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Abstract
In this paper, we propose a novel framework for computing single or multiple atlases (templates)
from a large population of images. Unlike many existing methods, our proposed approach is
distinguished by its emphasis on the sharpness of the computed atlases and the requirement of
rotational invariance. In particular, we argue that sharp atlas images that retain crucial and
important anatomical features with high fidelity are more useful for many medical imaging
applications when compared with the blurry and fuzzy atlas images computed by most existing
methods. The geometric notion that underlies our approach is the idea of manifold learning in a
quotient space, the quotient space of the image space by the rotations. We present an extension of
the existing manifold learning approach to quotient spaces by using invariant metrics, and utilizing
the manifold structure for partitioning the images into more homogeneous sub-collections, each of
which can be represented by a single atlas image. Specifically, we propose a three-step algorithm.
First, we partition the input images into subgroups using unsupervised or semi-supervised learning
methods on manifolds. Then we formulate a convex optimization problem in each subgroup to
locate the atlases and determine the crucial neighbors that are used in the realization step to form
the template images. We have evaluated our algorithm using whole brain MR volumes from
OASIS database. Experimental results demonstrate that the atlases computed using the proposed
algorithm not only discover the brain structural changes in different age groups but also preserve
important structural details and generally enjoy better image sharpness.

I. Introduction
Atlases as the informative representatives of a population of images have been widely used
in many medical imaging applications such as template-based image alignment [1], atlas-
based image segmentation [2], [3], [4], [5] and statistical analysis across subjects [6], [7]. In
addition, for heterogeneous or longitudinal data sets, multiple atlases are usually required to
provide an informative and complete representation of the image data. For example, the ages
of the subjects in Open Access Series of Imaging Studies (OASIS) database [8] range from
18 to 96. Since the structural difference in the brain across different age groups can be
significant [9], it’s not appropriate to construct a single representative atlas image for the
OASIS data. Not surprisingly, algorithms and methods for computing multiple atlases from
image collections have attracted considerable amount of attention recently, and in particular,
the unbiased diffeomorphic atlas construction algorithm proposed in [10] has been
influential for several notable recent developments such as the iCluster algorithm proposed
in [11].
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The iCluster algorithm computes multiple atlases by fitting a Gaussian mixture model to the
input images. The resulting expectation-maximization algorithm (EM) iteratively groups the
images into different clusters (the E-step) and computes a single atlas for images in each
cluster by averaging the multiple aligned images, an approach that is similar in spirit to the
unbiased diffeomorphic atlas construction algorithm. A common and visible feature of the
atlas images generated by the conventional algorithms ([10], [11]) is their characteristic
blurriness and the apparent absence of clear and sharp anatomical details. In short, with their
characteristic lack of image fidelity, the computed atlases do not come across as real
specimen of MRI images of human brains, a shortcoming that could be critical in some
applications. For instance, a clear and sharp atlas is important for the accuracy of atlas-based
image registration and segmentation, because it is difficult to find reliable feature
correspondences between the sharp input images and a template with blurry and fuzzy
structures. In the clinical setting, a characteristically clear and sharp atlas image as an
informative representative of a subpopulation of patients is certainly more meaningful and
accessible to medical practitioners than a fuzzy atlas image without clearly identifiable
anatomical details.

This loss of image details and structures can be traced back to the atlas construction step (M-
step) of the iCluster algorithm in which the atlas is computed as the arithmetic average of
group-wise registered images, a popular atlas-construction paradigm first introduced in [10].
It is our observation that the unbiased diffeomorphic atlas construction algorithm often
produces blurry and fuzzy atlas images unless the input images are highly homogeneous in
their structures. Unfortunately, this is usually not the case and the computed atlases almost
always suffer from the loss of image details in various degrees. This undesirable
shortcoming can be explained in both practical and theoretical terms. In practice, the
existing numerical algorithms used for computing group-wise registration cannot guarantee
a globally optimal solution, and unless the images are unusually similar, non-negligible
registration errors cannot be avoided in general. Coupled with the suboptimal choices of
regularization constants that are often difficult to determine, it is not difficult to imagine a
blurry and fuzzy atlas computed as the pixel-wise arithmetic mean of many and inaccurately
group-wise registered images, which leads to the irreversible loss of structural details. The
second and more geometric explanation can be offered as in Figure 1. The smooth variation
of the input images allows us to assume (e.g., [12]) that these images belong to some smooth
submanifold M in the ambient image space . Unfortunately, this manifold structure is
usually difficult to model directly and perhaps more importantly, it is difficult to utilize in
the group-wise registration framework. Therefore, in essence, the unbiased diffeomorphic
atlas construction algorithm computes the mean of the images in the ambient image space ,
and as the figure shows, this does not guarantee that the result will be on or near the
submanifold M. This results in the loss of common image features and renders the atlas
images often blurry and fuzzy.

