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Abstract
Recent research has demonstrated that improved image segmentation can be achieved by multiple
template fusion utilizing both label and intensity information. However, intensity weighted fusion
approaches use local intensity similarity as a surrogate measure of local template quality for
predicting target segmentation and do not seek to characterize template performance. This limits
both the usefulness and accuracy of these techniques. Our work here was motivated by the
observation that the local intensity similarity is a poor surrogate measure for direct comparison of
the template image with the true image target segmentation. Although the true image target
segmentation is not available, a high quality estimate can be inferred, and this in turn allows a
principled estimate to be made of the local quality of each template at contributing to the target
segmentation. We developed a fusion algorithm that uses probabilistic segmentations of the target
image to simultaneously infer a reference standard segmentation of the target image and the local
quality of each probabilistic segmentation. The concept of comparing templates to a hidden
reference standard segmentation enables accurate assessments of the contribution of each template
to inferring the target image segmentation to be made, and in practice leads to excellent target
image segmentation. We have used the new algorithm for the multiple-template-based
segmentation and parcellation of magnetic resonance (MR) images of the brain. Intensity and label
map images of each one of the aligned templates are used to train a local Gaussian mixture model
based classifier. Then, each classifier is used to compute the probabilistic segmentations of the
target image. Finally, the generated probabilistic segmentations are fused together using the new
fusion algorithm to obtain the segmentation of the target image. We evaluated our method in
comparison to other state-of-the-art segmentation methods. We demonstrated that our new fusion
algorithm has higher segmentation performance than these methods.

I. Introduction
Multiple-template-based segmentation methods are widely used for the segmentation of
medical images [1], [2], [3], [4], [5], [6], [7]. This type of algorithm has two distinct parts:
non-rigid registration and fusion. Generally, in the first step, templates are registered to the
target image and then the aligned templates and their corresponding label maps are used by a
fusion algorithm to determine the segmentation of the target image.

The majority voting method is the simplest method for the fusion of the templates [8]. In this
approach, at each voxel, the label with the largest number of votes is selected as the label of
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the target image. One of the drawbacks of this approach is that all of the votes are equally
weighted. However, because of the limitations of the registration algorithms and also the
potential uncapturable inter-individual anatomical differences between some of the
templates and the target image, the templates may not perform equally well. Thus, to have a
more accurate result, the performance of the templates should be considered in the fusion
process. The challenge here is that the performance of the templates is not known a-priori
and needs to be estimated.

In the STAPLE algorithm [9], an Expectation-Maximization (EM) algorithm is used to
simultaneously estimate the hidden ground truth and to estimate the performance of the
aligned templates. At each iteration of the EM, performances of the templates are estimated
based on comparison to an evolving estimate of the reference standard segmentation and the
new performance parameters are used to update the reference standard segmentation. There
are a number of extensions of the STAPLE algorithm which use a similar methodology for
the fusion [10], [11], [12], [13], [14], [7], [15].

The local intensity similarity of the target image and the templates are also employed to
estimate the local weight of the templates in the locally weighted fusion methods [1], [2],
[16], [3], [4], [6], [17]. In this approach, the aligned label maps corresponding to the
templates with higher intensity similarity to the target image have more weights in the
fusion process. While in STAPLE based methods, performance of the templates are directly
estimated by estimating the ground truth, there has been no direct association between the
intensity similarity of the template and the target image, and the performance of the
templates in the locally weighted fusion algorithms.

Recently, using intensity images of the templates in the fusion process have been considered
in two STAPLE-based algorithms [18], [19]. The Multi-STEPS algorithm uses local
intensity similarity of the templates and the target image to locally select the templates in the
STAPLE algorithm [18]. Non-local-STAPLE algorithm uses local similarity of the
templates and the target image in the STAPLE algorithm based on a non-local means
approach to improve the segmentation accuracy [19].

