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Abstract
Robust anatomical correspondence detection is a key step in many medical image applications
such as image registration and motion correction. In the computer vision field, graph matching
techniques have emerged as a powerful approach for correspondence detection. By considering
potential correspondences as graph nodes, graph edges can be used to measure the pairwise
agreement between possible correspondences. In this paper, we present a novel, hierarchical graph
matching method with sparsity constraint to further augment the power of conventional graph
matching methods in establishing anatomical correspondences, especially for the cases of large
inter-subject variations in medical applications. Specifically, we first propose to measure the
pairwise agreement between potential correspondences along a sequence of intensity profiles
which reduces the ambiguity in correspondence matching. We next introduce the concept of
sparsity on the fuzziness of correspondences to suppress the distraction from misleading matches,
which is very important for achieving the accurate, one-to-one correspondences. Finally, we
integrate our graph matching method into a hierarchical correspondence matching framework,
where we use multiple models to deal with the large inter-subject anatomical variations and
gradually refine the correspondence matching results between the tentatively deformed model
images and the underlying subject image. Evaluations on both synthetic data and public hand X-
ray images indicate that the proposed hierarchical sparse graph matching method yields the best
correspondence matching performance in terms of both accuracy and robustness when compared
with several conventional graph matching methods.
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I. Introduction
Robust anatomical correspondence detection is very important in many medical image
applications, such as deformable image registration [1] and organ motion correction [2].
Although many successful local image descriptors have been proposed in the last decades,
correspondence detection still remains a major challenge in subjects with large anatomical
differences.

Recently, graph matching has emerged as a robust correspondence detection approach by
modeling not only the point-to-point correspondence [3]–[5], but also the pair-to-pair
matching consistency in a graph [6]–[8]. Specifically, each possible correspondence is
considered as a node in the graph, and the pairwise agreement between any two possible
correspondences is described as a link in the graph. An affinity matrix is specially used to
encode the matching graph, with the diagonal elements representing the graph nodes (for all
possible correspondences) and the off-diagonal elements denoting the graph links (for all
inter-pair agreements). Then, the problem of correspondence matching becomes an
optimization problem, i.e., finding the cohort of one-to-one correspondences that produces
the maximal pairwise agreements in the affinity matrix. Spectral matching [6] and quadratic
programming [9] are the typical solutions to this optimization problem as reported in the
literature. Graph matching based methods have also been successfully applied to the medical
images [10]–[12]. For example, Im et al. [10] proposed a quantitative method for
automatically comparing and analyzing sulcal patterns between individuals by using a graph
matching approach. Recently, graph matching technique has also been applied to lung/liver
CT images for tree pruning and clique augmentation [11]. Applications to fluorescence
microscopy can also be found in [12], where graph matching was used to segment and track
cells for quantitative analysis of cell cycle behavior.

In general, the success of graph matching relies on two aspects. The first is the robust
measurement of matching degree and inter-pair agreement, which is unfortunately still an
open problem in the correspondence detection. Although many state-of-the-art image
features [13], [14] have been proposed to establish correspondence between one point in the
model image and another point in the subject image, only the simple geometric relationship
is generally used to measure the matching coherence between two possible correspondences
in the current graph matching methods. This is also the case in some learning-based methods
[15], [16]. The second important aspect in graph matching is the optimization of one-to-one
correspondence from the possible multiple-correspondence affinity matrices. A greedy
solution is often used in the spectral matching methods by sequentially determining the one-
to-one correspondence according to the order of matching confidence obtained from the
eigenvector of affinity matrix with the largest eigenvalue. Although the relaxation from one-
to-many to one-to-one constraint has been incorporated in [7], the solution is usually
suboptimal due to the lack of discriminative power in measuring each possible
correspondence.

To further improve the matching performance of the graph matching approach for medical
images, we present a novel, hierarchical graph matching method with sparsity constraint to
augment the power of conventional graph matching methods in establishing anatomical
correspondences, especially in the case of large inter-subject variations in medical images.
Our contributions are threefold. First, we propose a robust appearance measurement to
characterize the pairwise agreement on each graph link. Specifically, for any two possible
matches (with two starting points in the model image and two ending points in the subject
image), a sequence of local intensity profiles (referred to as line patches) along the line
connecting the two starting points in the model image, or the two ending points in the
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subject image, is constructed. The appearance discrepancy between these two line patches is
computed to measure the pairwise agreement between these two possible matches. By
adding this novel measurement, our method becomes more robust to ambiguous matches
than conventional graph matching methods, which generally use only simple geometric
compatibility. Second, inspired by the discriminative power of sparse representation in
machine learning and pattern recognition [17], [18], we apply a sparsity constraint on the
possibilities of multiple correspondences, i.e., to seek only a small number of qualified
correspondence candidates for each feature point. This reduces the risk of obtaining
ambiguous matches, especially for determining one-to-one correspondences in the end of
correspondence matching procedure. Based on these two novel improvements, we construct
a new objective function and derive an efficient solution via quadratic programming to
jointly estimate correspondence for all feature points. Finally, we integrate the proposed
sparse graph matching method into a hierarchical multi-model based matching framework to
deal with cases with large inter-subject variations. Importantly, multiple models encompass
the anatomical variability, thus alleviating the difficulty of using a single model image to
find the corresponding structure yet with large shape difference in the subject image. In
order to fuse the matching results from different models into a final matching result, the
mean locations of multiple candidates are iteratively computed by excluding more and more
mismatching candidates. Since the optimization of anatomical correspondence between
model and subject images is usually very challenging, the entire matching procedure is
performed iteratively between the subject image and tentatively deformed model images
(based on the previously-established correspondences from our method).

