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Automatic Inference and Measurement of 3D
Carpal Bone Kinematics from Single View
Fluoroscopic Sequences

Xin Chen, Jim Graham, Charles Hutchinson, and Lindsay Muir

Abstract—We present a novel framework for estimating the 3D
poses and shapes of the carpal bones from single view fluoroscopic
sequences. A hybrid statistical model representing both the pose
and shape variation of the carpal bones is built, based on a
number of 3D CT data sets obtained from different subjects at
different poses. Given a fluoroscopic sequence, the wrist pose,
carpal bone pose and bone shapes are estimated iteratively by
matching the statistical model with the 2D images. A specially
designed cost function enables smoothed parameter estimation
across frames and constrains local bone pose with a penalty
term. We have evaluated the proposed method on both simulated
data and real fluoroscopic sequences and demonstrated that
the relative poses of carpal bones can be accurately estimated.
One condition that may be assessed using this measurement
is dissociation, where the distance between the bones is larger
than normal. Scaphoid-Lunate dissociation is one of the most
common of these. The error of the measured 3D Scaphoid-Lunate
distances were 0.75 + 0.50 mm for simulated data (25 subjects)
and 0.93 + 0.47 mm for real data (15 subjects). We also propose
a method for constructing a ‘standard’ pathology measurement
tool for automatically detecting Scaphoid-Lunate dissociation
conditions, based on single-view fluoroscopic sequences. For the
simulated data, it produced 100% sensitivity and specificity. For
the real data, it achieved 83% sensitivity and 78% specificity.

Index Terms—Carpal bone poses, 2D 3D registration, Statisti-
cal pose model, Statistical shape model, Fluoroscopic sequence,
Wrist pathology

I. INTRODUCTION

RIST pain, either acute or chronic, is a common
Wpresenting symptom in hand clinics. It may be due
to a number of different pathologies, including acute trauma,
arthritis (either osteo or inflammatory), vascular disorders,
the sequelae of congenital abnormalities and the sequelae of
trauma. These latter may include osteoarthritis secondary to
fracture malunion or nonunion, and ligament instability. The
standard assessment of a patient with pain of this nature
will include history taking, clinical examination and special
investigations.
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The wrist joint is complex, and the maintenance of the
normal relationship of the carpal bones, both at rest and on
movement is governed by intercarpal and extrinsic ligaments.
Normal function and integrity of these ligaments is essential
for the smooth movement of the wrist. No tendons insert
onto the carpal bones themselves, and their movements are
therefore dictated by the movements of the surrounding bones.
Ligamentous injuries may lead to disordered movements of the
bones. These disordered movements in turn lead to abnormal
loading and hence to osteoarthritis. Standard assessment of
these disordered movements includes plain radiography, MR
scanning and cine radiography. The first two modalities give
static images that may readily be examined and measurements
taken, but are only static images of a dynamic problem. Cine
radiography (e.g. fluoroscopic sequences) is more subjective
and requires judgement and experience. If there is still doubt
about the diagnosis, wrist arthroscopy may give further in-
formation, but this is an invasive procedure and therefore
entails risk and expense. A method of determining carpal
kinematics from fluoroscopic sequences that allowed more
objective evaluation would be of value to the hand surgeon
in accurate diagnosis. It would also contribute to treatment
evaluation and to understanding an area of hand surgery that
still remains challenging.

Here we present a method for computer interpretation of the
fluoroscopic sequences to attain a higher degree of objectivity
and quantification in the diagnostic process. The wrist is a
complex joint (see Fig. 2); during wrist movement, the eight
carpal bones follow a complex, multi-dimensional trajectory,
making interpretation of radiographs difficult. One important
step towards this aim is the development of statistical models
(SM) of the carpal bones and their spatial relationships during
movement, which is able to represent the pose and bone
shape variation in much fewer dimensions. For this study we
have trained this SM from a set of CT images from different
subjects at different poses. Subsequently, the full 3D carpal
bone motions can be recovered by matching the SM with
the fluoroscopic sequences through 2D-3D image registration
techniques.

A number of studies have sought to represent the carpal
kinematics using CT or MR data, mainly concentrating on
representing ‘average’ kinematics over a small number of
individuals (e.g. [1], [2]). Van de Giessen et al. [3] presented
a 3D rigid registration method based on segmented meshes,
which aims to build a SM of carpal bones. More recently,
they introduced a 4D statistical model that locally describes
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the relative positions of the carpal bones [4] in pre-defined
poses, with the aim of detecting abnormal bone spaces. A
comparison of wrist poses captured statically and dynamically
was reported in [5]. They concluded that negligible differences
were observed between the dynamic motion and the step-wise
static motion of the carpal bones from ‘healthy’ subjects. Some
authors have focussed on building hierarchical statistical shape
models ( [6], [7]) or an articulated shape model [8]. Davatzikos
et al. [6] presented a method of using the wavelet transform
to capture different levels of shape detail in a coarse to fine
structure, which enables the statistical shape model to cover
a larger range of variability with a small number of training
samples. Cerrolaza et al. [7] further extended the idea to deal
with multiple objects for 2D brain image segmentation, where
the objects to be included for model building at each level
have to be carefully selected. Boisvert et al. [8] studied spine
variation using 3D articulated pose models. The relative rigid
transformation parameters of each vertebra with respect to
the vertebra of the upper level were used to construct the
articulated pose model. The spine variations between the same
set of patients before and after treatment were compared using
the model. Point-based statistical models, such as [7] do not
retain the rigidity of each of the multiple objects. In our
proposed framework we build a statistical pose model (SPM),
based on geometrical transformation parameters and a separate
point-based statistical shape model (SSM) to deal with the
issue of shape variation and articulation of the carpal bones.
We use the combined model to fit to image sequences for
quantifying 3D movement.