To further improve the segmentation accuracy, two independent approaches can be
employed: Improvement of the fusion strategy or improvement of the input segmentations
fed to the fusion algorithm. To improve the fusion strategy, we need to estimate the template
performance more accurately. This is the main feature of any fusion algorithm. It is obvious
that even very powerful fusion strategies cannot accurately estimate the segmentation of the
target image, if the information provided by the input segmentations is inadequate. Thus,
improving the accuracy of the input segmentations generated from the templates will
increase the accuracy of the fusion algorithm.

In many fusion algorithms, the aligned template segmentations have been used directly to
infer the segmentation of the target image. Thus, one way to improve the accuracy of input
segmentations is to use a more accurate registration algorithm in the alignment phase.
However, to have a smooth and invertible transformation, a diffeomorphic image
registration algorithm should be used which means the registration algorithm cannot in
principle capture non-diffeomorphic inter-individual differences between the templates and
the target image. Moreover, global optimization of the registration parameters is not feasible
in a realistic registration problem and only a local optimum can be achieved. Furthermore,
with a finite number of templates, it is not feasible to sample all anatomical variabilities and
to feed the fusion algorithms with the information required to get the perfect segmentation
of the target image. We propose instead to improve the target segmentation by using
intensity and label map information. To this end, intensity and label map images of each one
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of the aligned templates are used to train a classifier. We use a local Gaussian mixture model
(GMM) as the classifier. Each one of the trained classifiers is used to segment the target
image. The output of each one of the classifiers is a probabilistic segmentation of the target
image.

The generated probabilistic segmentations could be the input segmentations of STAPLE as
the desired fusion algorithm. However, the STAPLE algorithm cannot be used for the fusion
of the probabilistic segmentations as it requires a segmentation label at each voxel. One way
to solve this problem is to use the label with the highest probability at each voxel. However,
we may lose some accuracy in this process. The challenging question is how these
probabilistic segmentations can be directly fed into a fusion framework to simultaneously
estimate the hidden ground truth and the performance parameters of the segmentation
generators. In [20] an algorithm was proposed and validated that achieved for the first time,
effective performance weighted fusion of probabilistic labels. The introduced algorithm,
called soft-STAPLE, simultaneously estimates the performance of the segmentation
generators and a reference standard segmentation from a collection of probabilistic
segmentations of an image using an EM algorithm.

In this manuscript, we introduce a novel extension of the STAPLE algorithm, which uses an
EM framework to simultaneously estimate the performance of the segmentations and the
hidden ground truth from a collection of probabilistic segmentations which is
computationally comparable with the original STAPLE algorithm. In general, the new
fusion algorithm can be used for the fusion and evaluation of statistical classifiers, manual
segmentations specified as confidence levels, or any set of probabilistic segmentations of a
target image.

In this paper, we use our new fusion framework for the parcellation and segmentation of
brain structures. We show that by using this approach, the performance of fusion is
significantly improved compared to the classic STAPLE. In addition, we have compared our
method to other state-of-the-art segmentation algorithms and have shown the superiority of
our approach. The main contributions of our work are: development of a new fusion
algorithm for the estimation of the reference standard segmentation and the performance
parameters of segmentation generators from a set of probabilistic segmentations and
estimation of probabilistic labeling using the intensity and label map images of the templates
and the target image. The rest of the paper is organized as follows: Section II describes our
novel fusion algorithm. Section II-F explains the proposed method for the calculation of
probabilistic decisions based on the intensity and label information. Experimental data,
procedures, and results are explained in Section III and conclusions are presented in Section
IV.

II. Materials and Methods
In this part of the manuscript, we first describe our algorithm for the fusion of probabilistic
decisions. Then, in Section II-F, we describe locally weighted fusion algorithms and our
framework for the generation of probabilistic decisions using intensity and label information
of the templates and the target image. Finally, we describe the imaging data utilized for the
validation of our developed algorithm.