In the context of multiple atlas construction from a large image collection, this paper
proposes a novel atlas construction algorithm based on two novel conceptual improvements
that aim to correct the shortcomings described above. First, unlike the EM algorithm
proposed in [11], we will explicitly decouple the clustering and atlas construction steps. This
decoupling provides us with greater flexibility in applying manifold learning methods (e.g.,
[13], [14]) to model the manifold M, an objective that is difficult to accomplish using the
traditional EM-based gaussian mixture model as in [11]. In particular, we will require that
the atlas images are rotation invariant in the sense that suppose I is the atlas for the image
collection {I1, ···, In} and if n different rotations gi are applied to these images to form a new
collection {g1(I1), ···, gn(In)}, then the atlas Ī for the latter collection should be related to I
by some rotation. This technical requirement means that we can no longer assume that the
input images belong to some submanifold M in the image space . Instead, the correct
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assumption should be that modulo rotations, the images belong to a submanifold M in an
(abstract) quotient space Q of  [15], [16], and manifold learning provides a suitable context
and natural solution for modeling M in this abstract setting. Furthermore, its flexibility also
allows us to readily incorporate labeled images in a semi-supervised context, again an
objective that would be awkward to formulate using the frameworks proposed earlier (e.g.,
[10], [11]). Second, we will abandon the usual paradigm of computing the atlas image as the
arithmetic mean of all group-wise registered images. Instead, following the manifold
assumption, we will propose a new paradigm for atlas image construction by computing the
atlas as the weighted arithmetic mean of group-wise registered images. The closer an image
to the true template on M, the larger weight it has. Figure 1 illustrates the main idea that on
the manifold M, the mean (atlas) should be mostly determined by its neighbors as the
faraway subjects have very low weights, and its computation could be formulated in a two-
step process that first determines the neighbors of the abstract mean on the manifold M
(localization) and then renders the mean as an atlas image using these neighbors
(realization). In particular, these two steps utilize the input images differently: in the
localization step, all images are used to determine the neighbors of the abstract mean on M
while in the following realization step, only these neighbors are used to render the atlas
image through weighted group-wise registration. To the best of our knowledge, the explicit
identification and investigation of these two separate and critical processes in atlas
construction have not been reported or proposed in the literature.

The proposed multiple atlas construction algorithm incorporates the ideas discussed above:
A k-nearest neighbor graph (k-NN) is used to model the manifold structure of M [13], [14],
and the graph partition algorithm is applied to the k-NN graph to compute clusters of the
input images. Each atlas is computed as the mean of the images belong to each cluster on M.
In general, the metric on M is unknown; however, the pairwise geodesic distances dij =
dM(Ii, Ij) between images can be estimated using the metric in the quotient space Q. An
important element in the proposed algorithm is to estimate the geodesic distances dM(Ī, Ii)
between the abstract mean Ī on M and images Ii using the pairwise geodesic distances dij as
the inputs. We formulate this as a convex optimization problem, and the solution to this
optimization problem will provide an approximation to dM(Ī, Ii). This will allow us to locate
the mean Ī on the manifold M in the localization step by determining its neighbors (given a
threshold). In the realization step, we use the weighted group-wise registration method to
form the atlas images in each cluster given the estimated neighbors of the atlas. The
proposed algorithm has been extensively evaluated and validated using OASIS data, and the
experimental results have shown that, with greater preservation of important image features
and details, the image atlases produced by the proposed algorithm enjoy better image
sharpness and achieve higher segmentation accuracy in label propagation applications when
compared with atlases obtained using exiting methods.

II. Motivation and related work
Image atlas as a standard template has been widely used for the discovery of dense
correspondences between MR images of different subjects. Thus it is natural to construct the
image atlas based on group-wise image registration (e.g., [10]). In this type of approach, the
atlas formation is cast into an iterative energy minimization framework: input images are
non-rigidly registered to a template in the common domain and the template is updated by
averaging the aligned images. Unfortunately, because of the large number of variables and
the non-convex cost functional, this algorithm, similar to many others, cannot avoid the
prickly traps of local minima. Moreover, the rigidity of the framework makes it difficult to
incorporate other useful models and information in the computation. As alluded to in the
introduction, the atlas generated by this method essentially computes the atlas with respect
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to the the ambient image space while disregarding the potentially useful assumption of an
implied manifold structure by the input images.