Evaluations on both synthetic data and publicly available hand X-ray images indicate that
the proposed hierarchical sparse graph matching method (HSGM) yields the best matching
performance in terms of both accuracy and robustness, when compared with three
conventional graph matching methods: spectral matching with affine constraint (SMAC) [7],
probabilistic hyper-graph matching (h-GM) [8], and the integer projected fixed point method
initialized by spectral matching (SM + IPFP) [19]. SM + IPFP was reported to have one of
the best matching performance among conventional graph matching methods [19].

We will present our hierarchical sparse graph matching method in Section II. In Section III,
we will describe the clinical application of our proposed method such as in the hand X-ray
images. In Section IV, our proposed method will be evaluated on both simulate data and
hand X-ray images, and further compared with three other graph matching methods (SMAC,
h-GM, and SM + IPFP). A discussion on different methods and their results is provided in
Section V. Finally, we conclude in Section VI.

II. Method
Correspondence detection is usually defined as finding the correspondences between the
feature points of the model image and subject images, where the feature points can be
identified either by human expert manually or by key point detection methods automatically
[20], [21]. Considering feature point sets T = {ti|i = 1, …, N} in the model image and S =
{si′|i′ = 1, …, N′} in the subject image, our goal is to find an assignment matrix X =
[Xi,i′]N×N′ (Xi,i′ ∈ {0,1}) between these two point sets. Here, each assignment Xi,i′ indicates
whether a feature point ti in the model image is matched with a feature point si′ in the subject
image, with “1” denoting matched and “0” denoting unmatched. Since it is very difficult to
optimize X when each element in X is either “1” or “0,” we have to convexify X by relaxing
each Xi,i′ to a continuous value between 0 and 1, ≤ Xi,i′ ≤ 1. Fig. 1 schematically illustrates
the main idea behind graph matching based correspondence detection method, using hand
X-ray images as example. Given the model feature point set T [Fig. 1(a)] and the subject
feature point set S [Fig. 1(b)], all possible correspondences between T and S are indicated by
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the white lines in Fig. 1(c). An NN′ × NN′ affinity matrix M [Fig. 1(d)] can be constructed
to describe the confidence of all established correspondences, as well as the pairwise
agreement between any two possible matches. Specifically, each diagonal element [shown
with boxes in Fig. 1(d)] in the affinity matrix M represents the point-wise similarity between
two feature points ti ∈ T and si′ ∈ S. Each off-diagonal element [shown with pink triangle in
Fig. 1(d)] measures the pairwise agreement between two possible matches [with (i,i′)
indicated by the red box and (j,j′) indicated by the dark blue box in Fig. 1(d)], where we
propose to use the appearance-based line patch, along with simple geometric relationship
[7], to robustly characterize their coherence. The continuous relaxed assignment matrix X =
[Xi,i′]N×N′ (Xi,i′ ∈ [0,1]) can be optimized by finding the cluster of correspondences among
the diagonal elements of M while maximizing off-diagonal pairwise agreements. To
alleviate the potential ambiguity in determining one-to-one correspondences [Fig. 1(e)]
directly from the one-to-many assignment matrix X, the sparsity constraint is further applied
to X to suppress distraction from ambiguous matches during the correspondence detection
procedure.

A. Limitation of Conventional Graph Matching Method
In conventional graph matching methods, such as the SMAC method, the coherence
between possible matches (i,i′) and (j,j′) is measured only by the geometric distance |d(i,j) −
d(i′,j′)|/min(d(i,j), d(i′,j′)) and the angle between two matches/correspondences (i,i′) and (j,j′)
and. Here, d(·, ·) denotes the Euclidean distance between points. However, as we will show
an example in Fig. 2, geometric information alone is not sufficient to prevent the ambiguous
correspondences.