A. Probabilistic Fusion Algorithm
In this section, we developed our formulation for the fusion of probabilistic decisions. For
this purpose, we first define the notations that will be used throughout the text. We assume
that the goal is to estimate the hidden ground truth T = {T1, …,Ti, …,TN} of the target
image where N is the number of voxels in the image and Ti indicates the label of the target
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image at voxel i. Also, it is assumed that there are J independent raters where each one of
them makes its own decision for each voxel. To estimate the hidden ground truth, we want
to fuse the decisions made by the raters. We assume that each rater uses observable
information to make the decision. We denote the observable information as G = {G1,…, Gi,
… ,GN} where Gi = {Gi1,…, Gij,…, GiJ} and Gij is the observation used by the rater j to
make the decision at voxel i. In addition, we denote the decisions as D = {D1,…, Di,…, DN}
where Di = {Di1,…,Dij,…,DiJ} and Dij is the decision of the rater j at voxel i. Next, we
define Π as the probability map of decision by raters where Π = {Π1, …, Πi,…, ΠN} and Π i
= {Π i1,…,Πij,…, ΠiJ}. Here, Πij = {πij0,…, πijs, …, π ijS} where πijs = f(Dij = s|Gij) is the
probability of the decision made by rater j at voxel i for label s, given the observation vector
Gij. It is assumed that ∀j, i : Σs πijs = 1. In other words, rater j uses information in the
observation Gij to compute the probabilistic decision at voxel i.

In order to consider the variability of the rater performances, we consider θ = {θ1,…, θj,…,
θJ} as the descriptor of the agreement between the raters and the unknown ground truth. In
addition, we define performance parameter θjs′s = f(Dij = s′|Ti = s) as the elements of S × S
matrix θj where s, s′ ∈ {0,1,…, S−1} are the labels of ground truth and the decision by rater
j at voxel i. Finally, the probability density function of the complete data can be defined as
f(G, T|θ, Π). We are interested to find the unknown performance parameters of each rater
and the hidden ground truth. The performance parameters of each rater are estimated by
maximization of the complete data log likelihood function. Since the ground truth is not an
observable variable, the EM algorithm may be utilized for computation of the conditional
expectation of the complete data log likelihood function at the E-step and then its
maximization based on the estimation of the performance parameters at the M-step.

(1)

where θt denotes the previous estimation of θ at iteration t. We show at the end of this
section how to model a spatial correlation between reference standard segmentation labels.

B. E-Step
In this step, the estimation of the hidden ground truth is derived given the estimated
performance parameters (θt). Using Bayes rule, the conditional probability of the ground
truth at the voxel i for label s can be written as:

(2)

We have considered the fact that raters are independent which means

. Next, we expand  over
all the possible decisions using the following equation:

(3)

We assume that if the decision by a rater is known for voxel i, the computation of the
probability of Ti does not depend to the observation Gij. In other words, f(Ti|Gij, Dij, Πij) =
f(Ti|Dij, Πij) which shows conditional independency of Ti and Gij when Dij is known. Thus
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(4)

We can clearly see that:

(5)

This means that f(Gij|Dij = s″, Ti = s, Πij) = f(Gij | Dij = s″, Πij). When we do not have any
prior knowledge about the decision of the raters, a uniform distribution for the decisions is
the appropriate assumption. Thus, using this assumption and f(Dij = s″|Gij, Πij) = π ijs″, and

given  it can be seen that:

(6)

where Cij is a constant which depends on the prior on f(Gij) and f(Dij). Thus, Eq. 3 can be

rewritten as . Using this relation, the weight

variable  can be computed as:

(7)

where psi = f(Ti = s).

This estimate of the true segmentation is independent of the neighboring voxels. However,
in many applications there are relationships between spatially related voxels where
considering these relations improves the accuracy of the estimation of hidden ground truth.
To consider these relations, a Markov random field (MRF) model is used. It is known that
each voxel is related to other voxels in a local neighborhood. To model this relationship, the
approach in [9] is used, where at each iteration the estimated ground truth is set as the
initialization of the following equation:

(8)

Jsn is the weight parameter which describes the spatial compatibility of the labels s and n, Z
is the normalization constant and m ∈ {1,…, N}. It should be mentioned that at each

iteration,  is normalized using the constraint . The fixed point update
equation is iterated to convergence which is guaranteed by the Brouwer fixed-point theorem

[21]. After convergence,  is the updated version of estimated ground truth  using the
mean field estimation. Jsn can be learned from the template data, as in [22], [23].