Many studies have investigated 2D-3D image registration
(e.g. [9], [10], [11]), mainly in the field of registration of pre-
operative MR or CT images to intra-operative 2D images. Our
work differs from these in that we seek to achieve registration
of a 2D image sequence to a 3D model (not derived from the
same individual) to infer the poses and shapes of an individual
wrist. Zheng [12] took a similar approach to estimate the
orientation of the pelvis from a single X-ray image. Whitmarsh
et al. [13] presented a method to reconstruct both the 3D bone
shape and 3D areal bone mineral density distribution of the
proximal femur from a single dual-energy X-ray absorptiome-
try image. More recently, Baka et al. [14] and Zheng et al. [15]
similarly presented a statistical shape model based framework
to estimate femur shapes from multiple X-ray images. In the
case of [14], fluoroscopic sequences were used, similarly to
the work reported here.

The main contributions of this paper, distinguishing it from
these earlier studies, are: (1) A hybrid SM is developed
representing both the complex pose and shape variation of
the eight carpal bones plus radius and ulna. (2) The full 3D
motion and bone shapes are recovered by matching the SM
with a single view fluoroscopic sequence: a difficult ill-posed
problem. (3) Our initial results show that the relative positions
between the carpal bones can be estimated accurately through
the proposed framework. (4) We have constructed a pathology
detection tool that takes advantage of the inherent ability of
the SPM to align wrist poses. In [4], they also detect abnormal
bone spaces based on 3D input data sets for limited number
of pre-defined flexion-extension poses. We are not aware of

any study which attempts to make a 2D to 3D inference and
measurement in a system of this level of complexity. An early
version of this work was published in [16]. In this paper
we describe the framework in greater detail and report the
following further developments: (1) The SPM presented here
is generated based on both the radial-ulnar poses and flexion-
extension poses, where the SPM used in [16] is only based
on radial-ulnar poses. (2) Faster optimisation and more robust
registration, arising from the use of a more constrained model.
(3) Additional registration accuracy is achieved by the use
of local pose refinement, controlled by a new cost function
term. (4) Rather than building a SSM for each individual bone,
all bones are modelled simultaneously to represent the shape
variations of the ensemble of bones. This helps to maintain the
nature of the relationships between adjacent bone shapes and
reduces the number of shape parameters. (5) We include more
comprehensive experimental results based on real fluoroscopic
sequences using extended training datasets. (6) A method
of constructing the pathology detection tool, based on the
SPM, is introduced for the first time. The evaluation results
demonstrate the feasibility of using the proposed system for
clinical diagnosis.

The overview of the proposed framework is illustrated in
figure 1(a). The system consists of a training phase and a 2D-
3D image registration phase. We currently have CT data from
25 subjects, each at five poses (neutral pose and two extreme
poses in flexion-extension and radial-ulnar deviation). The seg-
mentation of each bone and rigid registration parameters that
align bones at different poses within and across the subjects in
the training set were obtained using an iterative segmentation
and registration algorithm [17]. Segmentation results were
confirmed by an experienced radiologist. A hybrid statisti-
cal model, representing both the pose and shape variations,
was built from the results of the segmentation-registration
framework. The SPM was built based on the transformation
parameters, while the segmentation result was used to build
the SSM. In the 2D-3D image registration phase, the global
3D rigid transformation, the poses of carpal bones, the local
3D rigid transformation of each bone and the bone shapes
were estimated iteratively in sequence from each frame of the
fluoroscopic video. The registration is performed sequentially,
frame-by-frame, the estimated poses at each frame acting as
the starting positions for the next (see figure 1(a)). Detailed
descriptions are given in the following sections.

II. COORDINATE SYSTEM AND PROBLEM
PARAMETERISATION

In figure 1(b), the coordinate axes X°, Y° and Z° define
the source coordinate system with the origin at the radiation
source, whereas XM, Y™ and ZM define the machine coor-
dinate system with the origin at the isocentre. u and v define
the image coordinates, normal to the direction of the radiation
beam. The origin of the image plane is at the projection of
the optical centre.

In order to interpret the true 3D motion of the carpal
bones, four sets of parameters are estimated iteratively in
sequence during image registration: (1) Rigid transformation
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parameters of the wrist and a global scale factor, denoted by
O={tz, ty, tz, r1, r2, r3, s} in the machine coordinates.
t=[tz,ty,tz]T denotes the translations along X, Y™ and
ZM axes. r=[r1,72,73]T is the set of Rodrigues parameters
[18] representing the global orientations. The magnitude of
vector 7 is the rotation angle around the axis represented by
the normalised unit vector of r. s controls the distance between
the centroid of each bone and the origin in the radius, and the
global size of the bones. (2) SPM parameters 0™ represent
the carpal bone poses during movement. By using the pose
model parameters, the transformation parameters of each bone
can be obtained, denoted as m;=(tz]", ty;", tz", r1i*, r2i",
r37") (¢ is an index identifying each bone) (3) Transformation
parameters [;=(txz!, ty!, 2}, r1L, r2t, r3L, sty of each bone used
to refine the poses estimated from the pose model. (4) SSM
parameters b? for bone shape estimation. Using homogenous
coordinates, the constructed 3D statistical mesh model can be
projected to the image plane by,
l

A; = KTPD;, [ SsilQi } (1)
where (); indicates the mesh points of the estimated shape for
the i*" bone. s and s! are the global and local scale factors
respectively that control the size of the carpal bones. D; is
the pose matrix of the i*" bone estimated using the pose
model and the local pose refinement. P is the global rigid
transformation matrix. 7" is the transformation matrix from the
machine coordinate system to the source coordinate system,
and K is the intrinsic projection matrix of the X-ray imaging
system. In detail, P is denoted as:

P{o 1

where t is the translation vector [tz,ty,tz]T. R is the 3 x 3
rotation matrix represented by Rodrigues parameters [4], [18],
calculated as

R =1+ Bsin|r| + B*(1 — cos|r|)

2

3)

where |r| is the magnitude of the orientation vector [r1,r2,r3]7 .
I is the identity matrix, and B is the skew-symmetric matrix

S, — e e =

(a) Overview of the proposed system. (b) Perspective projection geometry for the fluoroscopic imaging system.