In recent years, manifold learning techniques have percolated into the medical image
analysis community, and they have found successes in several recent works. [17] performed
brain population analysis by projecting input brain images onto a low-dimensional space
using Isomap [13]. [18] proposed a framework for registering images to the atlas on
anatomical manifolds. Their empirical manifold is constructed from input images as a k-NN
graph. A sample from the input population with the smallest sum of squares of geodesic
distances to all input images is selected as the atlas. [19] introduced a hierarchical groupwise
registration framework using the k-NN Isomap that provides the intrinsic structure of the
input image dataset for their algorithm. However, all the methods discussed above construct
a single atlas for the entire input image set, which implicitly assumes a homogeneous
population, an assumption that is inappropriate for studying heterogeneous image data sets
that are far more common and important in medical imaging analysis. iCluster is an EM-
based algorithm presented by [20] for computing multiple template images for an image
population. The algorithm fits a Gaussian mixture model to the input images and the input
images are not assumed to possess an intrinsic manifold structure. Furthermore, it is well-
known that the optimization in the EM-algorithm cannot guarantee the globally optimal
solution, and therefore, good initializations of the EM-algorithm, which may not be
available or even possible, are critical for the success of the method.

In this paper, we extend our previous work [21] to the multiple atlas construction problem.
Several pertinent features distinguish our method from the iCluster [20] and many
previously published methods. First, we use the quotient space Q of the image space  by
the rotation group as the ambient image space instead of the usual image space  itself.
Intuitively, a brain image I and its rotated version I′ both represent the same subject. Thus a
rotational invariant distance needs to be introduced such that the distance between I and I′ is
zero. Modeling the objects invariant to some group actions has been an important research
topic in computer vision and medical image analysis for more than a decade. In [22], Miller
and Younes introduced image metrics defined between orbits under group actions and
successfully applied them to image matching. Kurtek et al. utilized q-map which is invariant
under both rotation and re-parametrization groups in the shape analysis of multiple brain
structures [23]. In our work, we employ a similar approach by utilizing the metric between
rotation orbits in  to define the distance in the quotient space Q. Second, the proposed
method explicitly models the intrinsic manifold structure in the quotient space Q using
manifold learning (k-NN graph) [13], [14], [24]. As illustrated in Figure 1, the image data
set usually has the special structure which needs to be incorporated in the atlas construction.
Moreover, we explicitly identify two important steps in the atlas formation process:
localization and realization. We formulate a convex cost function in the localization step that
bypasses the difficulty of globally minimizing the complicated non-convex functional, and
in the realization step, we perform the weighted group-wise registration such that only a few
subjects close to the mean have high weights, while the faraway subjects have very low
weights in generating the atlas image. A similar idea is also presented in the recent work
SharpMean [25] in which, Wu et al. developed an adaptively weighted strategy to compute
the sharp group mean image which is a weighted average of the aligned subjects. Different
from our method, the median image of the input subjects under Euclidean distance was
chosen as the initial template and the weight of each subject for generating the group mean
image was also different across the spatial locations.
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III. Methods
This section presents the proposed algorithm for computing multiple atlases from a
collection of images. The primary aim of our algorithm is to produce sharp atlas images that
retain clear important anatomical structures common to the subpopulation of images they
represent. Furthermore, we also require that the computed atlases are invariant with respect
to image rotations, an important aspect of the proposed method that will be elaborated later.
The strategy for achieving these two somewhat disparate goals is to utilize the notion of
manifold structure implied by the images. Specifically, we will assume, as in many
manifold-based learning methods (e.g.,[26], [27]), that the input images are samples from an
unknown manifold M, and the manifold structure is then modeled using a graph G computed
from the input images and some metric (e.g., similarity) information among the images. The
rotational invariance requirement implies that the manifold of interest M should be
considered as a submanifold of a quotient space (quotient by the rotations), and
computationally, this requires rotationally-invariant metric for computing the graph G. The
graph G allows us to partition the image collection into subcollections, in both supervised
and semi-supervised fashion, such that an atlas can be computed from each subcollection of
images using only metrical information between the images.

