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Uncertainty driven probabilistic voxel selection for
image registration

Boris N. Oreshkin, Tal Arbel Member, IEEE,

Abstract—This paper presents a novel probabilistic voxel
selection strategy for medical image registration in time-sensitive
contexts, where the goal is aggressive voxel sampling (e.g. using
less than 1% of the total number) while maintaining registration
accuracy and low failure rate. We develop a Bayesian framework
whereby, first, a voxel sampling probability field (VSPF) is built
based on the uncertainty on the transformation parameters.
We then describe a practical, multi-scale registration algorithm,
where, at each optimization iteration, different voxel subsets are
sampled based on the VSPF. The approach maximizes accuracy
without committing to a particular fixed subset of voxels. The
probabilistic sampling scheme developed is shown to manage
the tradeoff between the robustness of traditional random voxel
selection (by permitting more exploration) and the accuracy
of fixed voxel selection (by permitting a greater proportion of
informative voxels).

I. INTRODUCTION

Image registration is one of the critical problems in the field
of medical imaging, spanning a wide range of applications
including, but not limited to, diagnostic imaging [1], image
guided interventions [1], [2], [3], image guided therapy [4]
and patient to atlas mapping [5]. Typically, the evaluation of
the similarity measure and/or its derivatives are required to
perform the optimization over the transformation parameters.
Many registration strategies have been developed under the
implicit assumption that all of the voxels (or, at least, as
many as necessary to achieve desirable result) can be used
for calculating the similarity measure — the ultimate goal
being the highest accuracy at any computational cost. How-
ever, in time sensitive applications, such as in image guided
interventions [1], [2], [3] and image guided therapy [4], image
registration must be performed both accurately and quickly
in order for the techniques to be adopted by clinicians. An
example of this type of domain is image guided neurosurgery,
where ultrasound images acquired during the operation must
be quickly matched to pre-operative MRI or CT in order
to correct for brain shift [1], [2], [6], [7], [8]. Performing
computations based on all the available image voxels can be
prohibitively costly mainly due to the large number of voxel
intensity values involved in the calculations. Time-sensitive
applications generally benefit from techniques that speed up
direct image registration by utilizing only a subset of available
voxels during registration. In these contexts, a decrease in
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accuracy of several percentages can be tolerated in order to
assure the preservation of robustness and a significant decrease
in registration time. However, significant speedups attained
via a very aggressive reduction in the number of selected
voxels (e.g. less than 1% of the total number of voxels)
often result in a significant deterioration in robustness (i.e.
an increase in failure rate) and relatively rapid increase in the
resulting registration error. In this paper, our main goal is to
demonstrate the promise of a voxel sampling technique based
on the Bayesian model for registration parameter uncertainty,
by showing that a well designed sampling strategy is capable
of maintaining the functionality of the registration procedure
even if the average number of voxels used in similarity metric
calculations is very low. In other words, we explore the limits
to which image registration can be pushed in terms of voxel
selection. Specifically, the goal is to develop a voxel selection
(sampling) scheme that would work well even when a very
small percentage of voxels (on the order of 0.1%) is used for
registration, thus attaining fast registration in contexts where
time is the most valuable resource. However, the registration
framework based on this voxel selection scheme is also
required to guarantee reliable and accurate results, a goal that
is key to its adoption in the context of clinical practice (time
sensitive domains, e.g. image guided therapy [4] or image
guided interventions [1], [2], [3]).

Randomized voxel selection is one commonly used tech-
nique for reducing the computational cost of registration,
where a randomly selected subset of all voxels are used
to drive the optimization [9], [10]. This technique gained
popularity due to its simplicity. Randomized voxel selection,
which avoids any bias towards particular image patterns, does
lead to a reduction in registration accuracy. Thus the utility of
optimizing voxel selection has been well recognized. Early
works that attempted to optimize voxel selection presented
heuristics for the relatively simple context of template match-
ing [11], [12] and demonstrated the advantage of optimized
selection. More recently, a threshold-based optimized voxel
selection method was proposed by Reevs and Hezar [13]. They
proposed a threshold based k-space voxel selection scheme
based on the mean squared reconstruction error criterion in
the context of the magnetic resonance image reconstruction.
However, voxels selected by the threshold based approach
tend to form spatially localized clusters leading to reduced
robustness. Dallaert and Collins [14] attempted to overcome
this effect and proposed a heuristic voxel selection strategy for
the context of template based tracking. It involves computing
the Jacobian of the similarity metric for every voxel and
randomly selecting M out of the top 20 percent voxels with
the highest Jacobian [14]. Brooks and Arbel [15] extended
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the approach of Dellaert and Collins [14] by proposing an
information theoretic selection criterion and addressing the
issue of the Jacobian scale. In practice, many methods simply
favour voxels with high intensity gradient magnitudes since
they better reveal internal structure of the image and thus
are deemed more useful for obtaining a good alignment.
Furthermore, Sabuncu and Ramadge proposed the gradient
magnitude subsampling (GMS) approach, where the moving
image is probabilistically subsampled using non-uniform grid
generated based on the probabilities proportional to the gra-
dient magnitude [16]. This approach permits diversification
and spread of the subsampled voxels while still focusing
on image details. The same paper discusses the fact that
the randomized subsampling is superior to the subsampling
on a regular grid (decimation). An extension of this work
employing the mixture of the previous approach with the
uniformly random subsampling was proposed by Oreshkin
and Arbel in [17]. Here it is proposed to sample from the
convex combination of the probability fields generated via the
GMS and the uniformly random sampling approaches and the
mixing parameter is identified from learning procedure using a
small training dataset. Finally, curvlet based sampling, recently
proposed by Freiman et al. [18] was tested on Vanderbilt RIRE
(Retrospective Image Registration Evaluation) dataset [19] and
resulted in approximately the same level of accuracy as the
GMS approach [16]. All these approaches work well in some
contexts, but most fail in the low sampling rate scenario that is
the focus of the current paper. Moreover, existing approaches
often lack a direct link to the task at hand, namely, the
estimation of the registration parameters. Overall, developing
a formal, general stochastic voxel selection framework for low
sampling rate image registration is still an open research topic.

In this paper, we propose a new probabilistic voxel selection
strategy based on a multi-resolution voxel sampling probability
field (VSPF), formed by the set of probabilities associated with
image voxels. At every scale, we optimize the VSPF to mini-
mize the transformation parameter uncertainty calculated from
the Bayesian generative model for the approximate moving
image. In the proposed framework, the most informative vox-
els are selected more frequently, while the exploration of the
image continues via sampling different voxel subsets at each
optimization iteration. The fact that each scale has its own
VSPF allows to further exploit this feature by emphasizing
different voxel subsets at different resolution scales. We derive
the analytical solution of the VSPF optimization problem and
illustrate the adaptive nature and generality of the approach.
We show that deterministic selection rules similar to e.g. one
presented in Reevs and Hezar [13] and the random voxel
selection based on uniform probabilities of Wells et al. [10]
can be cast as particular cases of our framework. Specifically,
the probabilistic sampling scheme developed manages the
tradeoff between the robustness of random voxel selection (by
permitting more exploration) and the accuracy of fixed voxel
selection (by permitting a greater proportion of informative
voxels). Finally, we propose a practical algorithm based on
our framework and demonstrate significant registration per-
formance gains through multi-modal (MRI-CT) image regis-
tration experiments with the popular, publicly available RIRE

Vanderbilt dataset [19]. One of the limitations of this dataset
is that validation is restricted to rigid multi-modal registration
only. The rest of the paper is organized as follows. In Section II
we describe the relationship between direct image registration
and voxel selection and introduce the notion of the VSPF. In
Section III-A we define voxel utility, which is used to optimize
the VSPF and to build a practical multi-scale algorithm in
Sections III-B and IV. Results of numerical experiments are
then presented in Section V. Section VI discusses our findings,
limitations inherent to the proposed methodology and to the
validation method. Section VII concludes the paper.