________ (b)
normalised by |r|, expressed as
0 r3  —r2
B=| -r3 0 rl | /|r] 4)
r2 —rl 0
In equation (1), D; is calculated as,
R}t

where t{=s[tz, ty", tz/] T +[txl, tyl, t2!)T is the summation
of translation vectors estimated from the pose model and local
bone refinement. RY = R™R! is the 3x 3 rotation matrix that
combines the rotations estimated from pose model and local
bone refinement respectively. R and R! can be calculated in-
dividually by equation (3) using their corresponding Rodrigues

parameters.
Furthermore, 7" in equation (1) is given by
Caz Saz 0 0
. _Selsaz Selcaz Cel 0
T= CelSaz _Celcaz Sel dSC (6)
0 0 0 1

where C' and S denote cosine and sine functions, subscripts

az and el denote the view angles for 3D-2D projection, with
az = 0° and el = 180° producing the anteroposterior view,
az = 90° and el = 180° producing the left lateral view, and
az = —90° and el = 180° producing the right lateral view.

dsc indicates the distance between the isocentre and the X-ray
source.
K in equation (1) is given by

pru 0 wu O

0 0 10

where f. is the distance between the X-ray source and detector
plane. piz, and pix, are the physical pixel sizes along the
horizontal and vertical directions of the detector, and (ug, vg)
are the coordinates of the optical centre on the image. In our
data, (ug,vo) were always the centre of the image. pix, and
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pix, are known from the detector specification. Therefore,
only f. needs to be estimated, which can be done by measuring
the distance between the X-ray source and detector for each
subject.

The use of Rodrigues parameters to represent bone orien-
tations is convenient for pose model building and parameter
optimisation. More importantly, unlike the quaternion repre-
sentation, it does not require vector normalisation, nor does it
suffer from the singularity problem that arises when using the
Euler angle rotations.

III. TRAINING OF POSE MODEL AND SHAPE MODEL

To generate training data it was necessary to achieve con-
sistent segmentations and poses of the bones across subjects
in the training set and across the five wrist positions within
each subject. For this we developed an integrated framework
[17] that combines the Grow Cut segmentation method with
rigid image registration to simultaneously segment and align
the carpal bones in the CT data sets. The kinematics of
the carpal bones is complex and significant pose differences
can be introduced as the joint adopts different positions. The
framework significantly reduces the workload of segmentation,
while simultaneously providing a good alignment of the carpal
bones. Each bone segmentation was verified by an experienced
radiologist.

As the shape of each bone may vary from individual to in-
dividual, we modelled this variation using a point distribution
model (PDM) [19]. This was built using the segmented volume
of the same set of training subjects. Correspondence between
these surfaces of bones across subjects was established by
the minimum description length (MDL) algorithm [19]. The
3D structure of each bone is described by a set of 1002
points on the segmented surface. In our earlier work [16] we
modelled the shape of each bone independently. However here
we maintain the nature of the relationships between adjacent
bone shapes and reduce the number of shape parameters by
representing the shape points of all bones in a single column
vector in a consistent order. One training example is described
by (z1, Y1, #1, 10020, Y10020> Z10020) * (10 bones x 1002
points each). The coordinates of the shape points of each bone
are expressed with respect to its own centroid, eliminating any
linkage between the shape model and the pose model. The
deformable shape model is then described as,

q =+ ®)

where p? and ¢? (superscript ¢ is a notation indicating the
shape parameters) are the mean shape and the principal sub-
space matrix for the shapes. b? is the shape model parameter
to be estimated. We retain the first 15 significant components
in the shape model, which keeps about 90% of variation.
The statistical pose model was trained using the six rigid
transformation parameters. The common coordinate system for
all pose parameters has an origin at a specified point in the
radius for a reference subject. The sizes of all the wrists are
normalised to a consistent scale. The pose of one subject is
described by (tx1, ty1, tz1, 11, 721, 731, ..., tZ10, tY10, 210,
rlig, 7210, 7310)%. (8 carpal bones, 1 radius and 1 ulna). The

orientation parameters allow for a continuous description of
the wrist movement (see section II). Then the pose model can
be parameterised as,

m ="+ " ©)

where the mean pose p™* (superscript m is a notation indicat-
ing the pose model parameters) and the principal subspace
matrix ¢™ are computed from 5 (poses)x 25 (subjects)
training samples using PCA. The vector b represents the pose
parameters that describe the pose (m) along each principal
direction. In our experiments, only the first two significant
components are used, which keeps 90% of variation. The first
component reflects the flexion-extension motion and the sec-
ond component represents the radial-ulnar motion. By contrast,
our earlier work [16] used 8 significant modes representing
98% of the variation based on 10 training subjects for the
radial-ulnar movement only. Experimentally we found that the
use of fewer model components reduced computational time
by 40%. The inclusion of flexion-extension poses for training
also extends the motion range which helps to reduce the
registration errors. This probably arises because, in capturing
the training data, there was no constraint on the radial-
ulnar movement in CT, so that the correspondence between
the extreme positions of radial-ulnar movement in CT and
fluoroscopy may not be exact. There are also potentially
small differences in the directions of flexion-extension and
radial-ulnar movement between the fluoroscopy and CT image
capture processes. By further combining with the local bone
refinement procedure, the more constrained model achieved
smaller registration error in 3D by around 0.7mm (values
shown in table I), compared with the results in [16]. Our
experiments also showed that including significant components
beyond two does not improve the registration accuracy, which
indicates that the local bone refinement process (section IV)
dealt with the deviation from the linear pose model very well.

Based on the SSM and the SPM, a hybrid statistical mesh
model can be built by using the Crust mesh construction
algorithm [20]. Figure 2 shows the poses of the first two
components of the SPM (represented by the mean shapes of
each bone) and the first mode of the shape variation.