In the SMAC method, the energy function is defined to maximize the following quadratic
score function of x:

(1)

where assignment vector x is a NN′ column vector after concatenating each row of X. Each
element xm(m = 1, …, NN′) in the vector x is associated with a particular correspondence
(i,i′)in the assignment matrix X, xm = Xi,i′. Since optimization of J(x) is NP-hard, to derive
an approximate solution to this problem, each element in x is relaxed to be a continuous
value between 0 and 1. Additionally, the objective function J(x) is subject to the affine
constraint Ax = 1T (as in [3]) to enforce one-to-one correspondence. A is a (N + N′) × NN′
selection matrix applied to vector x (vectorization of XT) to ensure the sum of each column

or each row of X is equal to 1,  or . A spectral relaxation technique
can be used to maximize the energy function in (1).

Fig. 3(a) shows the optimized assignment matrix X by the SMAC method. It can be
observed that the distribution of assignment in most rows (or columns) of X is not sharp [see
an example of Xi,i′ values along the pink line shown in the top of Fig. 3(c)], indicating that it
is still very difficult to determine the one-to-one correspondence for each feature point based
on the one-to-many correspondences (each with similar likelihood). A good solution is to
keep only the large assignments while suppressing distractions from ambiguous matches. To
achieve this, we propose to: 1) use appearance-based line patches to exclude incorrect
matches when constructing the affinity matrix M and 2) further apply sparsity on the
assignment matrix X during the optimization procedure for suppressing the influence from
ambiguous matches. These strategies will be described independently below.
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B. Construction of a Robust Affinity Matrix With Similarity of Line Patches
It is clear that matching performance is largely dependent on the affinity matrix M,
especially for the off-diagonal elements which characterize the pairwise agreement between
possible correspondences (i,i′) and (j,j′). However, conventional graph matching methods
consider only the geometric coherence between (i,j) and (i′,j′). Although local image
descriptors can be used to measure the appearance similarities between feature point ti and
si′, as well as between tj and sj′, they can still fail to discriminate unreasonable matches as
shown in Fig. 2. In this example, there are two model feature points (t1 and t2) and three
subject feature points (S1′ ~ S3′). The subject feature points S1′ and S2′ (blue circles) are the
correct matches of model feature points t1 and t2 (white circles), while s3′ (blue triangle) is
an incorrect match to t2. However, neither geometric coherence nor local descriptor based
measurement is able to distinguish the incorrect correspondence (2,3′) from the correct one
(2,2′) in the affinity matrix M, which affects the optimization of assignment matrix X in (1).

To solve this problem, we define the line patch which uses a sequence of intensity profiles
along the line connecting the two feature points in the model or subject image, for
measuring inter-pair agreement, along with the geometric distance as used in the
conventional graph matching method. In Fig. 2, the image intensity profiles along the lines

, and  are displayed as blue, green, and white stripes, respectively. The
collection of intensity profiles along the underlying stripes is referred to as the line patch in
our method and is a measure of the pairwise agreement of possible matches. Specifically, we
use normalized cross correlation to measure the similarity between two line patches. As
shown in the Fig. 2(c), the pairwise agreement measured by the line patches is able to
distinguish between the correct and incorrect matches in this situation, even though the
inter-pair geometric distances are small. Here, we note that the radius of intensity profiles is
set to five pixels and we uniformly sample 60 local intensity profiles along each line patch.
Therefore, the total number of intensity values included in the line patch of our method is 11
× 60.

C. Sparse Constraint on Assignment Vector
Although the one-to-many correspondence strategy ensures detection of all possible matches
for each feature point, it also introduces many ambiguous matches, which can affect the
final one-to-one correspondences as shown in Fig. 3(a). Inspired by the discriminative
power of sparse representation, we apply the l1-norm on the assignment vector x to require
the number of nonzero elements in x to be as small as possible. Since the affine constraint
Ax = 1T in (1) specifies each feature point to have at least one correspondence, the l1-norm
regularization term on the entire vector x eventually leads to the sparsity on the possible
matches for each feature point.

The advantage of using l1-norm regularization ||x||1 is demonstrated in Fig. 3(b). Compared
with the assignment matrix obtained by SMAC without l1-norm constraint, the distribution
of assignments along each row and each column of matrix X is much sharper by our method.
It is easier to finally apply the Hungarian algorithm [22] or more advanced IPFP method
[19] to binarize X and obtain the one-to-one correspondences. In order to evaluate only the
effectiveness of including l1-norm regularization in correspondence detection, both SMAC
and our sparse graph matching methods are performed on the same affinity matrix.

D. New Energy Function for Sparse Graph Matching
By incorporating the two novel improvements as proposed above, our new energy function
for graph matching becomes
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(2)

where γ is the scalar value used to control the strength of sparsity constraint.