II. PROBLEM STATEMENT

Direct parametric image registration is formulated
for a reference image, I(x) = [I1(x1), . . . , IN (xN )],
and a transformed moving image, V (Tθ(x)) =
[V1(Tθ(x1)), . . . , VN (Tθ(xN ))] both defined as collections
of N voxels. For clarity and simplicity we denote the
images as I = [I1, . . . , IN ] and V = [V1, . . . , VN ]. Each
of the voxel intensities is defined as a mapping from the
coordinate space X ⊆ Rd to the intensity space I ⊆ R,
Ii, Vi : X → I, i = 1 . . . N , where d is the dimensionality of
coordinate space. The transformation function, Tθ : X → X ,
is characterized by the parameters θ ∈ Θ. Typical examples
of transformation functions include affine transformation
containing rotation, translation, scale and skew as special
cases; and non-rigid transformation based on e.g. B-spline
modeling that allows capturing non-linear free-form image
transforms. The goal is to find the transformation parameters
that maximize the similarity metric DN : IN×2 → R that
establishes correspondence among voxels of the moving and
the reference images and then maps the intensity values of
the reference and the moving images into a single number
representing the degree of image similarity. Widely used
similarity metrics are mutual information [10] and normalized
mutual information (NMI) [20] 1.

The registration parameter optimization problem associated
with similarity metric DN can be formally stated as:

θopt = arg max
θ∈Θ

DN [I(x), V (Tθ(x))]. (1)

One of the major challenges encountered when solving this
problem is the fact that the computational cost of computing
DN increases with N (sometimes linearly and sometimes
quadratically). This could be a major obstacle when using
registration algorithms in computer assisted interventions and
other real time or soft real time applications. One of the
most popular approaches to alleviating this problem is voxel
selection, when only a subset of voxels are used to calculate
the approximation to the similarity metric. Formally, voxel
selection can be defined with a selection operator SM : IN →
IM reducing the dimensionality of image intensity space from
N to M ,

θsel = arg max
θ∈Θ

DM [I(x),SM ◦ V (Tθ(x))]. (2)

1These metrics have been popular in general literature as well as in the
context of the RIRE dataset
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The approximate solution θsel based on the correspondences
of M < N voxels is thus less computationally expensive.

One popular approach to solving (2), provided we have a
sufficiently good initial guess θ0, is the iterative Gauss-Newton
algorithm:

θn+1 = θn + H−1
M ∇θnDM [I(x),SM ◦ V (Tθn(x))], (3)

where the Hessian HM of the similarity metric with respect
to the transformation parameters is given by:

HM = ∇θn∇θnDM [I(x),SM ◦ V (Tθn(x))]. (4)

We propose to extend the voxel selection framework by
introducing the optimized voxel sampling probability field
(VSPF) P ⊆ [0, 1]N , P = [p1, p2, . . . , pN ], where pi in the
column vector P determines the probability that we select i-th
voxel for the calculation of the similarity metric and

∑N
i=1 pi

is the average number of selected voxels. Here each pi is
related to the randomized voxel selection indicator di ∈ {0, 1}
such that a given voxel is selected if di = 1, discarded if
di = 0 and the expectation of the indicator is equal to pi,
E{di} = pi. We also propose to use a unique voxel selection
SMn at every optimization iteration n obtained by sampling
from the VSPF. This results in the continued exploration of
the images being registered. In the following sections we
investigate how the notion of VSPF is related to the parameter
uncertainty and develop a framework for optimizing the VSPF.

III. VSPF OPTIMIZATION BASED ON BAYES
UNCERTAINTY

In this section, we present a generative model and a set
of assumptions underlying our analysis of the utility of each
voxel for the registration procedure and then optimize the
VSPF based on the utilities of voxels. One of the core foun-
dations underlying our model is the Baysian approach. Within
the Bayesian framework we assume that the transformation
parameters are random variables. The natural justification for
this assumption is the fact that the values of the registration
parameters realized for a given pair of images depend on a
large variety of factors that are impossible or hard to model
explicitly. Uncertainty of patient positioning in both modalities
and equipment calibration errors are just two of those factors.
The most general and rigorous way to handle this uncertainty
is to assume that the multiple unknown factors affecting the
registration parameters and thus the registration parameters
themselves are stochastic (random). The fact that there are
many stochastic factors affecting the registration parameters
suggests that one could choose a Gaussian distribution as an
appropriate prior distribution for the registration parameters in
the Bayesian model.

In Section III-A we create a generative model for the voxels
of the moving image based on the Taylor expansion of the
voxel values with respect to the registration transformation
parameters. This model basically quantifies how a small per-
turbation in a registration parameter vector distorts the given
voxel. Based on this model and on the Bayesian formulation
of the registration parameter estimation problem, given voxels
from the moving image, we quantify the utility of each voxel.

In other words, we quantify the potential that each voxel has
towards improving the estimation of registration parameters.

In Section III-B we optimize the VSPF in such a manner
that the total registration parameter estimation error calculated
from our generative model is minimized via proper assignment
of VSPF values. We initially pose the VSPF optimization
problem as a constrained problem and then use Lagrange
relaxation to find a simpler formulation. Our solution to the
problem results in the VSPF that assigns higher sampling
probabilities to the voxels that have higher utility. In other
words, the proposed sampling strategy based on the optimized
VSPF tends to favor those voxels that have better chance in
helping to improve the estimation of registration parameters
based on our generative model for the moving image.

Note that this section addresses exclusively the theoretical
foundations of the proposed framework. Our implementation
of these ideas as well as recommendations for setting the
parameters are discussed in Section IV.

A. Analysis of Bayes Uncertainty

In this section we describe the generative model that we use
to assess the utility of each voxel during the voxel selection
procedure. Generative models used to construct practical simi-
larity metrics DN (·) may be found e.g. in [10]. In this section
we briefly state main analysis results without concentrating
on technical details. The technical details (including the def-
initions of expectation and variance operators) are presented
in Appendix A.

We propose the following first-order Taylor approximation
of the moving image Vi(Tθ(x)) defined in Section II:

Vi(Tθ(x)) ≈ Vi(Tµθ (x)) + gTi (θ − µθ) + ξi, (5)

where gi = ∂Vi(Tθ(x))
∂Tθ(x)

∂Tθ(x)
∂θ

∣∣
θ=µθ

and ξi is modeling noise.
Our generative model and the ensuing analysis of Bayes

uncertainty are based on the following set of assumptions:
A1 Registration parameters θ are random variables with

prior Gaussian distribution having mean µθ and covari-
ance matrix Rθθ.

A2 The modeling noise ξ is Gaussian zero-mean with vari-
ance σ2

ξ , independent of θ and such that for voxels i 6= j
ξi is independent of ξj .

A3 The cross terms of the covariance ma-
trix RV V are negligible: |gTi Rθθgj | �√

(gTi Rθθgi + σ2
ξ )(gTj Rθθgj + σ2

ξ ),∀i 6= j.

Now we introduce the set D = [d1, d2, . . . , dN ], composed
of the randomized voxel selection decisions di ∈ {0, 1}. This
is related to the vector of selected voxels VD = [. . . Vi, . . .]

T ,
where Vi is included in VD if di = 1. Recall that the decision
vector is related to the VSPF through expectation: E{di} = pi.
In other words, the i-th element of VSPF defines the frequency
of making the decision di = 1 corresponding to selecting the
i-th voxel for similarity metric evaluation.

Let the optimal Bayesian estimator θ̂D obtained using a re-
alization of the random vector VD of voxel selection decisions.
We chose the variance of this optimal Bayesian estimator as
a natural characterization of the Bayesian uncertainty. Under
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our modeling assumptions listed above it can be shown (please
refer to Appendix A for details) that this variance has the
following form:

var(θ − θ̂D) = Rθθ −
N∑
i=1

piRθViR
−1
ViVi

RT
θVi , (6)

where RViVi = var(Vi) and RθVi = cov(θ, Vi). Each term
in the sum weighted by pi represents the average contribution
of every voxel towards decreasing the variance of estimating
the transform parameters on the basis of known moving image
values {Vi}Ni=1.