IV. 3D-2D IMAGE REGISTRATION

The statistical mesh model is then used to match with
each of the frames in the fluoroscopic sequence to infer the
3D motion and bone shapes (see figure 1(a)). The position
of the model is firstly initialised interactively by indicating
a central point on the radius in the first frame of the flu-
oroscopic sequence. Then the poses of the bones in each
frame are estimated in sequence, the poses from the current
frame being used as the starting poses of the next. Figure 3
summarises the registration process, in which the preprocessed
fluoroscopic image is iteratively matched with a simulated
projection generated from an updated pose of the mesh model.
This registration procedure is used specifically in the pose
estimation and refinement steps illustrated in figure 1(a). For
each iteration, the global pose parameter 0={tz, ty, tz, rl,
r2, r3, s}, the SPM parameter b™, the local transformation
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Fig. 2. Top row: The poses of the first component of the pose model (lateral view) that mainly describes the flexion-extension movement. Middle row: The
poses of the second component of the pose model (AP view) that mainly represents the radial-ulnar movement. Bottom row: the first component of the shape
model. (Major shape variations occur in the Ulna, Radius and Lunate.) In each case the mean + 2 s.d. are shown.

parameters [;=(tz!, ty!, tz}, r1t, r2t, r3l, sl) of each bone,
and the SSM parameters b? are updated iteratively in sequence.
Detailed descriptions are given in the following subsections.
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Fig. 3. Overview of the 3D-2D image registration process.

A. Fluoroscopic image enhancement and projection simula-
tion

As there is considerable variation in the quality of fluoro-
scopic images, preprocessing is necessary to achieve consistent
results. Firstly the intensities are normalised to zero mean
and unit standard deviation. This is followed by anisotropic
diffusion [21] to smooth the image and preserve edges. Local
gradients are used for image matching, and figure 4 shows

the gradient maps of an original fluoroscopic image, and the
image after anisotropic diffusion and after normalisation and
anisotropic diffusion respectively.

Fig. 4. Left: the gradient map of the original flouroscopic image. Middle:
the gradient map of the image after applying the diffusion filter. Right: the
gradient map of the image after local normalisation and diffusion.

In order to optimise the pose parameters, we iteratively
generate projections from the statistical mesh model with
updated pose parameters. The mesh model is considered as
a binary volume with background set to zero and bone set to
unity. Based on the perspective projection model described in
section II, the simulated projection can be generated by ray
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casting. The projected intensity is in negative proportion to the
sum of binary values along the ray from the source to each
pixel in the image plane. The simulated image that represents
the mean shape and mean pose of the model is shown in figure
5.

Fig. 5. Left: simulated image that represents the mean shape and mean pose
of the model. Right: the magnitude of gradient.

B. Cost function

To evaluate the similarity between the fluoroscopic image
and the simulated image, we investigated several forms of
the cost function, achieving best results from the one shown
in equation (10), based on the gradient along horizontal and
vertical directions as well as the gradient magnitude of the
two images. Additionally, the adjacent frames to the current
fluoroscopic image were also taken into account in the cost
function to make the estimated poses smooth across frames.

If we define the Normalised Correlation Coefficient (NCC)
between two images A and B as C(A,B), then the proposed
cost function can be described as:

E; = —C(Omy_1,0my)

>

p=k—1,k,k+1

wp(C(Imyp, Dmy) + C(Ixp, Dxy) + C(1yp, Dyk))
(10)

where k is the current frame number of the fluoroscopic
sequence. Im,, Iz, and Iy, are the gradient magnitude,
vertical gradient and horizontal gradient of the fluoroscopic
image at the p'” frame respectively. Dmy, Dxj and Dy
are the corresponding values of the simulated image. The use
of the absolute gradient magnitude in the second term, in
addition to the signed gradient, results in a smoother objective
function, resulting in a reduced tendency to converge to local
minima than is the case when using signed gradients alone.
Calculating the cross-correlation between sets of three adjacent
frames makes the estimated pose smooth across frames. The
inter-frame weighting parameters, wg_1, wg and w41 were
set at 0.2, 0.6 and 0.2 respectively. For the first term of the
cost function, the vertices in the statistical mesh model are
projected to the image plane; we assume the intensities at those
projected points are similar across adjacent frames. Omy_1
and Omy, represent the gradient magnitude of the previous
frame and the current frame at the projected correspondence
positions. The first term makes the shape of the cost function
sharper, leading to a faster and more accurate optimisation
result. The (k — 1) frame and (k + 1) frame are not
evaluated for the first and last frame respectively.

Equation (10) is used to estimate the global pose parameter
6 and the SPM parameter b"*. The wrist motion can be de-
scribed as approximately linear by the SPM parameters, where
the deviations from linear positioning are accommodated by
the local refinement of individual bone poses. In the local
refinement procedure, a different cost function is used, where
an additional term is added to E; as described in equation
(11). The additional term makes the estimated local pose as
close as possible to the pose model, weighted by a Gaussian
distribution. This is able to preserve the topology of the carpal
bones, when the intensity term F; is weak.

1P

5 St llef = T ])|?
E=FE; +wexp(—

2¢2
In equation (11), 2/ represents the i*" 3D mesh points after the
global pose and pose model estimation. p is the total number
of mesh points of the currently evaluated bone (In our case,
p=1002 for each bone). T" is the local transformation matrix
for that bone. w is the weighting parameter that balances the
image intensity term F; and the added geometric penalty term.
¢ is the standard deviation of the Gaussian distribution. In our
evaluation tests, w = —0.2 and ¢ = 10 were experimentally
determined and used.

) (In

C. Optimisation

The coordinate origin for all motions is the centroid of the
radius in the statistical mesh model. The global transformation
parameters are estimated based on the regions surrounding
all bones and iteratively refined by alternating with the SPM
parameter and local transformation parameter estimations (see
figure 1(a)). By estimating the SPM parameter b based on
all carpal bone and ulna regions, a set of transformation
parameters m; = {tal", ty!", tz", r17 r2I" r3"} that repre-
senting the kinematic pose of the i bone can be generated by
equation (9). The local transformation parameters /; for each
bone are calculated by evaluating the cost functions on the
corresponding bone volumes. The set of mesh points @; that
represent the i*" bone shape are obtained by substituting the
estimated SSM parameter b9 into equation (8). Subsequently,
the 2D projection that represents the current estimated 3D pose
of the carpal bones can be generated using equation (1).