Before delving into the details, we will fix the notations that will be used throughout the
following discussion. Let  denote the space of images, and we define images in  formally
as L2-functions on a finite image domain Ω ⊂ IRd (d = 2 for 2D images and d = 3 for 3D
images). Let  ≡ {I1, ···, In} denote an input collection of n images and  ≡ {Ia1, ···, Iat }the
collection of t atlases for the image collection . A rotation g ∈ SO(d) in the image domain
Ω transforms an image I into a rotated image g(I) according to the formula g(I)(x) =
I(g−1(x)) for x ∈ Ω and I ∈ .

A. Rotational Invariance and the Geometry of the quotient space Q
The rotational invariance property described above can be formulated precisely as follows.

Let  denote the input image collection and  are images obtained by

applying n rotations to images in :  for gi ∈ SO(d), 1 ≤ i ≤ n, the atlases

 computed for  are different from the atlases in  up to rotations, i.e.,

 for rj ∈ SO(d), 1 ≤ j ≤ t. The rotational invariance property requires us to work
not in the image space  but in its quotient space Q, the quotient space of  by the rotation
group SO(d) [15], [16]. The quotient space Q is a space that parameterizes the SO(d)-orbits
in  and in this paper, we will assume that Q has a manifold structure induced from the
manifold structure of . Let π :  → Q denote the canonical projection map that sends each
image I ∈  to the unique SO(d)-orbit [I] ∈ Q containing I: π(I) = [I].

There is a well-known bijective correspondence [16] between metrics on Q and SO(d)-
invariant metric on . Recall that a SO(d)-invariant metric on  satisfies the following
condition

for any two images I1, I2 ∈  and g ∈ SO(d). The correspondence between metrics dQ on Q
and SO(d)-invariant metrics d (x, y) on  is provided by the formula [16],
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(1)

for any two points [I1], [I2] ∈ Q. Note that [I1], [I2] are realized in  as SO(d)-orbits, and
dQ simply computes the distance between the two orbits in  as measured by d  in .
Because of the property of SO(d)-invariant metrics, dQ can be computed with respect to
only one transformation instead of a rotation per each orbit.

(2)

The two related metrics d , dQ allows us to go between  and Q. In particular, any
computation relating to a metric on Q can be equivalently formulated using its
corresponding SO(d)-invariant metric on . Fortunately, many metrics in  can be easily
shown to be SO(d)-invariant, such as the usual L2-metric and the following metric proposed
in [12]:

(3)

where vi is the time-dependent vector field that defines the diffeomorphic flow from the
identity to the diffeomorphism hi, and L is a second-order elliptic operator. The metric in (3)
can be computed by using nonrigid diffeomorphic image registration. Given the images Ii in

, the manifold M that will be modeled pertains to the points {[I1], ···, [In]} in the quotient
space Q. As a submanifold of Q, M is naturally equipped with the induced Riemannian
metric, and in the following, we will denote dM([Ii], [Ij]) the geodesic distance function on
M.

B. Graph representation of the manifold M
Because the manifold M does not have explicit representation, we follow the common
approach that uses a graph G = (V, E) to characterize its manifold structure, where V, E are
the node and edge sets, respectively. In this construction, the node set V = {[I1], ···, [In]} is
provided by the points [Ii] in the quotient space Q. The edge set E that defines the
connectivity of G is determined by the pair-wise distances among the points [Ii] via the
standard k-nearest neighbor (k-NN) construction. That is, an edge is formed between every
node and its k nearest neighbors. A simple example is shown in Figure 1, and in this
example, each node is connected to its two nearest neighbors (k = 2) and the resulting graph
gives a good approximation to the underlying curve.

Because of the heterogeneity of some image sets, we partition the graph G into t subgraphs
in order to compute multiple atlases to represent the image sets. Spectral clustering and
related methods provide a readily available algorithms for partitioning the graph G. Popular
and well-known algorithms include Ratio Cut [28] and Normalized Cut [29], and our
unsupervised graph partition algorithm based on Normalized Cut is outlined in Algorithm 1.
The algorithm partitions the graph using the graph Laplacian matrix L that is computed from
the similarity matrix W that encodes all the metrical information provided by the nodes [Ii]:
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(4)

where  and  are k nearest neighborhoods. The parameter σ is empirically estimated by

 where [Iik]is the k-th nearest neighbor of [Ii]. The graph Laplacian
matrix is defined as

(5)

where D is an n × n diagonal matrix with .