B. Optimization of VSPF

We now optimize the VSPF by posing the problem of
optimizing registration parameter uncertainty characterized
by the trace of the error covariance matrix. We chose to
characterize registration parameter vector uncertainty by the
trace of the parameter covariance matrix, which is a common
choice in statistical parameter estimation literature: for a given
estimator, the trace of its error covariance matrix is equal
to the mean squared estimation error (see e.g. [21], Exam-
ple 3.6). Consequently, based on expression (6) we introduce
Ui = tr(RθViR

−1
ViVi

RT
θVi

) and call this voxel utility. This
value characterizes the potential that each voxel has towards
decreasing the variance of estimating the transform parameters
on the basis of known moving image values {Vi}Ni=1 under
model (5).

Our optimization problem is constrained by the voxel sam-
pling probability pi being non-negative, upper bounded by
0 < Ph ≤ 1 and is subject to the constraint on the average
cost Cave of processing the selected voxels (C is the single
voxel processing cost). One could consider assigning different
processing costs to different voxels by introducing Ci instead
of C. At the same time, in practice we have the case where
Ci = C. Moreover, there is no loss of generality in supposing
that Ci = C as our current results can be easily extended in the
case of different voxel processing costs. Because of this and
because it makes our derivations more succinct and simpler to
understand, we prefer to assume that Ci = C. Mathematically
this can be formulated as follows:

P∗ = min
P

tr var(θ − θ̂D)

such that pi ≥ 0, pi ≤ Ph,

N∑
i=1

piC = Cave. (7)

Using Lagrange multipliers and skipping the constant term
trRθθ we obtain the following Lagrange function:

J (P) = −
N∑
i=1

piUi −
N∑
i=1

γipi

+

N∑
i=1

ηi(pi − Ph) + λ(Cave −
N∑
i=1

piC). (8)

It can be shown (see Appendix B) that the problem (7) can
be reformulated as follows using the Lagrange relaxation
method [22] and introducing the auxiliary variable A > 0:

P∗ = min
A,P
J (P)

such that pi ≥ 0, pi ≤ Ph,

N∑
i=1

piC = Cave,

pi = A(Ui + γi − ηi + λC). (9)

The solution of the reformulated problem has the following
form:

p∗i =

A(Ui + λ∗C) if 0 ≤ A(Ui + λ∗C) ≤ Ph

Ph if A(Ui + λ∗C) > Ph

0 otherwise
(10)

Here the auxiliary variable A should be determined from the
reformulated minimization problem and we will later show
how this can be accomplished by analyzing the properties of
the cost function. The lagrange multiplier λ∗ is selected to
satisfy the average processing cost constraint, P∗TC = Cave

(here (·)T is the vector transpose operator and C = [C, . . . , C]
is the vector of costs).

Equation (10) provides a general intermediate solution. This
intermediate result has interesting implications. From the set
of inequalities 0 ≤ A(Ui + λ∗C) ≤ Ph in (10) we can see
that for an arbitrary value of A the voxel selection distribution
P∗ is comprised of three types of voxels defined by two
thresholds: −λ∗Ci and PhA

−1 − λ∗Ci. If the utility, Ui, of
a given voxel is below the first threshold this voxel is never
selected (p∗i = 0). If the utility Ui of the voxel is between
the two thresholds, the voxel may or may not be selected
with probability proportional to its utility, p∗i = A(Ui+λ∗C).
Finally, for voxels deemed very informative, for which utility
Ui exceeds the second threshold we have p∗i = Ph and thus
voxels from this class are most frequently selected.

In the following we provide two theoretical results that
characterize (i) the behaviour of J (P∗) as a function of the
auxiliary variable A and (ii) the behaviour of the left hand side
of the average processing cost constraint equation as a function
of the Lagrange multiplier λ∗. These results will help us in
specifying the optimal value of A and advising an efficient
numerical procedure to find λ∗.

The optimal value of A can be found by minimizing J (P∗).
The following proposition, whose proof can be found in
Appendix C, establishes that the cost function J evaluated
at the optimized solution P∗ is a non-increasing function of
A.

Proposition 1: J (P∗) is a monotonically non-increasing
function of A,∀A ≥ 0.

This implies that the formal optimal solution of the voxel
selection problem is thus achieved when A → ∞. It is
straightforward to deduce that it has the following form (recall
that λ∗ is a function of A):

p?i =


lim
A→∞

A(Ui + λ∗C) if −λ∗C → Ui

Ph if Ui > −λ∗C
0 otherwise

(11)
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Before presenting another important result leading to a
procedure to efficiently compute the value of λ∗ we define
ϕ(λ∗) , P∗TC.

Proposition 2: Function ϕ(λ∗) is a monotonically non-
decreasing function of λ∗,∀λ∗.
The proof of this result appears in Appendix D. Since the
function defining constraint equation P∗TC = Cave is mono-
tonic, we can use efficient algorithms, for example, golden
ratio search to find λ∗.

Solution (11), obtained in the case A → ∞, assigns the
highest probability, Ph, to all the voxels for which voxel utility
is greater than the threshold −λ∗C. Additionally, there is
exactly one voxel, whose probability lim

A→∞
A(Ui + λ∗C) is

selected to exactly satisfy the constraint P∗TC = Cave. Note
that without the contribution of this voxel P∗TC can only
be incremented by PhC with each new voxel whose utility
exceeds the threshold −λ∗C.

According to our experiments, the value of the cost function
saturates as A → ∞. Hence, large increments of A tend to
result in small increments of the cost function. Thus, the value
of the cost function is almost the same at the optimal solution
and at a suboptimal solution obtained with A <∞. Typically,
voxel selection strategies that define a fixed voxel subset tend
to reduce the optimization capture range, robustness to local
minima and exploratory power of the sampling scheme i.e.
its ability to visit different image regions during optimization.
This is true even if the voxel selections are optimized. One of
the reasons for this is that it is difficult to correctly estimate
the true value (utility) of a given voxel for a registration
procedure. For any voxel selection criterion it is safe to say
that noise and modeling errors result in highly unreliable
estimates of the true value that a given voxel has for the
registration problem. As a result, fixing voxel selection based
even on the ”most optimal” criterion may have catastrophic
results for the registration problem if voxel value estimate is
erroneous. On the other hand, the uniformly random sampling
might decrease registration accuracy, but is more robust, since
sampling induces image exploration and does not imply any
bias towards particular voxel subsets. The general solution (10)
with A < ∞ results in a more diverse VSPF since it
assigns non-zero probabilities to a greater variety of voxels.
At the same time, according to this solution, the additional
voxels assigned with non-zero probabilities are defined based
on their utilities and their probabilities are proportional to
the respective utilities. This unique feature has potential to
endow a sampling scheme with (i) vast exploratory power,
(ii) ability to pick voxels most useful for achieving an accu-
rate registration, (iii) ability to avoid catastrophic registration
errors due to voxel utility modeling and estimation artifacts.
These properties would help a sampling scheme achieve the
robustness of randomized sampling approaches and improve
accuracy by utilizing a greater proportion of meaningful voxels
for similarity metric calculations.

We thus propose a sampling scheme based on (10), where A
is taken as small as possible to diversify VSPF and as large as
necessary in the view of being able to satisfy the average cost
constraint. Here the latter requirement is due to the fact that for

too small values of A no λ∗ exists that could satisfy constraint
equation P∗TC = Cave. Another parameter that regulates the
exploratory power of the VSPF is the upper bound on the
probability values, Ph. Lower values of this parameter tend to
favour image exploration. This parameter could be chosen to
be a universal constant whose reasonable value could be fixed
based on experience. We also propose a more accurate strategy
to learn the value of this parameter based on a small training
dataset. This way it could be adapted to the problem at hand,
optimization strategy and other specifics of the registration
system. In the following section, where we describe a practical
multi-scale algorithm, we discuss both variants.