The optimisation method we have used is a simplified
version of the Brent-Powell method [22], requiring a smaller
number of optimisation steps. We used parabola fitting to
replace the Brent line search in the Brent-Powell method. The
multi-dimensional search space (0, b™, [; and b?) is explored
by iterative individual 1D line searches. For each parameter
search, the cost function is evaluated three times at the current
position and its negative and positive neighbours, respectively,
with the initial distance between the current position and its
neighbours pre-defined by a search range. To fit a parabola to
these three values, the following three criteria are applied to
select the best parameter value for the next iteration:

(1) A minimum is found by equating the first derivative of
the fitted parabola to zero, with the second derivative being
positive: In this case, the minimum is selected as the current
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best parameter value for the next iteration or for evaluation of
the next parameter.

(2) A maximum is found with the second derivative being
negative: In this case, the parameter value corresponding to the
smallest cost function value, evaluated at the current position
and its neighbours, is selected.

(3) A minimum is found, but it is too far away from the
evaluated position (located outside twice the initial search
range due to the cost function being too flat): In this case, the
transformation parameter value corresponding to the smallest
cost function value, evaluated at the current position and its
neighbours, is again selected.

When a better value is found for one parameter, it will be
used for evaluating the next one. When all the transformation
parameters satisfy the first criterion, the search range is re-
duced by dividing it by a factor to refine the estimation results.
The whole optimization is terminated when the changes in
the evaluated cost function values are smaller than a pre-set
threshold or the search range is small enough.

In our case, the true sizes of the bones are unknown;
recovering the 3D pose from a single image is therefore a
difficult, ill posed, problem. Any movement along the Y™ axis
in the machine coordinates, could be compensated by scaling
of the bone. In order to minimise this effect, the optimisation
is carefully sequenced. We firstly assume that the wrist is not
moving along Y™ axis during radial-ulnar movement (ty=0),
as it is placed on a flat surface. Following the interactive
initialisation (section IV), the first frame is evaluated, taking
all the parameters into account (except ty) in the following
sequence: tz, tz, r1, 2, r3, s, b™, txt, ty!, 2}, r1L, r2L, 73l
st and b9. After convergence, the estimated pose of the current
frame is used as the starting pose for the next frame. The
global scale factor s, local scale factors st and shape model
parameters b? are only estimated once in the first frame. From
our initial experiments, the shape parameters are not improved
significantly when we include more frames and the fitting is
made significantly more complex and time consuming.

V. EVALUATION

The true 3D poses corresponding to the recovered poses
for real fluoroscopic sequences are not available: there is
no ground-truth against which to judge the accuracy of the
recovered poses. This would require the synchronisation of 3D
imaging with the fluoroscopic imaging devices. The proposed
framework was therefore evaluated based on 25 simulated
sequences in addition to 15 real fluoroscopic sequences. All
evaluations were conducted using a leave-one-out strategy,
based on the training data. In all of the evaluation tests, the
input fluoroscopic sequences were pre-processed to construct
a 3-level multi-scale pyramid (down-sampled by a factor of
2 at each level). In the optimisation procedure, the same set
of fixed initial search ranges was used at each level (4 voxels
for translation, 47/180 for rotation, 0.2 for scale, one standard
deviation for pose model parameters and shape parameters).
The search ranges were divided by 2 each time the criteria
were met (see section IV-C), and the whole process was
terminated when the maximum value of the search ranges was

smaller than a pre-set threshold. The registration accuracy of
the simulated data and real data are shown in the following
subsections. More importantly, a measurement model that
represents the healthy pose of carpal bones at each kinematic
pose is generated. This model can be used for pathology
detection and quantification.

A. Evaluation based on simulated data

We evaluated our framework quantitatively based on a
number of simulated fluoroscopic sequences generated from
the 3D CT data. All CT volumes have been re-sampled to
an isocubic volume with voxel dimension of 0.5 mm. We
interpolated (cubic spline) a number of poses between the
neutral pose and two extreme poses of radial-ulnar deviation
in a particular movement cycle (neutral - full radial - neutral
- full ulnar), resulting in 39 poses for each of 25 subjects.
While we assume a linear model for variation in pose, the
cubic spline interpolation makes the trajectory smooth around
the observed poses. The ray-casting method was then used
to generate a simulated fluoroscopic sequence from those
interpolated 3D data. The tested dataset was not included in
the training datasets.

We conducted initial leave-one-out experiments to evaluate
the number of PCA components required for the SSM. In
these we altered the number of shape model components,
leaving all other parameters unchanged. The final 2D-3D
registration accuracy stopped improving when 15 components
were selected. This may be due to the shape errors estimated
using components greater than 15 being less significant than
the pose errors. This suggests that using 25 subjects and 15
significant components are sufficient for this application.

To test the registration accuracy of the whole framework,
the 3D pose of the simulated test subject was then calculated
as described in section IV. The registration error measured
by the 3D Euclidean distance at each corresponding point of
the mesh between the target pose and the estimated pose is
presented in table I. The average 3D registration error is 2.45
41.07 mm. The main contribution to this error is the ill-posed
problem (confusion between the scale and translation along
YM), whereas the errors along the in-plane directions, X
and ZM, are very small with average error about 1 voxel (0.5
mm).

As described in previous sections, the local scale factor of
each bone is also estimated in the local refinement procedure
to take account of the fact that the relative sizes of bones
will vary between individuals. Based on the 25 independent
tests, the mean value of this local scale factor varies between
0.98 and 1.13, depending on which bone is being considered.
The standard deviations are around 0.05, indicating that the
relative sizes of bones varies between individuals. While this
complicates the optimisation, the last column of table I shows
that the optimisation without the local scale results in a larger
registration error.