C. M-Step

With , the conditional probability of label s being the true segmentation at voxel i, the
expert performance can be estimated. To this end, using the fact that f(Gi, Ti|θ, Π i) = [∏j
f(Gij|Ti, θj, Πij)] f(Ti), we can write:
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(9)

The second and third terms on the right of the last equation do not depend on the parameters
being optimized. Based on Jensen’s inequality, log(∑s′ πijs′ θjs′s) ≥ ∑ s′ πijs′ log(θjs′s). Thus,
we just need to optimize:

(10)

Finally, using the constraint ∑s′ θjs′s = 1, it is possible to update performance parameter θjs′s
using the following equation:

(11)

D. MAP Solution
It is possible to find the maximum a posteriori solution of the problem when a prior about
the performance parameters are known. In [12] authors have explained a practical solution
for this problem for the classic STAPLE fusion. Let P(θ) = ∏j,s,s′ P(θjs′s) be the probability
map of the prior and γ be the weight of the prior term. Thus, we can write the map
formulation as:

(12)

Using the beta distribution with parameters αjs′s and βjs′s for each rater j and labels s and s′,

the prior probabilities are set to  where Z is the
normalization constant. Thus, using the same procedure above, it can be shown that:

(13)
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Optimization of this function with the constraint ∑s′ θjs′s = 1, leads to the following equation
for each one of the performance parameters:

(14)

Generally, there is no closed form solution for this equation. However, θj = f(θj) with f :]0,
1[s2
←]0, 1[s2

 always has a unique fixed point solution. The solution can be achieved
through iterative application of the equation by commuting the sequence {xn}n≥1 where xn+1
= f(xn) until convergence. A closed form solution is available for all priors with βjs′s = 1 and
this can be used to provide an initial estimate for the iterative estimator for βjs′s ≠ 1.

E. Relation to STAPLE and Local MAP STAPLE
We have developed a formulation for the estimation of the performance parameters and
ground truth simultaneously. In this formulation, we have used probabilistic decision of the
raters for the estimation. Classic STAPLE is designed for the estimation of the performance
parameters and ground truth when the decisions are crisp. It is easy to see the relationship
between our developed formulation and the classic STAPLE. For this purpose, it should be
noted that in the STAPLE formulation, decision of rater j at voxel i is the label of template at
voxel i. Let L = {L1,…, Li,…, LN} be the matrix of size N × J with the vectors Li = [Li1,…,
Lij, …, LiJ]′ where Lij is the label of the template at voxel i. In the classic STAPLE, Gij =
{Lij} and πijs = δ(Lij − s) where δ(x) is the Kronecker delta function. This means that

 and  where substitutions of these results to
Eqs. 7, 11, and 14 will lead to the classic STAPLE formulation. Thus, our formulation is a
generalized formulation of the STAPLE algorithm as in the special case of the crisp
decisions, our formulation will be equivalent of the STAPLE formulation.

Furthermore, the above formulation computes the performance parameters globally.
However, it is known that the performance of each one the templates may vary locally based
on the accuracy of the registration of the template segmentation and also topology of the
templates [7]. Local MAP STAPLE has been introduced to take into account this point in
the fusion process [7]. The method estimates a reference standard and spatially varying
performance parameters for each one of the templates in local regions. To do this, for each
voxel we define a region of a specified known half window size around it. Then, we run
STAPLE using the voxels in the region only to find the local performance parameters and
local reference standard segmentation. T and θ for a region are defined to be parameters of
the central voxel. Finally, we slide the window one voxel and use the same procedure to
cover all of the voxels in the image. In this way, performance of each one the templates is
estimated locally. A potential problem with this approach is that for the templates, labels of
one or more structures could be missing in some windows. The absence of some structures
may cause STAPLE to converge to an incorrect local maximum as be unable to estimate the
performance parameters. This can be avoided by using the prior knowledge of the expert
performance parameters, using MAP parameters as described in the previous section [12],
[7].