After the partition, we obtain t subgraphs Gi = (Vi, Ei), where V1, …, Vt is the partition of
the set V and Ei ⊂ E only includes edges whose two vertices are in Vi. The number of
clusters t is usually set manually by most spectral clustering algorithms. In [30], Zelnik-
Manor and Perona suggested an approach to optimally select the number of clusters by
analyzing the eigenvectors of the graph Laplacian matrix L. For each possible cluster
number, the best rotation is recovered to align the eigenvector matrix with the canonical
coordinate system. The optimal number of clusters t is then set as the cluster number with
minimal alignment cost.

The above unsupervised framework can be easily extended to a semi-supervised framework
with partially labeled data. This extension is relevant because in many medical imaging
applications, a small number of data labeled by experts are usually available, and they
should be utilized to improve the analysis and classification of the remaining unlabeled data.
Inspired by the ideas from semi-supervised learning [26], [27], we consider the graph
partition problem with partially labeled nodes as a classification problem that transfers the
known labels to the unlabeled data.

We will consider the two-class partition problem with the label set Y = {−1, 1} at first. It
can be formulated as a binary classification problem on the manifold with the classifier
defined as a function: f : M → Y. When M is a compact manifold, the eigenfunctions of the
Laplace-Beltrami operator Δ provide a natural orthogonal basis for the Hilbert space L2(M)
[27]. That means any function f ∈ L2(M) can be written in terms of the eigenfunctions of Δ:

(6)

where ai are coefficients and ui are eigenfunctions such that Δui = λiui. Thus we could fit
the classifier on the labeled data and find the optimal model parameters a which will be used
to classify the unlabeled data. Let the sample set be  = {x1, …, xs, xs+1, …, xn} ⊂ M.
Without loss of generality, we assume the first s data are labeled and others are unlabeled.
The label set is {c1, …, cs}, where ci ∈ Y. Given the graph Laplacian L, we can solve the
eigenvector problem Lu = λu to generate the corresponding eigenfunctions. Let u1, …, up
be eigenvectors corresponding to the p smallest eigenvalues. ui = [ui1, …, uin]T, where i = 1,
…, p. Then we are able to train the classifier from the labeled data by minimizing the
following cost function
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(7)

where the coefficients a = [a1, …, ap]T, the labels c = [c1, …, cs]T and the basis matrix

.

The closed-form solution of this optimization problem is a = (UT U)−1UT c. For the
unlabeled data xi, i > s, we just apply the trained classifier and set the label to be 1 if

, otherwise the label is set to −1. Fort-classes graph partition, t > 2, we follow
the one-versus-the-rest approach which is commonly used in multiclass support vector
machines [31]. We build t separate two-class classifiers fk, where k = 1, …, t. The k-th
classifier is estimated by using the data from class-k as the positive samples and the data
from remaining t −1 classes as the negative samples. Then t coefficients ak = [ak1, …, akp]T,
1 ≤ k ≤ t are computed and will be used to classify unlabeled data. For xi, i > s, the label is

set to be . This multi-class semi-supervised graph partition
algorithm is summarized in Algorithm 2.

C. Estimating mean from pairwise geodesic distances
After the graph partition, we need to construct an atlas for each subgraph. Without loss of
generality, we suppose {x1, ···, xn} are nodes of one subgraph Ga on a manifold M. Let x̄ ∈
M denote the mean of points {x1, ···, xn} on M and dM denotes the Riemannian geodesic
distance on M. Although we do not have the analytic representation for dM, we could
approximate dM(xi, xj), 1 ≤ i, j ≤ n with dQ and the graph structure of Ga. For each edge (xp,
xq) ∈ Ea, let the distance dQ(xp, xq) be its weight. Because a geodesic is defined as the
shortest path between two points on the manifold, inspired by the approach in ISOMAP
[13], we could use Dijkstra’s algorithm or the Floyd-Warshall algorithm [32] to find the
shortest path between two nodes xi, xj on the graph and use it to approximate the geodesic
on the manifold M. One possible way to determine the mean x̄ is the following. Let ai =
dM(xi, x̄), 1 ≤ i ≤ n. Determining ai is of course equivalent to locating x̄ on M, and ai can be
determined as the solution to an optimization problem given by:

(9)

The linear inequality constraints between ai and dM(xi, xj) are imposed because dM satisfies
the triangle inequality [33]. For our problem, the manifold M and its metric dM are
unknown, and consequently, the higher-degree constraints cannot be known. Thus only
linear constraints are considered in this paper.