Finally, let us examine how our approach relates to other
approaches discussed in the literature. Consider the case where
A→∞, Ph = 1, Cave is an integer number and all the values
of Ui are unique (recall that N is the total number of voxels
in the image). According to (11), all the VSPF values will
be either 0 or 1, i.e. voxels are either selected or ignored.
In such context, the proposed voxel sampling methodology is
similar in spirit to the selection strategy proposed by Reevs
and Hezar [13], i.e. calculate some measure of voxel utility
and compare it to a threshold. Consider an alternative case
where Ph = 1 and all Ui values are equal (voxels are deemed
equally important/informative). According to (11), the optimal
solution then is to assign every voxel equal probability and
p∗i = lim

A→∞
A(Ui + λ∗C) = Cave/N . In other words, such

context yields an optimal voxel selection policy similar to the
random uniform sampling proposed in [10].

IV. PRACTICAL DESIGN GUIDELINES

We now describe the full practical implementation of our
voxel sampling scheme, whose high-level algorithmic sum-
mary is outlined in Fig. 1. The first stage involves creating
an image pyramid of K-scales, where each level involves
low-pass filtering and subsampling the original reference and
moving images. Optimization is then performed in order of
scale. Hence, the level with coarsest scale is optimized first,
and the result of each optimization is fed as an initial point to
the following level.

The VSPF is calculated from the moving image once at
each scale using initial transformation parameter values and
following the framework described in previous sections. In
practice VSPF calculations can be performed either on the
fixed or on the moving image, whichever is easiest. The
choice mainly depends on the interpolation strategy (partial
volume or linear/cubic) and the point at which voxels are
sampled (in the moving image coordinate frame or in the
fixed image coordinate frame). The computation of VSPF can
be performed in different registration contexts. For example,
in the context of the image guided neurosurgery one of the
images (e.g. MRI) is often available before an operation
and VSPFs can be computed ahead of time using parameter
initializations corresponding to the identity transformation (no
registration) to save time during registration. At the same time,
if data are not available ahead of time, the proposed framework
can be applied online, once per scale, (the way it is depicted
in Fig. 1), since the computational expense of computing
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1) Calculate K-scale image pyramid for the moving and the reference images;
2) Pick initialization θ0 and set parameters Cave, Ph as discussed in Section IV;
3) For every scale k = K,K − 1, . . . , 1 do

a) Calculate utilities {Ui}Ni=1 for all voxels of the moving image;
b) Estimate VSPF Pk as discussed in Sections III-B and IV;
c) For iteration n = 1, 2, . . ., L do
• Generate new voxel selection by sampling Pk;
• Calculate Jacobian and Hessian based on the voxel selection;
• Update parameters using trust region Gauss-Newton iteration;

d) Pick θ0 for the next scale based on the last iteration (account for scale change);

Fig. 1. High level summary of the proposed algorithm

the VSPF is small and consists of matrix manipulations with
spatial image gradients and transform derivative matrices.

A. Parameter Selections

Voxel utility, Ui, is computed according to its
definition in Section III-A as Ui = (gTi Rθθgi +
σ2
ξ )−1 tr(Rθ,ViR

T
θ,Vi

), where Rθ,Vi = Rθθgi. Recall that
gi = ∂Vi(Tθ(x))

∂Tθ(x)
∂Tθ(x)
∂θ

∣∣
θ=µθ

is the moving image intensity
derivative with respect to the transformation parameters and
that Rθθ is the cov(θ, θ). The derivative can be obtained
using analytical differentiation of Tθ(·) and the numerically
calculated gradient of the moving image with respect to
the coordinates. The gradient of the image with respect
to coordinates is computed on the image lightly smoothed
with gaussian kernel to alleviate gradient estimation noise.

We approximate Rθθ with the aid of Hessian H of the
similarity metric as Rθθ ∝ H−1

M . A detailed discussion on
the validity and applicability of such an approximation can
be found in [23]. The Hessian H is often available from the
optimization routine. If not, its numerical approximation can
be easily constructed. If Hessian H is not available from
the optimization routine or is too costly to compute, it is
possible to replace it with the second order derivatives of
the log-likelihood function resulting from model (5). We set
Rθθ = H−1

M and σ2
ξ = 1 in our implementation. We have

experimented with different settings of σ2
ξ ranging from 0.1

to 100 and found that the performance of the algorithm is not
at all sensitive to the value of σ2

ξ . To initialize the parameter
µθ at a given resolution scale we use its estimate obtained
from the registration at the previous resolution scale.

Once utilities are calculated for each voxel we can compute
the VSPF in accordance with (10). As was mentioned in the
previous section we keep the value of the free parameter A
minimal to diversify voxel selections and sufficient so that λ∗

exists such that the constraint equation P∗TC = Cave can
be satisfied. Furthermore, we compute the value of Lagrange
multiplier λ∗ by finding the root of equation P∗TC = Cave

via bisection search (using the result stated in Proposition 2).
In the constraint equation (see (7)), Cave is the total average
cost of processing the selected voxels. It is specified by the
user e.g. in the form Cave = cN where c is the user specified
average proportion of voxels being selected by the algorithm

(the sampling rate). The high-level outline of the registration
algorithm employing proposed voxel sampling algorithm is
shown in Fig. 1.

Finally, the last parameter of the algorithm is Ph, the highest
probability that could be assigned to a voxel. In the first
approach that we explore, for every scale we simply adjust
Ph heuristically such that more image exploration is induced
in lower resolution scales while more emphasis is put on
selecting voxels with higher utility in higher resolution scales.
We found empirically, via experiments with the Brainweb [24]
dataset, that there exist simple heuristic schedules according
to which Ph is set proportional to Cave/N that produce
universally good results. We present these schedules in more
detail in Section V.

The second approach that we propose is to learn Ph using a
small dataset representative of the particular problem context.
In the application domain, the specifics of the particular reg-
istration problem often affect the choice of similarity metric,
optimization strategy and interpolation scheme. This implies
that at least some training information in the form of the small
set of exemplar image pairs from the problem-specific modal-
ities using certain acquisition and post-processing protocols
should be available to the registration algorithm designer to
guide the algorithm development.

Based on the assumption that we have a training data set and
the gold standard registration parameters for the image pairs
in this dataset we formulate the empirical learning criterion
Qr(P rh ) for each resolution level r. We define the empirical
target registration error (ETRE) as the average over V image
pairs in the training dataset and U Monte-Carlo trials:

Qr(P rh ) =
1

V

1

U

V∑
v=1

U∑
u=1

‖Xv − X̂r
u,v(P

r
h )‖22. (12)

Here Xv is the set of transformed coordinates obtained using
gold standard registration parameters for image pair indexed
by v and X̂r

u,v(P
r
h ) is the set of transformed coordinates

for image pair v and Monte-Carlo trial u found using the
empirical estimate of the registration parameters obtained via
the optimization of the similarity metric at resolution scale
r using the proposed voxel sampling algorithm with a given
value of P rh . As the voxel sampling algorithm is randomized,
some degree of Monte-Carlo averaging could be beneficial
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if V is relatively small (3 . . . 5 images). Thus we repeat the
registration procedure for the same candidate value P rh , level
r and image pair v U times and calculate X̂r

u,v(P
r
h ) based on

the new registration parameter estimate each time.
We propose to learn the value of P rh by minimizing the

ETRE Qr(P rh ):

P̂h

r
= arg min

P rh∈[0;1]
Qr(P rh ). (13)

The function Qr(·) is generally extremely irregular and non-
smooth, because of the possible registration failures and be-
cause of complex dependence of the ETRE on the value of P rh .
At the same time, the domain of this function is well defined
and restricted. Thus any optimizer capable of performing
global or quasi-global search on a restricted interval using only
the objective function values will suffice to solve this problem.
In order to find P̂h

r
we propose using either the particle swarm

optimization (PSO) [25] or the exhaustive grid search with
grid step 0.01. Our algorithm proceeds by finding P̂h

K
, the

value for the scale with the lowest resolution. The algorithm
then uses the identified value of P̂h

K
to find the estimate

of the registration parameters at resolution level K − 1. This
procedure iterates until the values of highest probabilities for
all resolution levels K,K − 1, . . . , 1 are found.