The first term in (2) is the graph matching score, which measures the overall agreement
among all possible correspondences. By maximizing this score, we find a set of
correspondences that best preserve pairwise agreement. The first term is similar to (1),
except that: 1) the affinity matrix M in our method is constructed by using our proposed line
patch to enhance the measurement of the pairwise agreement (i.e., off-diagonal elements in
M); and 2) we use the simplified term xT Mx, instead of xT Mx/xT x in (1) following the
classical graph matching methods [6], [9] [19]. The second term ||x||1 is the sparsity
constraint term, which is used to suppress the ambiguous matches. This l1-norm term
regularizes the assignment vector x, which keeps the number of nonzero elements in x small.
In this way, the solution will exclude the ambiguous matches, by keeping only
correspondences with relatively high confidence.

It is worth noting that the line patch is used to better describe the pairwise agreement among
possible correspondences, which can also facilitate other conventional graph matching
methods in terms of building a better affinity matrix M. After obtaining the affinity matrix
M, we will propose our l1-norm based optimization approach for (2) in Section III.

E. Optimization for the Sparse Graph Matching
In order to solve (2), we incorporate the affine constraint Ax = 1T into the energy function
by using the l1-norm regulation as below

(3)

where γ and λ are the two weights used to adjust the proportions of l1-norm and l2-norm,
respectively. Practically, the values of γ and λ are set by training and then fixed for all the
testing experiments (i.e., γ = 20 and λ = 10 used in this paper). The above energy
optimization problem is nonlinear and usually nonconvex, which makes it difficult to solve
in its original form without good initialization. However, because the value of each element
in assignment vector x is non-negative, the energy function F(x) in (3) turns into a quadratic

assignment problem by simplifying ||x||1 to  and  as (Ax − 1T)
(Ax − 1T). Then, the maximization of F(x) becomes the following constrained, indefinite,
quadratic programming problem

which can be efficiently solved by the trust region reffective algorithm [23]. This
optimization algorithm can be guaranteed to find a stationary, local solution for our
nonconvex function. Finally, we can adopt the simple Hungarian method [22] to determine
the one-to-one correspondence from the assignment vector x which maximizes the objective
function F(x).
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Equipped with line patch and sparsity constraint, we can improve the matching performance
of the conventional graph matching method. In order to reduce the challenge of large inter-
subject variations, which is common in many medical applications, we go one step further
and integrate our improved sparse graph matching method into a hierarchical
correspondence matching framework as described below.

F. Hierarchical Correspondence Matching Framework for Sparse Graph Matching
To further reduce the risk of mismatches, we integrate our sparse graph matching method
into a hierarchical correspondence matching framework. Specifically, we only use a small
number of distinctive feature points with strict selection criteria at the beginning of
correspondence detection. After applying our sparse graph matching method, we use thin-
plate splines (TPS) to interpolate the dense deformation field according to the tentatively
detected correspondence set. Since some feature points with large deformations might fail to
find correct correspondence, we resort to using an interpolated deformation field to
gradually warp the model image to the subject image domain and then apply correspondence
detection again by sparse graph matching. In our hierarchical framework, we repeat this
procedure, adding more and more feature points by relaxing the selection criteria until the
matching results do not change. Since we detect the correspondence between the warped
model image and the subject image, the matching result becomes more robust than directly
finding correspondences between the original model and subject images. Hereafter, we call
our hierarchical sparse graph matching method as HSGM.

III. Clinical Application of Hierarchical Sparse Graph Matching
In this section, we describe one clinical application of our hierarchical sparse graph
matching method in hand X-ray images. Our method can also be applied to many other
applications in medical imaging area, as well as in computer vision area.

Accurate correspondence detection in hand X-ray images plays an important role in a
computer-assisted bone age assessment system. For instance, it is tedious and time
consuming for radiologists to assess skeletal maturity through visual inspection. To assist
radiologists in performing a more accurate assessment, various bone age assessment
methods have been developed [24], [25] that compare the morphological patterns of the
subject image at specific landmarks with a model image [26]. These anatomical landmarks
are often located at bone joints and extremes. Fig. 4(a) displays 30 important landmarks in
hand X-ray, with 14 points on phalanges, 10 points on metacarpals, one point on carpals,
two points on ulna, and three points on radius.