The optimization problem is clearly convex since the objective function is strictly convex
(the Hessian is positive-definite everywhere) and the domain, which is the intersection of
half-spaces, is also convex. This particular type of optimization problem (with quadratic cost
function and linear inequality constraints) can be solved efficiently even with a large number
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of variables and constraints. And because the objective function is strictly convex, the
solution is unique [34]. Furthermore, the solution is stable with respect to the input
parameters dM(xi, xj) in the sense that small perturbations of dM(xi, xj) will not significantly
alter the solution a1, ···, an [34]. The quadratic programming problem in (9) is special in that
the Hessian in the objective function is just a diagonal matrix and the constraint matrix is
sparse. Therefore, in our experiments, we choose the interior point method which can handle
large-scale quadratic optimization problem. For computing robust L1-median [35] instead of
mean, we simply need to change the cost function to a1 + a2 + ···+ an.

D. Computing the image atlases
The result of the previous localization step provides us with the pairwise distances dM([Ī],
[Ii]), and at this point, the atlas has been located only in the abstract manifold M in terms of
these distances. In the realization step, we will render the atlas image using the distance data
dM([Ī], [Ii]) and the input images. Specifically, given the vertex set {[I1], ···, [In]} of
subgraph Ga and the corresponding non-negative numbers ai as estimates on the geodesic
distances dM([Ī], [Ii]), where i = 1, …, n, we realize the image atlas using a weighted group-
wise registration approach. Because the closer a sample image to the atlas on the manifold
M, the more contribution it will give in atlas realization, the weight is in the form of an

exponential function . Given the k-NN graph, σ is empirically estimated by the
kth smallest ai. Since the weight will be close to 0 if ai is large, we determine K points in
{[I1], ···, [In]} that are close to [Ī] as measured by dM, and the atlas image is then
approximated from these points with respect to the metric dQ in Q. In practice, a positive
integer K is specified such that the sum of weights of K points [Ii1], ···, [IiK] with shortest
distances to [Ī] covers more than 95% of the total weight.

We could approximate [Ī] by solving the following optimization problem:

(10)

wj can be constructed from the estimated geodesic distances aij:

where . Using the metric defined by equation (3), the
corresponding atlas Ī is computed by solving the variational problem

(11)

where gj ∈ SO(d), hj is diffeomorphism and L is a second-order elliptic operator. We use an
iterative approach to solve the above problem. In each iteration, the input images are group-
wise aligned by rotations and then a weighted nonrigid group-wise registration is applied.
The atlas image is updated as the weighted average of the registered input images. Overall,
our multiple atlases construction approach is outlined in Algorithm 3.
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IV. Experiments
In this section, we apply the proposed algorithms to compute atlases from collections of MR
images and compare with the conventional image atlas construction methods ANTS [36]
and iCluster [11], [20] respectively. Specifically, the image data used in our experiment are
the MR images from the freely available Open Access Series of Imaging Studies (OASIS)
dataset [8]. OASIS contains T1 weighted MR brain images from a cross-sectional
population of 416 subjects. Each MR scan has the size of 176×208×176 voxels and the
resolution of 1 × 1 × 1 mm3. The ages of the subjects range from 18 to 96. For each subject,
a label image with segmentations of white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF) is also provided.

A. Single atlas for OASIS data
In the first experiment, we evaluated the performance of our graph-based single atlas
construction method. For comparison, we employed the image template construction method
provided by Advanced Normalization Tools (ANTS), which is a state-of-the-art ITK-based
toolkit for computational anatomy. The atlas construction method in ANTS is alike the
conventional group-wise image registration approach presented in [10]. The atlas is
iteratively generated by registering the input images to the latest group mean and then
averaging the warped subjects. We used symmetric diffeomorphic transformation and the
mean squared similarity measure in our experiment. 50 subjects across different ages were
selected from the OASIS dataset for the atlas construction. The image atlases constructed by
the proposed method and ANTS are shown in Figure 2. It’s clear from the figure that our
sharp image template preserves better the subtle anatomical structures than the “fuzzy”
mean image generated by the conventional atlas construction method in ANTS.

In order to quantitatively evaluate the effectiveness of the proposed atlas construction
method, we also conducted an experiment on atlas based image segmentation. Since the
deformation of each input image to the atlas is computed, the corresponding WM/GM/CSF
label map can be warped to the reference domain. We set the tissue label of the image atlas
at each voxel as the majority of tissue assignments from all registered images. Then the
image template with the tissue label map was warped to 10 additional OASIS subjects to
achieve the atlas based tissue segmentation. We used the DICE score to quantitatively
measure the segmentation accuracy. The segmentation DICE scores of white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF) for the ten OASIS subjects are displayed in
Figure 3. In this atlas based segmentation application, the image atlas constructed by the
proposed method consistently achieves better segmentation accuracy than the mean image
template generated by ANTS, with the overall average DICE score 0.7769 by our method
and 0.7420 by ANTS.