V. EXPERIMENTS WITH THE RIRE VANDERBILT DATASET

A. RIRE Dataset

To test the proposed algorithm we made use of the real
clinical data available in the popular, publicly available RIRE
Vanderbilt dataset [19]. The performance of algorithms was
evaluated by registering 3D volumes corresponding to CT
images to geometrically corrected MR images. MR image set
included images acquired using T1, T2 and PD acquisition
protocols. The total number of different image pairs used was
19. Those pairs were taken from patients 001, 002, 003, 004,
005, 006, 007 for which geometrically corrected images are
available. Patients 003 and 006 did not have geometrically
corrected PD and MR-T1 images respectively. According to
the data exchange protocol established by the RIRE Vanderbilt
project, registration results obtained via algorithms under the
test were uploaded to the RIRE Vanderbilt web-site. Algorithm
evaluation results were calculated by the RIRE Vanderbilt
remote computer using the gold standard transformation not
available to us and published on their web-site in the form of
tables containing target registration errors (TREs) calculated
over 6 to 10 volumes of interest (VOIs) for each image
pair. For patient 000 geometrically corrected MR-T1, MR-
T2, MR-PD images and corresponding CT image are available
along with the set of transformed coordinates obtained using
gold standard registration parameters. Three image pairs from
patient 000 were used to learn the values of Ph in one of the
versions of the proposed algorithm according to the procedure
described in Section IV-A.

B. Experimental Setup

All images were first resampled to a common 1mm grid
using bicubic interpolation. We used 2-scale registration based

on the low-pass filtered and downsampled image pyramid
containing two resolution scales. Resolution level number
two had grid spacing 2 mm along each axis and resolution
level number one had grid spacing 1mm along each axis.
The estimate of the registration parameters obtained at a
lower resolution level was used as a starting point for the
registration at the next higher resolution level; level 2 had all
its parameters initialized to zero values. We concentrated on
recovering 6 rigid registration parameters (3 translations and 3
rotations) using the NMI similarity metric [20]. Histogram for
the evaluation of the similarity metric was calculated using the
partial volume approach with Hanning windowed sinc kernel
function [26]. The similarity metric was optimized using the
trust region Gauss-Newton approach [27].

We evaluated the performance of the following voxel sam-
pling approaches. The uniformly random sampling (URS)
technique consists of randomly selecting voxels with equal
probabilities at every iteration [10]. At a given resolution level
r all voxels have equal probability of being selected, M/Nr
if M < Nr and 1 if M ≥ Nr; the average number of selected
voxels is thus equal to min(M,Nr) at each resolution level.
Note that we used equal number of selected voxels for all reso-
lution scales. As a variation of this scheme, we also considered
the uniformly random sampling that samples voxels once per
scale and keeps them fixed during iterations (fURS) [9]. Gra-
dient magnitude sampling (GMS), a slight modification of gra-
dient based subsampling originally proposed by Subuncu and
Ramadge [16], consists of calculating the spatial gradient mag-
nitude ‖∇Vi‖2 =

√
(∂Vi/∂xi)2 + (∂Vi/∂yi)2 + (∂Vi/∂zi)2

and sampling voxels at every optimization iteration according
to the probabilities proportional to it, where the proportionality
coefficient is chosen so that the average number of voxels
selected at every resolution scale is equal to M . The extention
of the previous approach, GMS+URS, [17], samples voxels
from the VSPF defined as a convex combination of VSPFs
generated via GMS and URS approaches. The mixing param-
eter is optimized using a small training dataset (in our case this
is the dataset obtained from patient 000). For completeness we
also present results for the gradient magnitude (GM) approach
that deterministically selects a portion of voxels with highest
gradient magnitudes once per scale. The proposed method
consists of evaluating voxel utilities and assigning voxel prob-
abilities based on these utilities. We evaluated two versions of
the proposed algorithm. For the first option (ProposedH) we
set Ph to min(1, 3M/N2) for the resolution level 2 (coarse
resolution) and min(1, 10M/N1) for the resolution level 1
(fine resolution). These are the simple heuristic schedules
(see Section IV-A). For the second option (ProposedL) we
learn the value of Ph for every scale and voxel sampling
rate using methodology described in Section IV-A with the
aid of the training dataset consisting of the image pairs
taken from patient 000. For completeness, we also present
the ProposedD method, which is based on the thresholding
of the proposed VSPF (ProposedD deterministically selects a
portion of voxels with highest voxel utilities). We evaluate
these algorithms for the following values of voxel sampling
rates (given in %): M/N ∈ {0.06, 0.1, 0.3, 1, 3, 10} (sampling
rate is calculated with respect to the image size at the highest
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Fig. 2. Heuristic and learned schedules of Ph for the proposed algorithm. Note that abscissa is in the log scale.

resolution level, N = N1). For the GMS+URS approach we
learned the values of the mixing parameter via the exhaustive
grid search procedure with grid step 0.01 and obtained the
following results: β2 = [0.98; 0.93; 0.94; 0.97; 0.97; 0.95],
β1 = [0.33; 0.29; 0.25; 0.22; 0.09; 0.00]. The mixing param-
eter (denoted as βr in the original paper [17]) is responsible
for finding a good balance between the GMS and the URS ap-
proaches within the GMS+URS sampling scheme. Each value
of βr presented above corresponds to one of the sampling rates
used to evaluate the algorithms.

C. Results

Figure 2 compares two schedules for setting the Ph pa-
rameter of the proposed algorithm. The heuristic schedule
min(1, 3M/N2) for coarse resolution and min(1, 10M/N1)
for high resolution level is contrasted with the schedule learned
using small training dataset methodology presented in Sec-
tion IV-A. Note that the curve corresponding to the heuristic
schedule does not appear to be linear in the plot, because
abscissa is in logarithmic scale. It can be seen from Fig. 2(a)
that for the coarse resolution level there is not much difference
in the heuristically proposed and the learned schedules. On the
other hand, Fig. 2(b) showing results for the higher resolution
level reveals that, according to the learned schedule, Ph grows
at a much steeper rate than 10M/N2. This suggests that for the
higher resolution level there is more variation in the utility of
different voxels and there is a need for choosing higher values
of Ph to enhance the stratification among voxel probabilities
to boost selection frequencies for more informative voxels.
Another interpretation of this result is that when the total
average number of sampled voxels becomes large enough, we
can allow the sampling scheme to focus almost exclusively on
voxels with high utility values, because the exploratory power
of this voxel subset becomes strong enough.

Qualitative results are presented in Figure 3 showing an
example of VSPFs obtained via the ProposedL, ProposedD,
GMS+URS, GMS and GM approaches (URS and fURS are
not shown since their VSPFs are uniform and ProposedH

was visually similar to ProposedL). The figure is obtained
for Cave = 0.01N , corresponding to 1% of voxels being
sampled on average. We can see that the proposed approach
allows for the selection from a comparatively large variety of
voxels (compared e.g. to the GM or ProposedD approaches).
We also see that there are voxels in the proposed VSPF
that are assigned significantly higher probabilities than some
other voxels. These voxels are deemed more informative by
our sampling scheme. The GMS sampling scheme assigns
probabilities proportional to voxel gradient magnitudes. The
GMS+URS scheme tries to find the compromise between
GMS and URS schemes by adding uniform probabilities to the
GMS VSPF. The GM scheme selects a subset of voxels with
highest gradient magnitudes and assigns them probabilities
equal to 1 (voxels are always selected). The selection of
voxels produced by the GM scheme is not rich as they
are mostly concentrated along the most prominent spatial
gradient structures. Similar comments apply to the ProposedD
mask that selects a subset of voxels having most prominent
utility values. Moreover, note that the proposed approach
favours more peripheral voxels useful for angular alignment, as
opposed to the GM, GMS and GMS+URS approaches that do
not account for parameter uncertainty and concentrate only on
image gradient details. We argue that this characteristic, along
with the ability to diversify voxel selections brings forward an
improved registration robustness and accuracy. On the other
hand, large areas populated with uninformative voxels have
zero VSPF values. Thus, by concentrating image exploration
only on potentially informative voxels, the proposed approach
improves the accuracy over the GMS+URS, URS and fURS
approaches.