In summary, we have introduced our novel probabilistic fusion algorithm which
simultaneously estimates the hidden ground truth and performance of the raters. We have
presented a general probabilistic fusion framework which has wide range of applications
including fusion and evaluation of statistical classifiers, manual segmentations specified as
confidence levels, or any set of probabilistic decisions. In the next section, we first describe
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locally weighted fusion methods which use local intensity similarity of the templates and the
target image in the fusion process and then, we explain our approach for generation of the
probabilistic decisions using the intensity and label information of the templates and the
target image.

F. Using Intensity and Label Information in the Fusion Process
In the previous section, we introduced our fusion algorithm which simultaneously estimates
the performance parameters of the segmentations and the hidden ground truth. We showed
that the described algorithm is a generalized formulation of the STAPLE algorithm which
works with probabilistic decisions. In this section, we will discuss locally weighted fusion
algorithms for the segmentation and introduce our framework for the generation of
probabilistic decisions using intensity and label information of the templates and the target
image. Similar to the previous section, we require that there are J templates and their
corresponding segmentations. For simplicity, we also assume that the templates are aligned
to the target image using a non-rigid registration algorithm and are independent of each
other. Let Uij be the intensity of the aligned template j at voxel i. Let U = {U1,…, Ui, …,
UN} be the matrix of size N × J with the vectors Ui = [Ui1, …, Uij, …, UiJ]′. In addition, we
assume that I = {I1, …, Ii, …, IN} is the target image where Ii shows the intensity of the
target image at voxel i.

1) Intensity Similarity Based Locally Weighted Fusion Algorithms : Fusion of
segmentations can be done using different strategies. Majority voting approach is the
simplest approach that can be used for this purpose. In this approach, decision of rater j at
voxel i is equal to Lij, the label of the template at the voxel i. The main problem of this
approach is that it considers all of the raters equally. To improve the performance of the
fusion, in [24] authors have suggested using signed distance map of the segmentations rather
than the binary decisions. The idea is that the segmentations are more accurate for the points
that are deep inside the structures and for the points close to the boundary of the structures,
the template segmentations are less accountable. Same as the majority voting, raters are
considered equally weighted and the intensity information is not considered in the fusion
process.

Recently, intensity information has been used in the fusion process with the goal of
improvement of segmentation estimation. Almost all of these intensity similarity based
locally weighted fusion methods can be described using the following formulation:

(15)

where [L.j = {Lij|∀i ∈ {1, …, N}} and i} is a local region around voxel i. In this
formulation wij is the weight of rater j at voxel i which is defined to depend on intensity
similarity of the target image and the template. The idea is to give a larger weight to the
templates with higher similarity to the target image. The limitation of this approach is that
there is no clear link between the weights and the segmentation quality as they maybe
associated with poor registration or unimportant intensity variations. However, STAPLE
based methods which utilize intensity information of the templates in the fusion process
minimize this problem, since they directly estimate the performance of the templates and
intensity similarity is not the only source of performance estimation.

A variety of methods have been used in the literature to estimate this weight. In one of the
first attempts, Artaechevarria et al. compared a number of metrics such as mean square
error, mutual information, and normalized cross correlation to find the best metric to
estimate the weight [1]. They showed that mean square error is the best metric for this
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purpose. Also, they investigated effect of the neighborhood radius on the fusion results. This
strategy was also used for heart segmentation [16]. Sabuncu et al. used a Gaussian kernel as
the similarity metric [2]. Yushkevich et al. sorted all of the templates based on their
similarities and then used ranks to weight different templates [4]. Regression models have
also been used to find the weights [17], [6]. Khan et al. developed a supervised method
where the training datasets were used to estimate the weight model parameters [6]. Wang et
al. utilized intensity similarity between the target image and each pair of template images to
estimate the weight of the templates [25] . In this way, voxelwise intensity based weights are
not estimated independently and the correlation between the segmentation errors is
considered in the process of voxelwise weight estimation.