In clinical diagnosis, the absolute positions of the carpal
bones in 3D space are not important; of greater significance is
the relative movement of the bones. By using our method,
the relative positions of the carpal bones with respect to
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TABLE I
THE AVERAGE ERROR IN MM, MEASURED IN 3D, XM | YM AND ZM AXES, BETWEEN THE TARGET AND ESTIMATED CORRESPONDENCE POINTS OF
EACH CARPAL BONE OF 25 SUBJECTS: TRIQUETRUM(TRI), LUNATE(LUN), SCAPHOID(SCA), PISIFORM(P1S), HAMATE(HAM), CAPITATE (CAP),
TRAPEZOID (TRD) TRAPEZIUM (TRM). THE "NO LOCAL SCALE” COLUMN LISTS THE REGISTRATION ERRORS WITHOUT ESTIMATION OF LOCAL SCALE
OF EACH BONE (SEE TEXT).

eTri eLun eSca ePis eHam eCap eTrd eTrm Average No local scale
Err3D | 2.514£1.42 | 2.234+1.24 | 2.18%+1.50 | 2.634+1.72 | 2.314+1.44 | 2.344+1.50 | 2.514+1.72 | 2.86%1.85 2.45+1.07 2.86+1.08
ErrX | 0.59+0.44 | 0.58+0.50 | 0.44+0.37 | 0.58£0.53 | 0.44£0.33 | 0.45£0.35 | 0.53£0.44 | 0.47£0.43 0.5140.39 0.60+0.41
ErrY | 2.15£1.56 | 1.38+1.35 | 1.43+£1.60 | 2.24+1.84 | 2.10£1.55 | 2.11£1.61 | 2.23£1.82 | 2.64£1.94 || 2.16%1.14 2.53+1.20
ErrZ | 0.68+£0.55 | 0.59£0.49 | 0.48+0.39 | 0.68+0.61 | 0.4440.35 | 0.454+0.35 | 0.554+0.46 | 0.5740.52 || 0.5540.43 0.64+0.46

each other can be estimated much more accurately than the
absolute positions of the individual bones. In calculating the
distance between bones we use the average distance between
corresponding surface points. Each bone is represented by the
same number of surface points (1002), determined when the
shape model was constructed using the MDL method (section
IIT). Correspondences are determined using the index of each
point, giving a consistent set of correspondences.

One condition that may be assessed using this measurement
is dissociation, where the 3D distance between the bones is
larger than normal. As an example of this, we investigate
Scapholunate dissociation, which is one of the most common
of these conditions. The registration error of the 3D distance
between the Lunate and the Scaphoid (dLS) was measured.
The error is 0.75 £ 0.50 mm, compared to an average surface
to surface distance of 2 mm between the Scaphoid and Lunate.
The surface to surface distance is measured by the average
of the 20 shortest Euclidean distances between the surface
points of the two bones. More importantly, using the statistical
model, the measured 3D bone distances can be normalised to
a consistent scale by dividing them by the estimated global
scale factor s and an average of the two bones’ local scale
factors, calculated as (s} + s5)/2. This leads to automatic
classification of the bone dissociation cases, which could not
possibly achieved without the statistical model (section V-C).

B. Evaluation based on real data

We also tested our framework on 15 real fluoroscopic
sequences. There were about 40-100 frames per sequence,
covering the radial-ulnar movement. In the absence of ground
truth, the absolute positions of bones cannot be used for
evaluation. However, the key question is whether the esti-
mated relative distances between bones are equivalent to the
measurements from CT data, and the diagnostic conclusions
unchanged. The registration accuracy of the real data can be
validated by comparing the 3D distance between Scaphoid and
Lunate (dSL) estimated from real fluoroscopic sequences and
the original 3D volumes of the same subject.

One major advantage of using the SPM as one of the
registration steps is that the kinematic pose of the wrist from
different motion sequences can be aligned directly based on
the SPM parameters. This provides an advantage compared
with the method described in [4] where it is required to
align the wrist to pre-defined discrete poses. The first two
components of our SPM cover 90% of variation in the full

range of flexion-extension and radial-ulnar movements. The
combination of the two components is also able to generate
interpolated poses within the motion range. To measure the
error in the estimated 3D pose at each wrist position, we
need to compare it with the pose of the 3D CT data at that
position. To do this, we need to index the positions along
the motion trajectory, which can be done using the first two
components of the SPM. The values of these components
define corresponding positions for the model and the CT data.
To produce ground truth corresponding to the original 3D
data requires 3D-3D registration between each bone in the
3D statistical mesh model and the corresponding bone in the
original 3D data set. This was done at a number of poses
by estimating the global pose parameter, SPM parameter, and
local pose parameter (6, b™, [;-section IV) at each pose. The
CT volume was then set to the same pose location according
to the first two components of the estimated SPM parameter.
Poses of the original 3D data, other than the neutral and
extreme poses were generated by cubic spline interpolation.
Having matched the poses of the estimated and real 3D bone
positions, the 3D distances between the Scaphoid and Lunate
in the original and estimated volumes were measured and
normalised using the estimated global scale factor (s). The
3D-3D registration was achieved using a method similar to
that described in [17]. This is not the main focus of this paper,
so we do not provide details of the implementation here.
Another important issue is the reliability of the 2D-3D
registration, as it may give mis-aligned results due to low
quality of the fluoroscopic sequence. Since the kinematic
pose represents the ‘average’ pose of the carpal bones, the
local deviation from the kinematic pose should be relatively
consistent across the sequence. A particular frame showing a
larger deviation from the kinematic pose than other frames
may indicate a failed registration at that frame. Hence, the 3D
Euclidean distance between the local refined bone pose and
the kinematic pose is used to indicate the reliability of the
registration, which is calculated by equation (12).

1 p
7"=];ZII:U?—TI(@Q’)II2 (12)
i=1

In equation (12), = represents the i*" 3D mesh points after
the global pose and SPM estimation. p is the total number of
mesh points of the current evaluated bone (In our case, p=1002
for each bone). T' is the local transformation matrix for that
bone. Then the value r is subtracted from the mean deviation
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TABLE 11
ERRORS (MM) OF ESTIMATED 3D SCAPHOID-LUNATE DISTANCE BETWEEN REAL FLUOROSCOPIC SEQUENCES AND THE CORRESPONDING 3D VOLUMES.