Figure 4(a) shows registration failure rate for different voxel
selection mechanisms as a function of the sampling rate shown
in the log scale. We define a registration failure as any case
with error exceeding 10mm in any of the VOIs. The x axis of
this plot shows voxel sampling rates {0.06, 0.1, 0.3, 1, 3, 10}.
We can see that both variants of the proposed approach
employing sampling from the VSPF consistently outperform
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(a) ProposedL (ProposedL was visually sim-
ilar to ProposedH)

(b) ProposedD (c) GMS combined with URS, GMS+URS

(d) gradient subsampling, GMS (e) gradient magnitude, GM

Fig. 3. VSPFs for the highest resolution level shown in jet colour scheme. The jet color scheme uses colour assignment as follows: black corresponds to
zero (pi = 0); cyan, yellow and orange correspond to intermediate values between 0 and 1; red corresponds to (pi = 1).

other approaches in terms of robustness, because both methods
employ heavy exploration of the voxel values by continuous
sampling combined with emphasizing more important voxels.

Figure 4(b) shows the mTRE (mean TRE) as a function of
the average time spent per registration (note that the x-axis is
in the log scale). Recall that RIRE provides us with 6 to 10
TRE values for each image pair. We compute the mTRE as
the mean TRE of all the successful (non-failed) registrations
corresponding to a particular experimental case defined by
the selection of voxel sampling scheme and voxel sampling
rate. For objective comparison we show only those points that
correspond to zero failure rate, because we deem this scenario
as the one that has most practical importance. Besides, this
helps avoiding the situation where a method demonstrates
anomalously low mTRE, because it fails many difficult cases.
The markers in Figures 4(b) and 4(a) correspond to the
same instances of the sampling rate. It can be seen that the
average time per registration is roughly proportional to the
sampling rate (for the proposed method the calculation of the
VSPF induces only a small overhead). The mTRE is mini-

mal for the proposed approach with learned Ph (ProposedL)
compared to other methods. The ProposedD method has the
best performance for sampling rates 3 and 10%, however,
it simply does not work for lower sampling rates because
of failures. Same applies to the GMS and and the GM
approaches, both having only two points shown in the plot
because of failures. The proposed approach retains high level
of accuracy and robustness even with low voxel sampling rates.
Moreover, the proposed approach with the heuristic setting of
Ph (ProposedH) is not much worse than the proposed approach
with learned Ph (ProposedL). This shows relative insensitivity
of the proposed approach to the changes in parameter Ph.
The properties of the proposed sampling approach allow to
significantly reduce computational time and simultaneously
guarantee high accuracy and robustness in a practical system.
Such results support our conjecture that image exploration in-
duced by VSPF based voxel sampling maintains the robustness
due to continued image exploration and improves registration
accuracy by selecting more informative voxels. Overall, the
proposed technique at 0.06% sampling rate is better than other
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Fig. 4. Failure rate (a) and mTRE (b) for different voxel selection mechanisms: gradient magnitude (GM), gradient magnitude sampling (GMS), proposed
with learned Ph (ProposedL) and heuristic Ph (ProposedH), ProposedD corresponding to the thresholded proposed VSPF, uniformly random sampling (URS),
uniformly random sampling with fixed subsets (fURS), convex combination of GMS and URS (GMS+URS). Note that the proposed approach consistently
outperforms in terms of robustness and accuracy.

techniques at 10% sampling rate, maintaining 0% failure rate
and around 1 mm mTRE accuracy. This amounts to more than
hundredfold acceleration for the registration procedure. None
of the alternative techniques achieve this level of performance.

VI. DISCUSSION OF FINDINGS

We have demonstrated the promise of the proposed the-
oretical methodology based on the experiments with the 3D
RIRE Vanderbilt dataset containing real clinical data. The main
finding of the paper is that with the aid of a carefully designed
VSPF (in our case relying on the principle of the Bayesian
registration parameter uncertainty) we can maintain the ap-
propriate levels of accuracy and robustness of a registration
procedure at very low voxel sampling rates.

At the same time, our validation methodology has a number
of limitations and calls for further investigation and analysis
of the properties of the proposed theoretical framework. We
conducted our experiments in the context of rigid registration.
In some contexts rigid registration is appropriate even during
image guided interventions [7]. However, some other contexts
may call for the use of non-rigid registration approaches
(e.g. in the context of image guided neurosurgery, open
craniotomies cause non-rigid intra-operative brain movements
also known as brain shift [28]). The proposed theoretical
framework does not pose any principal limitations on the size
or properties of the registration parameter set. At the same
time, with the current validation setup we cannot firmly state
if the proposed methodology is directly applicable to the reg-
istration problems with non-rigid parameterization. Intuitively,
however, we may expect even better performance gains for the
non-rigid registration problems. The reason for this is that the
data (voxel) support for each of the registration parameters
is highly spatially localized. The effects of differing voxel
utilities (abilities to reduce registration error) are likely to be
even more pronounced in this setting. This should result in

increased gain from a smart sampling strategy and may call
for further extensions. For example, including parameters into
the sampling scheme and deciding on a subset of parameters
to update at a given iteration. Often, many parameters in
complex non-rigid registration problems converge early and do
not require frequent updates during the rest of the procedure.

Another limitation of the validation methodology is that the
evaluation of the proposed method was performed on the RIRE
Vanderbilt dataset, which does not necessarily target real-time
applications. Real-time applications often use noisy images,
resulting e.g. from ultrasound or fluoro modalities [3], [7].
Based on the current validation scheme it is not clear if the
proposed method will provide the same performance gain in
the case of the low quality images. The study of the proposed
method in this context is thus a necessary important future
research task. At the same time, we would like to note that
our VSPF calculation methodology requires only one of the
images to compute the sampling probabilities. In the common
real-time applications outlined above one of the images: MRI,
CT or another high quality image, is typically available before
the application of the registration procedure. In this context the
high quality image can be defined as a moving image and used
to compute the VSPF off-line. This scenario is very close to
our current validation setup in terms of the images used to
compute the VSPF. Our validation setup has its limitations,
but we believe that it is rigorous enough to demonstrate
the promise of the proposed theoretical framework and to
approximate some of the realistic real-time applications.

Another important finding is that from our experiments (see
Fig 4(b)) it follows that, at least for the rigid registration
problem, the calculation of the VSPF does not induce any
significant overhead. Recall that we compute the VSPF only
once per registration scale and do not recompute it at every
iteration. With this scheme we achieve significant speed-up in
the registration procedure and keep robustness and accuracy
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of the method at very high levels. Although the complexity
of computing the VSPF scales linearly with the number of
registration parameters, so does the complexity of computing
the similarity metric and its derivatives. Thus we have a reason
to believe that the implementation of the proposed method-
ology in the context of non-rigid registration problems will
not result in any disproportional overhead. Furthermore, for
many problems the high-quality image (e.g. diagnostic MRI)
is available well before the registration procedure must be
executed. In this context we may further reduce the overhead
by computing the VSPF off-line and then just reusing it
during the operation. Moreover, we can imagine much more
complicated sampling schemes being implementable in such
scenario. For example, for a non-rigid problem we could
define its own VSPF for every registration parameter and
compute it off-line. During the application of the registration
procedure we would sample optimal voxels for each parameter
individually and then combine all of them into the common
set to evaluate the similarity metric.