In order to allow us to experimentally compare to such methods, we have implemented three
configurations of the locally weighted fusion formulations [1], [2], [25]. In [1] the following
fusion strategy is used:

(16)

In this formulation, for each template j the decision at voxel i, Lij, is weighted by the inverse
of the dissimilarity of the target image and the template j in the neighborhood i}. The
dissimilarity is estimated using mean square differences of the intensities. Also, γ is a
parameter of the method that can be set to control the sensitivity of the weights to the
intensity differences. In another work, the weights are estimated using a Gaussian kernel
with a fixed σ for all of the templates [2]:

(17)

Finally, methods of [25] uses the pairwise dependency matrix Mi for each voxel i to find the
weights as the solution of the following minimization problem:

(18)

where Mi is the matrix of size J × J with the elements Mijj′ = (∑n∈ {i} | In − Unj||In −
Unj′|)−β , α is the optimization parameter, β is the parameter which controls the sensitivity of
the weights to the intensity differences, and wi = {wi1 … wiJ}. The authors also presented a
local search technique to improve the registration accuracy of the templates which can be
used in any other fusion strategy.

2) Training Local GMM Based Classifier Using Intensity and Label Information : In the
STAPLE formulation, the aligned label map images are considered as the input
segmentations. However, since there is no single brain which can represent 3D anatomical
variations of all brains and because of the changes in the topology and folding patterns of
the brains and more importantly, because of the possible structural abnormalities, brain
anatomy exhibits non-diffeomorphic variation [26], [27], [28], [29], [30]. Currently, no
diffeomorphic registration algorithm captures all of the inter-individual anatomical
differences between the templates and the target image. In addition, the number of the
templates is limited which makes it impractical to sample all anatomical variability and thus
to perfectly segment the target image using direct fusion of the aligned label maps [31], [32],
[33], [34].
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In this section, we describe our approach to use intensity and label information of the
templates and the target image to overcome this limitation. To this end, each one of the
aligned templates and the corresponding label maps are used to train a GMM based
classifier which is used to segment the target image. In this way, using the intensity and
label map information of each one of the templates, a modified segmentation of the target
image can be achieved which is less sensitive to the errors due to uncaptureable inter-
individual anatomical dissimilarities between the target image and the templates and also the
errors due to intrinsic registration inaccuracies.

Let us define local region i} around voxel i. Then, we can build decision probabilities
using the following equation:

(19)

where Gij = {Lmj, Umj|m ∈ i}}. In this equation, the mean and standard deviation of label
s at voxel i are estimated based on the following equations:

(20)

Here,  and  where dmi
is the euclidean distance between voxels i and m, υ is a fixed tuning parameter, and ℋ is the
Heaviside function. It should be mentioned that for the cases that ωijs = 0, πijs = 0.

For each template, πijs is a probabilistic segmentation of the target image which is used as
the input to our new fusion algorithm. We refer to the fusion method which utilizes Eqs.
7,11, and 19 for the estimation of the ground truth and the performance parameters as
PSTAPLE and refer to the fusion method which utilizes Eqs. 7,14, and 19 as Local MAP
PSTAPLE.

It is also possible to fuse the probabilistic segmentations of the target image using the
following probabilistic voting algorithm:

(21)

where πijs is computed using the Eq. 19.

In the next section, we evaluate our method using both synthetic data and brain images. To
show that both of our novel fusion algorithm and the generated probabilistic segmentations
are the source of improvement in the segmentation quality, we also compare our algorithm
with the probabilistic voting algorithm described in Eq. 21.

G. Imaging Data
In the next section, we validate our algorithm using the synthetic data, the database of the
brain MRI of the Internet Brain Segmentation Repository (IBSR), and the
Neuromorphometric database (NMM). For the synthetic data, we generated eight synthetic
images and their corresponding segmentations of the target image as shown in Fig. 1. Three
of the templates are generated using the pattern in Fig. 1.a where their corresponding
segmentation is shown in Fig. 1.d. Also, three templates are generated in the same manner

Akhondi-Asl and Warfield Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 October 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using the pattern shown in Fig. 1.b and their corresponding segmentation in Fig. 1.e. Finally,
two remaining templates are based on the pattern in Fig. 1.c with their corresponding
manual segmentation in Fig. 1.f. The target image and the ground truth are shown in Fig. 1.g
and Fig. 1.h, respectively.

