For Each
Tissue, the Most Accurate Jacobian Estimates of Actual Change Are in Bold

Method CSF (%
change)

Gray (%
change)

White (%
change)

Ground Truth 0 −12.52 0

G-KL −1.06 −10.79 +0.19

KL −0.19 −6.88 −0.34
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TABLE IV

Minimum Size Calculations (Rounded to Nearest Integer) by Method and Diagnostic Group, Using StatROI
for Each Method. Group Sizes: MCI (N = 48), AD (N = 61). At Each Time Point and Group, the Smaller of
the Minimum Sample Estimates Is in Bold

Method MCI 6
Months

MCI 12
Months

MCI 24
Months

AD 6 AD
12

AD
24

G-KL 1900 551 279 285 135 104

KL 1959 433 286 356 151 110
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TABLE V

ROI Change Values for Normal Subjects (% Change Yearly) for KL and G-KL, Compared to Previously
Published Results. Values in First Two Columns Are Derived From Jacobian Values Computed by KL and G-
KL. For the Columns Showing Previous Studies, Percent Changes Given Over Period of N Years in the Study
Are Converted to Annual Changes by the 1/N Root of the Changes Described in That Study. Boldface Results
in the Columns of KL and G-KL Indicate Matches Within 20% of a Previously Published Value

KL G-KL Walhovd 2011
1

Walhovd 2005
2

Raz 2010
3

Raz 2005
4

Gonoi 2009
5

Lat Vent +1.28 +1.86 +1.92 +2.20 -- -- --

CC −0.03 −0.13 -- -- −0.46 --

Striatum
Gray

0.00 −0.04 −0.38 −0.25 −0.42 −0.79 --

Thalamus −0.11 −0.16 −0.40 −0.38 -- -- --

Frontal
G+W

−0.16 −0.24 -- -- -- -- −0.42

Templ
G+W

−0.21 −0.29 -- -- -- -- −0.36

Cerebrum
Gray

−0.24 −0.35 −0.45 −0.42 -- -- --

Cerebrum
White

−0.15 −0.21 −0.35 −0.27 -- -- --

Cerebellum
Gray

−0.29 −0.37 −0.31 −0.38 -- -- --

Cerebellum
White

−0.25 −0.40 −0.34 −0.36 −0.72 −0.66 --

Notes on individual studies:

1
Values computed from [35] Table 3 giving mean volumes of structures by decade of age. Calculated annualized change from first decade to last,

using N = 62 years.

2
Values computed from [34] Table 6 that gives adjusted ICV (intra-cranial volume) percent changes from age 20 to 90, N = 70 years.

3
Values computed from [33] Table 3 showing longitudinal change (N = 1.25 years) for mean volumes adjusted by ICV. Change is for δ12 only.

4
Values computed from [32] Table 1 that gave mean volumes at two intervals (N = 5 years).

5
Values computed from Gonoi et al. [36] using estimated volumes from their Fig. 2 regression plots by gender, right and left side, annualized using

N = 55 years, then averaged for an overall value.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fletcher et al. Page 36

TABLE VI

Comparison of Statistical ROI Relations for G-KL Versus KL Methods, Adjusting for Age, Gender, and
Education. For Cognitive Measures, the StatROI Was An Independent Variable, Whereas for the CSF
Measures, StatROI Was the Dependent Variable

Method Variable Beta ± se T-statistic p-value

G-KL MMSE −348 ± 42 −8.3 <0.0001

ADAS-Cog 637 ± 95 6.7 <0.0001

CDR-sum of
boxes

150 ± 21 7.0 <0.0001

Trails B 5343 ± 983 5.4 <0.0001

Delayed Story −206 ± 75 −2.7 0.0070

CSF ABeta −2.5×10−5 ±
4.0×10−6

−6.3 <0.0001

CSF Tau 1.2×10−5 ±
5.1×10−6

2.3 0.019

CSF
Tau/ABeta

0.002 ±
0.0005

3.8 0.0002

KL MMSE −463 ± 55 −8.4 <0.0001

ADAS-Cog 876 ± 123 7.1 <0.0001

CDR-sum of
boxes

195 ± 28 7.0 <0.0001

Trails B 6938 ±
1271

5.5 <0.0001

Delayed Story −267 ± 99 −2.7 0.008

CSF ABeta −2.0×10−5 ±
3.0×10−6

−6.7 <0.0001

CSF Tau 8.2×10−6 ±
3.9×10−6

2.1 <0.04

CSF
Tau/ABeta

0.0015 ±
0.0004

3.7 0.0002
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