Thus, the goal in this application is to efficiently identify these 30 landmarks in a new hand
X-ray image by using our HSGM method. In order to deal with the large inter-subject
anatomical variations as shown in Fig. 4(b), we further extend our hierarchical sparse graph
matching method into a multi-model framework, which has been demonstrated to be more
robust than single model framework in this area. Given the hand X-ray image, we apply our
hierarchical sparse graph matching method to each model image, and identify the
correspondence pairs for each landmark by the following steps: 1) calculate the median
location of all detected spatial correspondences in both model images; 2) select K nearest
correspondences; 3) set K = K − 1 and iteratively repeating step 1) and 2) until K decreases
to 2; 4) use the mean location of K selected correspondences as the identified location of
underlying landmark in subject image.
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IV. Experiments
To evaluate the performance of our HSGM method, we first comprehensively examine each
component of our HSGM method using the hand X-ray images. Then, we demonstrate the
overall performance of our HSGM method on both synthetic and real data, comparing with
three state-of-the-art graph matching methods: SMAC, h-GM, and SM + IPFP. Note that all
parameters in HSGM are fixed in all experiments. Also, for other three methods under
comparison, we obtained their implementations from authors’ websites.1

A. Evaluation of the Components of Our HSGM Method on Hand X-ray Images
A publicly available USC hand dataset2, including 43 left-hand radiographs, was used for
performance evaluation. The resolution for each image is 0.1 mm × 0.1 mm [27]. Thirty
land-marks were manually placed on each model image, as shown in Fig. 4. Since each hand
image has manually placed landmarks, matching performance is evaluated by calculating the
discrepancy between the ground-truth and the estimated correspondences by the graph
matching methods. We first examine the contribution of each novel component proposed in
our method in this section, and then report the overall performance of our HSGM method by
comparison with SMAC, h-GM, and SM + IPFP in the Section IV-C.

Before correspondence matching, affine registration is first performed to align each subject
image to the selected model image. For the model image, thirty manually placed landmarks
are used as its feature points. For each subject image, we use the automatic landmark
detection method in [28] to select around 450 candidate feature points. In all three
comparison methods, the normalized cross correlation between local intensity patches (patch
size 35 × 35 is used to measure the point-wise similarities for all possible correspondences
(i.e., diagonal elements in affinity matrix M).

1) Contribution of Sparsity Constraint—To evaluate the contribution of this novel
sparsity component in correspondence detection, we degrade our HSGM method by keeping
only the sparsity constraint, without using line patch, multiple models, and hierarchical
matching, as will be evaluated next. Two hand images are randomly selected as model
images. We use SMAC, h-GM, SM + IPFP, and our degraded HSGM method to identify
correspondences between each model image with the other 42 hand images. Table I shows
the mean and standard deviation of matching errors between the ground-truth and the
estimated correspondences by SMAC, h-GM, SM + IPFP, and our degraded HSGM method.
In this experiment, our degraded method yields a lower matching discrepancy than the
methods with which it is being compared.

To further evaluate the matching robustness according to the difficulty level of each subject
image, we classify the subject images into three groups (with small, medium, and large
landmark distances) based on the average distance of 30 landmarks between model and
subject images after affine alignment. Fig. 5(a) shows the mean distance errors in each
group by SMAC (blue), h-GM (green), SM + IPFP (brown), and our degraded HSGM
method (red). Our degraded HSGM method performs best in the group with large inter-
subject variations. Next, we roughly divide each subject image into two partitions, fingers
and palm. Since the image contrast is poorer in the palm than in the finger, landmarks in the
palm are more challenging to identify than landmarks in the fingers. We separately calculate
the average matching errors in these two regions, namely the regions of lower and higher

1SMAC (http://www.seas.upenn.edu/~timothee/), h-GM (http://www.cs.huji.ac.il/~zass/), and SM + IPFP (http://86.34.14.245/
code.php)
2http://www.ipilab.org/BAAweb/
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contrast, to evaluate performance. The results by all four methods are shown in Fig. 5(b).
Again, our degraded HSGM method achieves the best performance in the palm region.

2) Contribution of Line Patch—Since it is straightforward to incorporate our line patch
innovation into other conventional graph matching methods to aid in the construction of a
more robust affinity matrix, we show the matching performance of each graph matching
method, before and after being equipped with the line patch method. All results are
summarized in Table II. As we can see, the inclusion of the line patch significantly improves
the matching performance for SMAC, h-GM, and SM + IPFP.

After returning our degraded HSGM (evaluated in Table I) to its described state with line
patch, its performance is also further improved. The statistics of matching error is improved
from 1.20 ± 1.50 mm (Table I) to 0.98 ± 1.08 mm for the model image #1 and from 1.36 ±
1.89 mm (Table I) to 1.07 ± 1.28 mm for the model image #2, respectively, as shown in the
last two columns of Table II.

3) Contribution of Multiple Models—In this experiment, we evaluate the contribution
of multiple model images by calculating the matching error as a function of the number of
model images used. We use a maximum of eight model images. Fig. 6 shows the curve of
mean matching error versus the number of model images used in our HSGM method. The
mean matching error is computed from the remaining 35 subject images. The average
matching error decreases with an increase in the number of model images. The decrease in
matching error is especially rapid with the addition of the first few additional model images.