B. Multiple atlases for OASIS data
Because the structural difference in the brain across different age groups can be significant
[9], the OASIS data set is far from homogeneous. Therefore, instead of a single mean
template image, multiple atlases are required to represent the whole OASIS data
satisfactorily.

In the first part of this experiment, we constructed two atlases for the collection of 416
subjects in the OASIS dataset using both the unsupervised and semi-supervised methods. In
all following experiments, we set k = 10 when constructing the k-NN graphs. For the
unsupervised graph partition, we use two clusters, and for the semi-supervised graph
partition, we randomly choose 20 subjects younger than 50 years old and 20 subjects older
than or equal to 50 as the labeled samples. The remaining subjects are considered as
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unlabeled samples. Table I compares the means and standard deviations of ages of subjects
in the two clusters computed by EM-based iCluster algorithm [20], our unsupervised and
semi-supervised methods. The means and standard deviations of two age groups separated
by 50 are also listed in Table I as a reference. The clustering result of our unsupervised
method is similar to iCluster, while our semi-supervised method gives slightly smaller mean
ages for both young and old groups.

The partial labels in semi-supervised learning provide useful information to correctly
classify more subjects aged between 50 and 70 into the older group. As shown in Figure 4,
the atlases generated by iCluster are blurry, while the atlases computed by our methods are
substantially sharper, retaining more structural details. This is not surprising because our
atlases are computed as means on the manifolds, instead of the means in the ambient space.
The age histogram also reveals that a third cluster for middle-aged subjects can be defined
for the OASIS cross-sectional set. Accordingly, in the second experiment, we used three
clusters for our unsupervised atlases construction algorithm. For the semi-supervised
algorithm, we first divided the OASIS population into three groups: young (subjects younger
than 40), middle-aged (between 40 and 60) and older adults (older than 60). The means and
standard deviations of ages of subjects in these three pre-determined groups are displayed in
Table II. Then we randomly sampled 20 subjects from each group as the labeled data and
considered the remainder unlabeled. The histograms of both unsupervised and semi-
supervised partition results are shown in Figure 5. For our unsupervised method, the middle-
aged cluster has a significant overlap with the old cluster, and a similar result was also
reported in [20]. The clustering methods employed by both algorithms are designed to detect
and discover the dominant structural modes, and there is an obvious structural difference
between old (around 60) and elderly (around 75) subjects. This complicates the task of
determining the middle-age mode in the age distribution using these clustering techniques.
However, since the semi-supervised method uses more information from partially labeled
data, it gives a better classification for different modes in the age distribution. Table II
compares the means and standard deviations of ages of subjects in all three classes
computed by iCluster, our unsupervised and semi-supervised methods, and Figure 6 shows
the corresponding atlases constructed by these three algorithms. The clustering result of our
unsupervised method is similar to iCluster, but our method provides considerably sharper
atlases, which are very useful in applications such as atlas-based segmentation and tensor-
based morphometry. Compared with corresponding mean ages computed by iCluster and
our unsupervised methods, the mean age of class two computed by our semi-supervised
partition method is 54.6, which is substantially closer to the mode for the middle-aged group
one would expect from the histogram of the age distribution.