IBSR database includes 18 1.5T T1-weighted volumetric images with slightly different
voxel sizes and their corresponding manual segmentation. The MR brain data sets and their
manual segmentations were provided by the Center for Morphometric Analysis at
Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.
Manual segmentation of 34 principle gray and white matter structures of the brain (3rd
Ventricle, 4th Ventricle, Brain Stem, CSF and Left and Right: Accumbens area, Amygdala,
Caudate, Cerebellum Cortex, Cerebral Cortex, Cerebellum White Matter, Cerebral White
Matter, Hippocampus, Inf Lat Vent, Lateral Ventricle, Pallidum, Putamen, Thalamus Proper,
VentralDC, and vessel) are available. In addition, the same database has the parcellation of
96 cortical gray matter parcels which makes the total number of 128 structures.

We collected and segmented whole brain MRI data in order to form an evaluation database
for the comparison of segmentation algorithms. Fifteen healthy volunteers underwent MRI.
We acquired T1-weighted; T2-weighted FSE (Fast Spin Echo); FLAIR-FSE; and diffusion
weighted images of 15 volunteers on a 3T clinical MR scanner from GE Medical Systems
(Waukesha, WI, USA) using an 8-channel receiver head coil. The T1-weighted images were
acquired sagittally with a matrix size of 256 × 256 and a field of view of 24 cm. Slice
thickness was around 1.3 mm and the T1-weighted acquisition parameters were TR 10/TE 6/
TI 725 ms with a flip angle of 8. Each T1-weighted acquisition was carefully segmented into
53 structures by Neuromorphometrics, Inc. (http://www.neuromorphometrics.com/) using a
well-established and carefully validated manual segmentation protocol [35], [36]. For three
of the subjects, a second repeat manual segmentation was carried out in order to allow
evaluation of test-retest reproducibility of the manual segmentation. The manually
segmented 53 structures were: 3rd, 4th, and 5th Ventricles, Brain stem, CSF, Cerebellar
Vermal Lobules I-V, VI-VII, and VIII-X, Optic Chiasm, and Left and Right: Accumbens
area, Amygdala, Caudate, Cerebellum Hemisphere, Cerebellum White Matter,
Hippocampus, Inf Lat Vent, Lateral Ventricle, Pallidum, Putamen, Thalamus Proper,
VentralDC, vessel, and frontal, occipital, parietal, temporal lobe grey and white matter. We
refer to this dataset as the NMM database, and use it for the evaluation of our segmentation
algorithm, and the comparison of our algorithm to other state-of-the-art segmentation
algorithms.

III. Results
In the previous section, we described our framework for the fusion of probabilistic
segmentations where we have used a local GMM for the calculation of the probabilistic
decisions. The estimated probabilities are based on the intensity and label information of the
templates and the intensity information of the target image. In this section, we test and
evaluate our segmentation method using synthetic data and two brain databases: the
databases of IBSR and NMM.

A. Synthetic Data
In the first step, we utilize the synthetic data to compare our developed algorithm and the
STAPLE algorithm. The segmentation result using PSTAPLE is similar to the ground truth
(Fig. 1.h) and the segmentation results using the STAPLE is shown in Fig. 1.i. It can be seen
that STAPLE does not achieve the correct segmentation as it is impossible to distinguish
between the segmentations of the templates generated using the patterns in Fig. 1.d and Fig.
1.e. However, using local GMM based classifiers, which is employed to build the
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probabilistic segmentation, our new fusion algorithm accurately estimates the target
segmentation. In this simple example, we have shown the effectiveness of the modified
segmentations in the fusion process. Next, we compare our method to the state-of-the-art
fusion algorithms.