Our sampling approach uses different pixel subsets at every
optimization iteration. This results in the continued exploration
of the images being registered, but also induces noise in
the approximations of the cost function and its derivatives.
In the context of the Gauss-Newton optimization used in
our paper, changing voxel selections over iterations does
not pose any problem. It should be noted that although we
presented the concepts of VSPF and continued voxel sampling
within the Gauss-Newton optimization framework, they have
a much wider applicability. For example, the global CMAES
optimizer [29] widely used for complex optimization problems
(including the non-rigid registration) is capable of handling the
noise in cost function values. Different variations of gradient
descent algorithms are not sensitive to noise in derivatives as
well, especially when combined with stochastic optimization
approaches [30]. Thus the proposed framework can be used
with these optimization approaches directly. At the same time,
the proposed framework is not directly applicable to the quasi-
Newton (non-zero memory) optimizers where an estimate of
the Hessian of the cost function is built up iteratively. It
may well be that the proposed sampling strategy could be
adapted for the use with such optimizers (e.g. via proper
use of common random numbers techniques [31]). However,
investigating this matter is beyond the scope of this paper.

Finally, the current approach is formulated for the direct
registration methods using only voxel values. It would be
interesting to look for the extensions of this method in
the context of feature based registration. To directly extend
the proposed method in this context one could formulate
a Bayesian model for the analysis of registration parameter
uncertainty as a function of selected feature set. The next step
in this direction would be to define and optimize the feature
sampling probability field based on the uncertainty analysis.

VII. CONCLUSIONS

We have presented a new uncertainty based multi-scale
voxel selection framework for the context of multi-modal med-
ical image registration. At each resolution scale, a voxel sam-

pling probability field (VSPF) is optimized based on the trans-
formation parameter uncertainties derived from the Bayesian
model and the optimal voxel subsets are then sampled from
the VSPF. The proposed sampling scheme exhibits the advan-
tages of both random sampling techniques, which are robust
but not necessarily accurate, and fixed sampling techniques,
which are accurate but not necessarily robust. Specifically,
the proposed sampling strategy focuses on both informative
image details that have potential to contribute towards reducing
registration uncertainty whilst simultaneously maintaining the
variability and exploratory power of the sampled voxel set. The
experimental results on the 3D, multimodal, publicly available
RIRE dataset demonstrate that our approach yields significant
improvements in registration performance, compared to other
voxel selection techniques such as random voxel sampling and
gradient sampling, particularly at aggressive sampling levels
(e.g. less than 1% of voxels). Overall, the proposed technique
at 0.06% sampling rate was better than other tested techniques
at 10% sampling rate, maintaining 0% failure rate and around
1 mm mTRE accuracy. This amounts to more than hundredfold
reduction in the number of voxels used for similarity metric
calculations, which translates to similar accelerations for the
registration procedure. This leads to minimization of the com-
putational time of the registration task while also minimizing
the potential penalty in terms of accuracy and robustness
(i.e. failure rate). The approach is general and can provide
an efficient solution applicable to a wide array of important,
time-sensitive medical imaging registration problems, such as
is required in image guided interventions. Future work will
focus on experimental validation of the registration scheme in
various interventional contexts.

APPENDIX A
ANALYSIS OF BAYES UNCERTAINTY: TECHNICAL DETAILS

First, we introduce some probabilistic notation. A real
valued vector random variable X : Ω → Rd is defined on
the probability space (Ω,F , P ) equipped with sample space
Ω, σ-algebra of events F and probability measure P . The
mathematical expectation is then defined as the following
Lebesgue integral:

E{X} =

∫
Ω

X(ω)P (dω). (14)

For two random vectors Y and X we also define the covari-
ance matrix RY X = cov(X,Y ) as

cov(X,Y ) = E{(X − E{X})(Y − E{Y })T }, (15)

and variance var(X) = cov(X,X).
Under our assumptions A1, A2 and by the definition of

VSPF we have three primary random vectors in our paper: the
vector of registration parameters θ, the sequence of modeling
noises ξi, i = 1 . . . N and the vector of decision variables D.
In what follows all the expectations are taken with respect
to the joint probability measure induced by the collection of
these three random vectors unless specifically stated otherwise
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or indicated by the conditional expectation E{X|Y } defined
as:

E{X|Y } =

∫
B⊆Ω:Y=Y (ω)

X(ω)P (dω). (16)

According to the model (5) and under assumptions A1

and A2, Vi(Tθ(x)) has a Gaussian distribution with mean
Vi(Tµθ (x)) and variance gTi Rθθgi + σ2

ξ . If we pose the
problem of optimally estimating the parameters θ from the
generative model (5) then the Bayesian estimate of parameters
θ is simply

θ̂ = µθ + RθVR
−1
V V (V − µV ). (17)

where µV = E{V }, RV V = var(V ), RθV = cov(θ, V ). On
the other hand, the optimal Bayesian estimate θ̂D obtained
using a given realization of random voxel selection decisions
vector D and associated vector of selected voxels VD is

θ̂D = µθ + RθVDR
−1
VDVD

(VD − µVD ). (18)

where we denote µVD = E{VD|D}, RVDVD =
cov(VD, VD|D), RθVD = cov(θ, VD|D). The estimation error
for θ̂D can be calculated using the law of total variance:

var(θ − θ̂D) = E{var(θ − θ̂D|D)}+ var(E{θ − θ̂D|D}).
(19)

Since E{VD − µVD |D} = 0 implies E{θ − θ̂D|D} = 0 we
have var(θ− θ̂D) = E{var(θ− θ̂D|D)}. For a fixed D we can
calculate the conditional variance as

var(θ − θ̂D|D) = Rθθ −RθVDR
−1
VDVD

RT
θVD . (20)

Under the assumption A3 implying that the covariance matrix
RVDVD is diagonal for any configuration of D the above
expression can be simplified as follows:

var(θ − θ̂D|D) = Rθθ −
N∑
i=1

diRθViR
−1
ViVi

RT
θVi . (21)

Finally, upon evaluating the expectation with respect to D we
obtain expression (6).

APPENDIX B
SOLUTION OF OPTIMIZATION PROBLEM (7)

After rearranging terms in (8) we can write:

J (P) = −
N∑
i=1

pi(Ui + γi − ηi + λC)−
N∑
i=1

Phηi + λCave

= −PT (U + γ − η + λC)−
N∑
i=1

Phηi + λCave

= −‖P‖2‖U + γ − η + λC‖2 cosβ −
N∑
i=1

Phηi + λCave.

(22)

Here in the last two expressions we use vector notation
U = [U1, U2, . . . , UN ]T , γ = [γ1, γ2, . . . , γN ]T , η =
[η1, η2, . . . , ηN ]T , C = [C,C, . . . , C]T and β is the angle
between vectors P and U + γ − η + λC.

The Lagrange relaxation method [22] allows us to sim-
plify the original minimization problem by first solving the
unconstrained problem P∗ = minP J (P) while treating the
Lagrange multipliers as constants and then identifying the
values of the Lagrange multipliers via original constraints.

In the first step of Lagrange relaxation, the last expression is
minimized when cosβ = 1, i.e. vectors P and U+γ−η+λC
are collinear and proportional: P∗ = A(U+γ−η+λC) with
proportionality constant A > 0.

This can be proven easily by considering some arbitrary P?
with ‖P?‖2 = c, 0 < c < ∞ for which, necessarily, cosβ <
1. A better solution, Pz, can always be found by picking
Pz = c

‖U+γ−η+λC‖2 (U + γ − η + λC). Inserting Pz into
the expression for J demonstrates that J (Pz) < J (P?).