With the age information for some subjects, our semi-supervised method has the ability to
construct more than three atlases across ages, which is akin to the population shape
regression [12]. The regression method requires ages of all subjects in the data set, while our
method only needs class labels for a small number of images. The OASIS data can be
partitioned into seven classes with ten years interval. We randomly chose ten subjects from
each class as the labeled data and consider the remaining unlabeled. Note that only 16.8% of
images are labeled. The atlases computed across seven different age groups in the OASIS
data are shown in Figure 7. All atlases are sharp with many clearly visible structural details,
and in particular, the progressive enlargement of the ventricle with aging can be observed
clearly in the atlas sequence and the accelerated expansion of the ventricle after age sixty
shown in the atlas sequence corroborates with the findings reported in [9] and [12].
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V. Conclusion
We have proposed a novel approach to the multiple atlas construction problem. Compared
with many algorithms published in literature for achieving this task, the novel point
advocated in this paper is the importance of having sharp atlas images that retain clear
structural details common among the input images. For large image collections, which
typically contain substantial structural heterogeneity, the proposed two-step approach
achieves the above stated aim by first partitioning the image collection into (relatively) more
homogeneous subcollections followed by a novel atlas construction algorithm that explicitly
computes a single image atlas for each sub-collection of images. We have provided several
experimental results that validate the proposed algorithm, and in particular, comparisons
with existing methods have shown that the atlases computed using the proposed algorithm
enjoy better image sharpness with better preservation of important image features and
details.
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Fig. 1.
Ten points on an one-dimensional manifold. Left: Mean for the ten points computed using
the metric of the ambient space (iCluster). Right: Mean computed using the metric of the
submanifold M (the proposed method). Notice the greater preservation of image features
and structures of the right atlas.
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Fig. 2.
Axial view of constructed image atlases. (a): Atlas generated using ANTS. (b): Atlas
generated using the proposed method.
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Fig. 3.
The segmentation DICE scores of (a) white matter (WM) (b) gray matter (GM) and (c)
cerebrospinal fluid (CSF) for ten subjects in OASIS. (d) shows the box plot of the
segmentation results.
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Fig. 4.
Two atlases for OASIS data. First row: atlas for young subjects. Second row: atlas for
older subjects. (a): atlases using iCluster. (b): atlases using our unsupervised algorithm. (c):
atlases using our semi-supervised algorithm.
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Fig. 5.
Three classes partition. (a): unsupervised method. (b): semi-supervised method. The figure
is best viewed in color.
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Fig. 6.
Three atlases for OASIS data. First row: atlas for young subjects. Second row: atlas for
middle aged subjects. Third row: atlas for elderly subjects. (a): atlases using iCluster. (b):
atlases using our unsupervised algorithm. (c): atlases using our semi-supervised algorithm.
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Fig. 7.
Atlases across different ages for subjects in the OASIS data set.
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TABLE I

Means and standard deviations of subject ages for two classes partition

iCluster unsupervised semi-supervised selected

Class 1 39.1 ± 19.9 37.3 ± 18.7 33.7 ± 17.0 27.7 ± 9.9

Class 2 77.8 ± 9.3 77.0 ± 9.9 75.3 ± 9.6 73.7 ± 10.3
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TABLE II

Means and standard deviations of subject ages for three classes partition

iCluster unsupervised semi-supervised selected

Class 1 31.2 ± 14.5 30.3 ± 13.9 30.0 ± 16.9 23.4 ± 4.4

Class 2 68.9 ± 13.6 67.1 ± 15.2 54.6 ± 14.9 50.4 ± 5.5

Class 3 79.6 ± 7.5 79.6 ± 7.3 77.1 ± 8.5 76.5 ± 8.0
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Algorithm 1

Unsupervised graph partition based on spectral clustering

1 Compute similarity matrix W and graph Laplacian matrix L.

2 Solve the generalized eigenvector problem, Lu = λDu. Let u1, …, ut be t eigenvectors corresponding to the smallest eigenvalues
and form the matrix U = [u1, u2, …, ut] ∈ IRn×t.

3 Let yi ∈ IRt be the i-th row of U, where i = 1, …, n and cluster the points y1, ···, yn into t clusters using K-means algorithm.
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Algorithm 2

Semi-supervised graph partition

1 Compute similarity matrix W and graph Laplacian matrix L using both labeled and unlabeled data.

2 Solve the eigenvector problem, Lu = λu. Let u1, …, up be p eigenvectors corresponding to the p smallest eigenvalues.

3 Give s labeled data, we will train t separate two-class classifiers. To estimate the kth classifier fk, 1 ≤ k ≤ t, we first form a label set
ck such that the data in class-k have the label value 1 and the data in remaining classes have the label value −1. Then we minimize
the following cost function

E(ak) = | | Uak - ck | | 2, (8)

and obtain the coefficients ak = (UT U)−1UT ck in the linear classifier fk.

4 We use the coefficients ak = [ak1, …, akp]T, 1 ≤ k ≤ t computed from step 3 to classify the unlabeled data. For xi, i > s, the label is

simply set as .
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Algorithm 3

Multiple atlas construction on image manifolds

1 Construct k-NN graph for image data in the quotient space Q.

2 Partition the k-NN graph into t subgraphs.

• For unsupervised graph partition, apply the spectral clustering method in Algorithm 1.

• If some image data have labels, apply the semi-supervised graph partition discussed in Algorithm 2.

3 For each of t subgraphs,

• locate the mean on the manifold M by solving the convex optimization problem in equation (9).

• generate the image altas by performing the weighted group-wise image registration in equation (11).
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