4) Contribution of Hierarchical Correspondence Matching Framework—
Hierarchical matching is able to improve the matching performance by gradually deforming
the model image to the subject image and iteratively detecting correspondences between
deformed model image and subject image. Fig. 7 demonstrates the contribution of our
hierarchical matching framework by showing the decrease in matching error over the course
of the matching procedure. Eight hand images serve as model images in this experiment.
The mean matching error of all 35 subjects at the beginning, middle, and end of
correspondence matching procedure are shown in blue, green, and red bars in Fig. 7,
respectively. The matching result at the beginning stage can be considered as the degraded
HSGM method without hierarchical matching. For each subject, the matching error
decreases at each time point, indicating the advantage of using hierarchical strategy in
correspondence matching.

B. Performance Evaluation on Synthetic Data
Following the evaluation performed in [7], we generate a large number of simulated affinity
matrices in two ways: 1) Adding increasing amounts of noise to affinity matrices. The noise
follows the uniform distribution U(0, &tau;), where &tau; = 1, …, 10. For each &tau;, we
simulate 30 instance of affinity matrix. 2) Adding a different percentage of outliers to the
subject feature points data. The outlier-to-data ratio ranges from 0 to 1. Similarly, 30
instances of affinity matrix are simulated with same number of outliers. Examples of an
original affinity matrix, a degraded affinity matrix with added noise, and an enlarged affinity
matrix with added outliers are shown in Fig. 8(a)–(c).

Four graph matching methods, SMAC, h-GM, SM + IPFP, and our HSGM method, are
applied to each simulated affinity matrix to estimate the assignment matrix X. Since the
affinity matrices have been already constructed, our HSGM does not take advantage of the
line patch component in this experiment, which is called degraded HSGM as in Fig. 9. In
this figure, the top and bottom rows show the results of noise and outlier cases, respectively,
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with the ground truth assignments shown in the first column. The second through fifth
columns show the estimated assignment matrices X obtained by SMAC, h-GM, SM + IPFP,
and HSGM method, respectively. The distribution of correspondence assignment estimated
by our HSGM method is much sharper than SMAC and h-GM methods, along both each
row and each column of X. Although SM + IPFP can also obtain sparse result, the estimated
results are less accurate than our HSGM method, compared with the ground-truth
assignment in the first column.

Given the ground-truth correspondences, we can also calculate the number of mismatches
after binarizing the estimated assignment matrix X by the four graph matching methods. Fig.
10(a) shows the curve of average mismatch ratios versus noise level by SMAC (blue), h-GM
(green), SM + IPFP (brown), and HSGM method (red). With the same legend, Fig. 10(b)
displays the average mismatch ratio versus the number of outliers. Again, our HSGM
method consistently yields the lowest mismatch ratio in both cases (even though line patch
is not used in this experiment).

C. Performance Evaluation on Hand X-ray Images
Here, we demonstrate the overall matching performance of our HSGM method on real hand
X-ray images. Line patch is applied to improve inter-pair agreement during the construction
of the affinity matrix; a sparsity constraint is enforced during estimation of the assignment
matrix, in order to improve the matching quality; and our sparse graph matching method is
integrated into a hierarchical correspondence matching framework. Additionally, eight hand
images are used as multiple models to deal with the large model-subject anatomical
variations found in real clinical applications. We apply SMAC, h-GM, SM + IPFP, and
HSGM method to the rest 35 subject images for performance comparison.

The overall matching results by SMAC, h-GM, SM + IPFP, and our HSGM method are
shown in Table III. HSGM method significantly outperforms other three state-of-the-art
graph matching methods. Typical correspondence matching results by the four methods are
also shown in Fig. 11, where correct matches are indicated with solid cyan lines and
incorrect matches are indicated with dashed pink lines. Our HSGM method is able to
correctly identify all 30 correspondences, while SMAC method fails at two landmarks (#3
and #30), h-GM fails at one landmark (#2), and SM + IPFP fails at two landmark (#20 and
#30). For better illustration, we also zoom in to the selected regions containing the
landmarks #2, #3, #20, and #30 (shown by white rectangles in the original images).

We also quantitatively show the performance of SMAC, h-GM, SM + IPFP, and our HSGM
method over different levels of model-subject anatomical variation and in different regions
of hand images in Fig. 12(a) and (b), respectively. HSGM method achieves the lowest mean
matching error in all conditions.