We can thus replace the original problem by introducing the
positive auxiliary variable A and reformulating the problem as
follows:

P∗ = min
P,A
J (P)

such that pi ≥ 0, pi ≤ Ph,

N∑
i=1

piC = Cave,

pi = A(Ui + γi − ηi + λC). (23)

In the second step of Lagrange relaxation we identify the
Lagrange multipliers utilizing the constraint conditions derived
from the original constraints:

γi ≤ 0, pi ≥ 0, γipi = 0 (24)
ηi ≤ 0, pi ≤ Ph, ηi(Ph − pi) = 0 (25)

PTC = Cave (26)

First we deduce the values of γ and η. If 0 ≤ A(Ui +λC) ≤
Ph, constraints are satisfied and thus γi = 0, ηi = 0. If A(Ui+
λC) < 0, constraint pi ≤ Ph is satisfied and ηi = 0, but
γi 6= 0. To satisfy condition γipi = 0, we set γi = −(Ui+λC)
resulting in pi = 0. If A(Ui + λC) > Ph, constraint pi ≥ 0
is satisfied and γi = 0. To satisfy condition ηi(Ph − pi) = 0,
we set ηi = PhA

−1 − (Ui + λC) resulting in pi = Ph.
The resulting solution can thus be represented as

p∗i =

A(Ui + λ∗C) if 0 ≤ A(Ui + λ∗C) ≤ Ph

Ph if A(Ui + λ∗C) > Ph

0 otherwise
(27)

Here the value λ∗ of the remaining Lagrange multiplier can
be found by solving the constraint equation P∗TC = Cave

for λ∗. The auxiliary variable A should be determined by the
minimization problem (23) and we will later show how this
can be accomplished by analyzing the properties of the cost
function.

APPENDIX C
PROOF OF PROPOSITION 1

Proof: We will now show that J (P∗),∀A ≥ 0 is a
monotonically non-increasing function of A by showing that
∂
∂AJ (P∗) ≤ 0,∀A ≥ 0 since the latter implies the former
by the mean value theorem. We will assume, without loss of
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generality, that C = 1/N , which simply means that the pro-
cessing cost is the same for any voxel and the total cost when
all voxels are selected is normalized to unity. To facilitate the
derivations we will use the right continuous Heaviside function
H(·) defined as H(x) = 1, x ≥ 0 and H(x) = 0, x < 0 and
the following notationAi = A(Ui+λ

∗/N). With this notation,
solution (27) can be written concisely as follows:

p∗i = H(Ai)H(Ph −Ai)Ai + Ph(1−H(Ph −Ai)) (28)

Since P∗ is the solution of (7) and it thus satisfies all the
constraints we note that J (P∗) = −

∑N
i=1 p

∗
iUi. Taking these

remarks into account we can rewrite the objective function as:

J (P∗) = −
N∑
i=1

Ui[H(Ai)H(Ph −Ai)Ai

+ Ph(1−H(Ph −Ai))] (29)

and the constraint P∗TC = Cave:

1

N

N∑
i=1

[H(Ai)H(Ph −Ai)Ai + Ph(1−H(Ph −Ai))] = Cave.

(30)

The differentiation of J (P∗) results in

∂

∂A
J (P∗) = −

N∑
i=1

Ui
∂Ai
∂A

[Phδ(Ai − Ph)

+ δ(Ai)H(Ph −Ai)Ai − δ(Ai − Ph)H(Ai)Ai
+H(Ai)H(Ph −Ai)]. (31)

Consider Phδ(Ai − Ph) + δ(Ai)H(Ph − Ai)Ai − δ(Ai −
Ph)H(Ai)Ai. It is straightforward to see that this expression
is 0 whenever Ai < 0, 0 < Ai < Ph and Ai > Ph. Consider
the case Ai → Ph:

lim
Ai→Ph

(Phδ(Ai − Ph) + δ(Ai)H(Ph −Ai)Ai

− δ(Ai − Ph)H(Ai)Ai)
= lim
Ai→Ph

Ph(δ(Ai − Ph)− δ(Ai − Ph)) = 0. (32)

Consider the case Ai → 0:

lim
Ai→0

(Phδ(Ai − Ph) + δ(Ai)H(Ph −Ai)Ai

− δ(Ai − Ph)H(Ai)Ai) = lim
Ai→0

δ(Ai)Ai = 0. (33)

The last equality is one of the fundamental properties of the
Delta function. Thus we see that for any value of Ai the
expression just analyzed is zero and the derivative ∂

∂AJ (P∗)
is simply:

∂

∂A
J (P∗) = −

N∑
i=1

Ui
∂Ai
∂A

H(Ai)H(Ph −Ai). (34)

Taking into account the fact that λ∗ is a function of A and
calculating the derivative

∂Ai
∂A

=
∂

∂A
A(Ui + λ∗/N) = [Ui + λ∗/N ] +

∂λ∗

∂A

A

N
, (35)

we can rewrite the derivative ∂
∂AJ (P∗) as follows:

∂

∂A
J (P∗) = −

N∑
i=1

H(Ai)H(Ph −Ai)Ui[(Ui + λ∗/N)

+
∂λ∗

∂A
A/N ]. (36)

To derive ∂λ∗

∂A we use the implicit differentiation of the
constraint equation (30) which, upon differentiating its both
sides and simplifying it using the same logic that was used to
simplify (31), becomes:

N∑
i=1

H(Ai)H(Ph −Ai)
N

[(
Ui +

λ∗

N

)
+
∂λ∗

∂A

A

N

]
= 0. (37)

After grouping and moving the terms we obtain:

∂λ∗

∂A
= −

N
∑N
i=1H(Ai)H(Ph −Ai)(Ui + λ∗/N)

A
∑N
i=1H(Ai)H(Ph −Ai)

= −
N
∑N
i=1H(Ai)H(Ph −Ai)Ui

A
∑N
i=1H(Ai)H(Ph −Ai)

− λ∗/A. (38)

Inserting this into (36) produces:

∂J
∂A

(P∗) = −
N∑
i=1

H(Ai)H(Ph −Ai)

×

[
U2
i −

∑N
j=1H(Aj)H(Ph −Aj)UiUj∑N

j=1H(Aj)H(Ph −Aj)

]

= −
N∑
i=1

H(Ai)H(Ph −Ai)∑N
k=1H(Ak)H(Ph −Ak)

×

 N∑
j=1

U2
i H(Aj)H(Ph −Aj)

−
N∑
j=1

H(Aj)H(Ph −Aj)UiUj

 . (39)

Taking into account that

N∑
i=1

N∑
j=1

H(Ai)H(Ph −Ai)H(Aj)H(Ph −Aj)U2
i

=

N∑
i=1

N∑
j=1

H(Ai)H(Ph −Ai)H(Aj)H(Ph −Aj)U2
j , (40)

we can finally write:

∂

∂A
J (P∗) = −

N∑
i=1

N∑
j=1

H(Ai)H(Ph −Ai)H(Aj)H(Ph −Aj)
2
∑N
k=1H(Ak)H(Ph −Ak)

×
[
U2
i + U2

j − 2UiUj
]

= −
N∑
i=1

N∑
j=1

H(Ai)H(Ph −Ai)H(Aj)H(Ph −Aj)
2
∑N
k=1H(Ak)H(Ph −Ak)

× (Ui − Uj)2. (41)

The last expression is clearly non-positive ∀A.
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APPENDIX D
PROOF OF PROPOSITION 2

Proof: Using the definition of ϕ(λ∗) in the left hand
side of (30), differentiating it with respect to λ∗ and using
simplification methodology applied in Proposition 1 we arrive
at:

∂

∂λ∗
ϕ(λ∗) = C

N∑
i=1

∂Ai
∂λ∗

H(Ai)H(Ph −Ai). (42)

Taking into account that

∂Ai
∂λ∗

=
∂

∂λ∗
A(Ui + λ∗C) = AC, (43)

It is clear that ∂
∂λ∗ϕ(λ∗) ≥ 0,∀λ∗ and the claim of the

proposition follows.
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