Subjects 1 2 3 4 5 6 7 8
Error 0.77£0.60 | 1.35+0.46 | 0.65+0.43 | 0.45+0.32 | 0.804+0.30 | 0.30+£0.12 1.02£0.05 1.20£0.68

Subjects 9 10 11 12 13 14 15 Average
Error 1.38£0.24 | 0.19+0.22 | 0.87£0.47 | 0.90+0.74 | 0.754+0.45 | 0.99+£0.50 | 2.37 £ 1.40 | 0.93+0.47

7 of the whole sequence. This is denoted as 7.

The registration was considered as successful if the devia-
tion dr is smaller than 1 voxel (experimentally determined).
Furthermore, if the smallest r is larger than a threshold, it
indicates the registration of the whole sequence may not be
accurate, which needs visual check by the user.

The dSL of 15 subjects were calculated, each based on
the original 3D volume and real fluoroscopic sequence of the
same subject at their corresponding poses. Figure 6 shows the
estimated first two SPM parameters for each frame of the 15
real fluoroscopic sequences. As expected, the values of the
274 component, representing the major motion of the radial-
ulnar fluoroscopic sequences, are distributed over the range
of +1.5 standard deviation. The values of the 1% component
(representing flexion-extension motion) are within a range
of +0.5 standard deviation, making a small contribution to
minimising the out-of-plane transformation errors. Table II
presents the mean and standard deviation of the absolute
differences between the estimated dSL and the ground truth
for each of the 15 subjects. Each estimated dSL was measured
in the statistical model coordinate system by dividing each by
their estimated scale factor, hence all the estimated dSL from
different subjects can be compared at a consistent scale. 83.5%
of the frames were considered as successful using the criterion
based on Eqn.(12), and these were used to generate the
measurements shown in table II. The average estimated error
of successful registrations is 0.93 +0.47 mm, indicating good
agreement of the dSL estimated from the real fluoroscopic
sequences and the original 3D volume.
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Fig. 6. Estimated first two SPM parameters for each frame of the 15 real
fluoroscopic sequences.

A sample frame of the matching result and the correspond-
ing 3D poses are shown in figure 7 in which the projected

contours from the 3D mesh model are superimposed on the
preprocessed fluoroscopic image. The estimated 3D mesh
model in the palmar and dorsal views is shown in middle
and right respectively. The registration result for the whole
sequence can be found in [23].

C. Measurement Model for Pathology Detection

Our 3D CT and fluoroscopy datasets contain images of
8 and 6 individuals respectively, suffering from Scaphoid-
Lunate dissociation, diagnosed radiologically on the basis of
CT images. Here we demonstrate the potential to perform the
diagnosis automatically from the fluoroscopic sequences.

The 3D CT volumes of 15 ‘healthy’ subjects, assessed
radiologically as not suffering from scaphoid-lunate dissoci-
ation, were used to determine a ‘standard’ model, based on
neutral and extreme radial-ulnar poses. The statistical mesh
model was aligned with these volumes by estimating the global
rigid transformation parameters, the SPM parameters and the
local transformation parameters for each bone (see section
V-B). The kinematic poses at intermediate wrist positions
were determined by cubic spline interpolation between the
extreme and neutral positions, sampled at every two integer
values of the second (radial-ulnar) component of the SPM,
giving 36 wrist positions. In calculating the distance between
bones we use the distance between corresponding surface
points. As mentioned in section V-A, correspondences can be
established between surface points on different bones. Here we
use a reduced number of surface points (N=100, rather than
1002 used in building the model) for improved computational
efficiency. Equation (13) and (14) show that we calculate the
Mahalanobis distances (MD) using the means and covariances
of individual pairs of corresponding points, rather than using
the average distance, as in section V-A. Letting l(’;’ ; and s’; j
represent the j*" surface point on the k*" sample volume at
pose ¢ on the lunate and scaphoid respectively, the relative
distance between the lunate and scaphoid at point j is

— sk (13)
d’;, ; is':a 3x 1 vector, so the mean m, ; and covariance matrix
Cy,; of the j'" point pair based on all k& samples at pose ¢
can be calculated. The Mahalanobis distance between the new

test data and the model at pose ¢ is calculated using equation
(14).

k _ gk
dg; = 1lg,;

N
1 - new
me = N Z \/<d$fj“ _ m¢,j)TC¢,}(d¢,‘j —mg,;) (14)
j=1

To assess a new wrist, the 2D radial-ulnar fluoroscopic
sequence can be registered with the statistical model using

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.



This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

Palmar view

Dorsal view

-120 -0 80 60

Fig. 7.

the methods described in section IV, and the wrist poses
determined by the 2"¢ SPM component. The MD can then be
calculated (Equation 14) at each pose to measure the deviation
from the ‘standard’ model. The results for the 25 (17 healthy
and 8 abnormal) simulated sequences and 15 (9 healthy and
6 abnormal) real fluoroscopic sequences are shown in figure
8. In this figure the triangles represent healthy subjects and
the squares represent abnormal subjects. The lengths of the
bars through the data points represent the reliability of each
registration, as calculated in Equation (12).

As shown in Figure 8, for the simulated data, most of
the abnormal subjects (squares) have larger MDs than the
normal subjects (triangles). The distinction between the two
groups is less pronounced for the real fluoroscopic sequences.
Additionally, the registration is less reliable compared with the
simulated data, due to blurring effects generated by the wrist
moving too fast.

By varying the threshold (the same threshold for all kine-
matic poses) of MD for classifying the normal and abnormal
cases, the Receiver Operating Characteristics (ROC) curve is
generated and shown in Figure 9. The ROC for both the
simulated data and real data are presented, using only the
successful registrations (section V-B, Eqn. (12)). This resulted
in using 89.3% of the frames for the simulated sequences and
83.5% of the frames for real sequences. The thresholds that
produce the best error rate for simulated and real data are
2.75 and 2.86 respectively. These values result in 87.0% true
positive rate (TPR) and 14.0% false positive rate (FPR) for
simulated sequences, and 70.0% TPR and 30.0% FPR for real
sequences.