V. Discussion
A. Computational Cost and Complexity Analysis

In the graph matching method, the major computation costs are related to the construction of
affinity matrix M from a set of possible correspondences, and the optimization of
correspondence assignments. Since the optimization of (3) is a quadratic programming
problem, its computational complexity highly depends on the size of affinity matrix M. In
general, the upper bound of the computational complexity is O((NN′)2) for a NN′ × NN′
affinity matrix M. However, it is worth noting that the actual computation time is much less
than O((NN′)2), since M is a very sparse matrix (i.e., nearly 99% elements of M are zeros in
the experiment for the hand X-ray images). For example, in the hand X-ray images (with 30
and ~450 feature points in the model and subject images, respectively), the computation
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time for constructing the affinity matrix M is 580.48 s. The average computation time for
optimization part by SMAC, h-GM, SM + IFPF, and our HSGM method are 3.58, 1.69,
23.12, and 89.59 s, respectively. All the algorithms were implemented in Matlab 7.12/Linux
without using parallelism technique, and run on a workstation equipped with 8 dual-core 2.8
GHz CPU and 32GB memory. The construction of affinity matrix M is the most time-
consuming part in all the examined graph matching methods. Fig. 13 shows the average time
consumption by SMAC, h-GM, SM + IFPF, and our HSGM method. Although our method
is the most computationally costly, the overall computation time is still comparable with
other conventional graph matching methods. Our code is currently implemented by
MATLAB, but we believe the computation time can be reduced significantly with
optimization.

Fig. 14 demonstrates the change in average computation time when increasing the number
of subject feature points from 100 to 800, where the number of model feature points is fixed
at 50. The computation burden increases fastest with the SM + IPFP method. Considering its
significant improvement in correspondence matching, our HSGM method provides the best
results in terms of both efficiency and accuracy.

B. Techniques for Binarizing Correspondence Assignments
Given the estimated correspondence assignment x, it is important to appropriately discretize
them, which is an important postprocessing step in all graph matching methods. In the
literature, Hungarian method [22] is commonly used, due to its efficiency. Recently, IPFP
(Integer Projected Fixed Point) method was also proposed in [19] with potentially better
performance. Since the evaluation of this postprocessing step is meaningful, we would like
to test the performances of both conventional Hungarian and more advanced IPFP method
when they are integrated with our HSGM method. The matching accuracy by HSGM +
Hungarian and HSGM + IPFP on the X-ray hand images is shown in Table IV. It can be
observed that HSGM + Hungarian has the comparable results with HSGM + IPFP, which
indicates that the gain of matching accuracy comes mainly from our HSGM method.

C. Future Work
Our future works include reducing the computation time and extending our HSGM method
to other medical image applications. To speed up our method, we will re-implement and
optimize our method in C/C++. Our proposed graph matching method has wide applications
in the field of medical imaging, such as deformable registration of MR brain images and
motion estimation in lung 4D-CT data. Although it is straightforward to apply our method to
these applications, we still need to handle large number of feature points in these
applications. For example, there could be as many as ~100,000 feature points in the MR
brain images. To address this challenge, our proposed solution is to first partition the entire
brain image into a number of overlapping blocks. A small number of feature points will be
selected in each block and correspondence will be established by our HSGM method, and
the correspondences in the entire brain will be the integration of correspondence detection in
all overlapping blocks. By decomposing a large-scale problem into a number of small-scale
problems, which can be solved one by one efficiently, our HSGM method can be made to
handle a large number of feature points.

VI. Conclusion
In this paper, we have proposed a hierarchical sparse graph matching method to improve the
accuracy in correspondence detection. Our contributions are threefold: 1) a new concept of
line patch is proposed to robustly characterize the pairwise agreement between two possible
matches/correspondences; 2) a sparsity constraint is further introduced to suppress the
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influence from ambiguous matches during correspondence assignment; and 3) a hierarchical,
multi-model framework is built based on our proposed graph matching method. Better
results have been achieved on both synthetic data and hand X-ray images when compared to
the state-of-the-art graph matching methods: SMAC, h-GM, and SM + IPFP. In the future,
we will extend our method to other medical applications, such as deformable brain
registration and motion estimation for lung 4D-CT data.
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Fig. 1.
The scheme of the proposed anatomical correspondence detection by graph matching. After
detecting thefeature points in the modelimage [red points in (a)] and the subject image [blue
points in (b)], the one-to-one correspondence (e) is optimized from the affinity matrix M (d),
which is constructed based on the established multiple correspondences (c).
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Fig. 2.
Demonstration of using line patches in distinguishing incorrect matches. Three possible

correspondences are shown, (t1, ) (correct), (t2, ) (correct), (t2, ) (incorrect). The

pairwise agreement between correct matches (t1, ) and (t2, ), is measured by the

similarity of blue and green line patches, while another pairwise agreement between (t1, )