The diagnostic conclusion for an individual can be obtained,
by combining the classification results for all of the frames
of the sequence. The test set for diagnosis is small, and the
result rather dependent on a judicious choice of values for
the MD threshold and the method used of combining the
frames. We investigated two ways of deriving the classification
result based on the MDs of frames. The first method is to use

Registration result of one frame from a real fluoroscopic sequence. The registration result for the whole sequence can be found in [23]

the weighted sum of the MD of each frame, which results
in a single MD for each test sequence. The MD of each
frame was weighted according to the reliability factor. The
best operating point in the ROC evaluation, by varying the
‘averaged” MD threshold, is found at the threshold of 2.8
which resulted in sensitivity and specificity values of 68%
and 90% respectively. For the second method, we define
the normal frame ratio (NFR) as the number of successful
frames classified as ‘normal’ divided by the total number of
successful frames in the assessed fluoroscopic sequence. If
the NFR is greater than a threshold, the particular subject
is considered as ‘healthy’, otherwise is diagnosed as having
Scaphoid-Lunated dissociation. Figure 10 shows the ROC
curve obtained by varying the NFR, using a MD threshold
of 2.5 (experimentally selected) for both the simulated and
real data set. The highly quantised nature of the ROC curve
reflects the size of the test set. The best operating point on this
ROC curve is found at a NFR of 0.33 (requiring two thirds of
the detected frames to be classed as abnormal before returning
an abnormal diagnosis) resulting in sensitivity and specificity
of 100% for simulated data and around 80% (83% TPR, 22%
FPR) for real data. Other choices of MD threshold resulted in
sensitivity-specificity combinations in the range (68%-90%) to
(85%-70%).

VI. CONCLUDING REMARKS

We have presented a complete framework that is able to
infer the 3D motion of carpal bones from a single view
fluoroscopic sequence. It uses a hybrid statistical model to
estimate both the pose and bone shapes from the fluoroscopic
sequences allowing the motion of carpal bones during radial-
ulnar deviation to be estimated. The positions and orientations
in the image plane are estimated with high accuracy, and
with slightly less accuracy in the out-of-plane direction. More
importantly, the relative positions of the carpal bones can be
estimated accurately. This is useful for detection of dissocia-
tion conditions. As an example of clinical application for this
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Fig. 9. ROC curve of the simulated data and real data for frame classification.

type of analysis, we have used Scaphoid-Lunate dissociation,
where the underlying pathology is a rupture of one or more
ligaments, and the diagnosis rests on a judgement regarding
the bone separation.

The proposed framework was tested on both simulated (25
subjects) and real (15 subjects) fluoroscopic sequences in the
leave-one-out manner. The average absolute 3D point to point
registration error is 2.45 £1.07 mm, whereas the errors along
the in-plane directions, X and Z, average about 0.5 mm.
There have been no comparable studies reporting cross-subject
2D-3D registration of multiple objects based on a single view.
For comparison, [14] and [15] estimated the shape of the femur
(a much larger structure) based on biplane X-ray images,
reporting root mean square errors of 1.48 £+ 0.41 mm and
1.4mm respectively. In our case, the relative 3D distances
between bones can be estimated more accurately. The error of
the measured 3D Scaphoid-Lunate distances are 0.75 £ 0.50
mm for simulated data and 0.93 + 0.47 mm for real data. In
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Fig. 10. ROC curve of the simulated data and real data for subject diagnosis.

addition, the reliability of the registration can be estimated by
comparing the deviation of each bone from the SPM model
poses with the deviations of other frames in the same sequence.

We also proposed, and conducted a preliminary evaluation
of a method for constructing a ‘standard’ pathology mea-
surement tool for automatically detecting Scaphoid-Lunate
dissociation conditions, based on single-view fluoroscopic se-
quences. For the simulated data, it produced 100% sensitivity
and specificity. For the real data, it achieved 83% sensitivity
and 78% specificity. This tool could be a generic method for
automatic, objective assessment of dissociation conditions. We
have demonstrated its use with fluoroscopic video input. It
appears that the limitation in accuracy arises largely from
motion blurring effects in the video sequences. The method
could equally well be applied using 2D radiographs at fixed
positions. In a clinical setting, specified poses could be ob-
tained using a fixation device.

The computational time for 1 frame was about 3 minutes
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running in Matlab on a 3.6 GHz machine. For a typical se-
quence, this would result in three to five hours of computation,
which would be acceptable for an off-line automatic analysis
tool. If real-time feedback were required, faster computation
would be necessary, which could be achieved by coding key
parts in a compiled language, or use of GPU processing to
parallelise the optimisation process.

In further work, we will extend the current statistical
model with more training data (in progress), and improve
the measurement model by including more healthy subjects.
A larger training set may allow us a different compromise
between constrained model fitting and local refinement. Here
we have sought to avoid local minimal by restricting the
SPM to only two modes of variation, relaxing the fit by local
refinement. A larger dataset may result in a more specific
model, making greater use of observed variability, reducing
the need for the local refinement stage. However, if a range
of abnormal conditions were to be included, the size of the
training set might be prohibitive, requiring the retention of
the local refinement. Our experience in this study indicates
that it is a useful step in model fitting. On the basis of more
data, we could further explore the relationship potentially
associating the poses and shapes of bones. Nakamura et al.
[24] have shown that carpal movement is affected by variation
in the shape of the lunate. This raises the possibility that there
may be more general relationships between bone shape and
kinematics. It may be possible to build a more compact model
by learning these relationships. We also intend to extend the
framework to the (even) more challenging lateral views of
flexion-extension motion, and further interpret the quantitative
results for other wrist conditions. Acquiring a larger data set
would also enable us comprehensively test the classification
performance. Currently training and evaluation are conducted
using the same data in a leave-one-out fashion.
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