and (t2, ) is measured by blue and white line patches for the case of incorrect match. Since
each line patch uses the intensity profile between two feature points, it is able to suppress the
effects of incorrect matches in the affinity matrix, as quantitatively measured by the
normalized cross correlation provided in the right panel of this figure.
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Fig. 3.
The assignment matrix X optimized from the same affinity matrix by SMAC method
(without sparsity constraint) and our graph matching method (with sparsity constraint). (a)
Assignment matrix X of SMAC. (b) Assignment matrix X of our method. (c) The profiles
along the pink lines.
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Fig. 4.
Hand X-ray images. (a) 30 important landmarks in a hand X-ray image, including 14 points
on phalanges, 10 points on metacarpals, one point on carpals, two points on ulna, and three
points on radius. (b) Two typical X-ray images with high inter-subject anatomical variations.
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Fig. 5.
Mean matching errors of SMAC, h-GM, SM + IPFP, and our degraded HSGM method (a)
under different levels of model-subject variations, and (b) at different regions of hand
images.
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Fig. 6.
The curve of mean matching error versus the number of model images used in our HSGM
method.
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Fig. 7.
The evolution of mean matching error during the hierarchical correspondence matching
procedure in our HSGM method.
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Fig. 8.
Two typical instances of simulated affinity matrix by adding noise (b) and outliers (c) to the
original affinity matrix M (a).
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Fig. 9.
The estimated assignment matrices X by SMAC (second column), h-GM (third column), SM
+ IPFP (fourth column), and our HSGM (fifth column). Compared with the ground truth
(first column), our HSGM method achieves the closest estimation results with the sharpest
assignment distribution among all graph matching methods, in both noise (top) and outlier
(bottom) cases.
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Fig. 10.
Mean matching error rate with respect to (a) noise level and (b) the ratio between outlier and
data numbers, by SMAC (blue), h-GM (green), SM + IPFP (brown), and our HSGM method
(red).
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Fig. 11.
Matching results by (a) SMAC, (b) h-GM, (c) SM + IPFP, and (d) our HSGM method, with
solid cyan lines showing correct matches and the dashed pink lines showing incorrect
matches. In the right of (a–d), regions I, III, V represent the enlarged views at landmarks 2,
3, 20, and 30 of the model image, and regions II, IV, VI represent the corresponding
enlarged views of the subject image.
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Fig. 12.
Mean matching errors of SMAC, h-GM, SM + IPFP, and our HSGM method (a) under
different levels of model-subject anatomical variations, and (b) at different regions of hand
images.
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Fig. 13.
The average computation time by SMAC (blue), h-GM (green), SM + IPFP (brown), and
our HSGM method (red).
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Fig. 14.
The change of average computation time with respect to different number of subject feature
points by SMAC (blue), h-GM (green), SM + IPFP (brown), and our HSGM method (red).
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TABLE I

Mean and Standard Deviation of Matching Discrepancy Between the Manual Ground-Truth and the Estimated
Correspondences by SMAC, h-GM, SM + IPFP, and our Degraded HSGM Method (Using Only the Sparsity
Constraint). (Unit: mm)

SMAC h-GM SM+IPFP Degraded HSGM

Model image #1 1.78±2.54 1.38±2.43 1.41±2.13 1.20±1.50

Model image #2 2.12±4.57 1.62±2.71 1.46±2.35 1.36±1.89
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TABLE II

Mean and Standard Deviation of Matching Errors Between the Ground-Truth and the Estimated
Correspondences by SMAC, h-GM, SM + IPFP, and our HSGM, With and Without Line Patch. (Unit: mm)

Model image #1 Model image #2

No line patch +line patch No line patch +line patch

SMAC 1.78±2.54 1.33±1.79 2.12±4.57 1.78±3.96

h-GM 1.38±2.43 1.08±2.18 1.62±2.71 1.32±2.57

SM+IPFP 1.41±2.13 1.11±1.66 1.46±2.35 1.13±1.42

HSGM 1.20±1.50 0.98±1.08 1.36±1.89 1.07±1.28
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TABLE III

Mean and Standard Deviation of Matching Errors Between the Manual Ground-Truth and the Estimated
Correspondences by SMAC, h-GM, SM + IPFP, and our HSGM Method. (Unit: mm)

SMAC h-GM SM+IPFP HSGM

8 models 2.43±2.60 1.54±3.07 1.12±1.91 0.81±0.89
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TABLE IV

Mean and Standard Deviation of Matching Errors Between the Ground-Truth and the Estimated
Correspondences by HSGM + Hungarian and HSGM + IPFP, Respectively. (Unit: mm)

HSGM+Hungarian HSGM+IPFP

Model image #1 0.98 ± 1.08 0.98 ± 1.24

Model image #2 1.07 ± 1.28 1.03 ± 1.23
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