B. Methods used for the comparison and selecting their parameters
In the next section, we use two databases of the brain MRI and compare our developed
method to the state-of-the-art methods in the literature. These methods are methods of [1],
[2], [25] as the intensity similarity based locally weighted fusion methods, methods of [14],
[9], [10], [11], [7] as the STAPLE based methods, and methods of [18], [19] as the STAPLE
based methods which utilize intensity images of the templates in the fusion process. Since
our method has two distinct components that can improve the segmentation accuracy, we
also report the segmentation results using majority voting and voting using the probabilistic
output of the GMM classifier. For the methods of [14], [10], [11] and [25] we have used the
software packages given in https://masi.vuse.vanderbilt.edu/ and http://www.nitrc.org/
projects/picslmalf/. Also, we have implemented methods of [1], [2], [19], [18]. In addition,
for the STAPLE and Local MAP STAPLE algorithms, we have used the implementation
given in http://crl.med.harvard.edu/software/STAPLE/.

We have used our methods, NLS, Multi-STEPS, and STAPLE with assigned consensus
region which was first suggested in [37]. In this way, large consensus regions do not have
any effect on the estimation of the performance parameters. In summary, we analyze the
segmentation results of the following methods:

• M0: Majority Voting

• M1: Artaechevarria et al. method [1]

• M2: Sabuncu et al. algorithm [2]

• M3: SIMPLE [14]

• M4: STAPLER [11]

• M5: COLLATE [10]

• M6: STAPLE [9]

• M7: Multi-STEPS [18]

• M8: NLS [19]

• M9: PICSL-MALF [25]

• M10: Probabilistic Voting

• M11: PSTAPLE

• M12: Local MAP STAPLE [7]

• M13: Local MAP PSTAPLE

As discussed previously, STAPLE based methods do not use aligned intensity images of the
templates in the fusion process. However, locally weighted fusion methods [1], [2], [25],
NLS and Multi-STEPS [19], [18], and our proposed algorithm use these images in the fusion
process. Thus, the intensities of the target image and the aligned templates are required to be
matched using a normalization approach, otherwise the intensity images of the templates
would not be suitable for the training of the classifiers. To solve this problem, one can use
simple histogram matching, the methods described in [3], [17] or any other intensity
normalization approach. We have used the combination of histogram matching and the
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method described in [17]. In other words, for all of the consequent experiments a histogram
matching method is used to globally match the intensity of the target image and the
templates. Moreover, the same approach in [17] is used to locally normalize the intensities
by using local mean and variance. In addition, we have used the leave-one-out method for
the evaluation of the methods. We have examined different non-rigid registration algorithms
and based on these experiments, we have used SyN for the alignment of the templates to the
target image [38]. The output transformations were applied to the manual segmentation of
the templates.

For the methods that do not use intensity images of the templates in the fusion process [14],
[9], [10], [11], [7], we used their default parameters; however, using three cases from NMM
dataset, we examined different parameters of [1], [2], [25], [18], [19]. The optimum HWS
and σ for the method of [2] was 2 and 0.5 respectively and the optimum HWS and γ for the
method of [1] was 2 and 1 respectively. The optimized parameters of PICSL-MALF were
HWS = 2, β = 2, and α = 0.1 [25]. In addition, the optimum HWS, local search radius, σi,
and σd of the NLS was 2, 5, 0.1, and 1, respectively [19]. Finally, the optimized kernel
parameter and number of templates of the method of Multi-STEPS was 2 and 6,
respectively. For our method we used HWS of 5 and υ = 6. It should be mentioned that the
methods of [14], [9], [10], [11] do not perform well in the whole brain segmentation
problem. The reason is that these methods use global performance parameters which is not
appropriate for the whole brain segmentation [7]. The methods of [19], [18] have the same
limitation; however, they use intensity images of the templates in the fusion process which
moderately overcomes the problem. Thus, for the whole brain segmentation problem, we
compared our method (Local MAP P STAPLE) with the methods of [1], [2], [25], [18], [19]
and Local MAP STAPLE [7].

C. IBSR and NMM databases
In the first experiment, we have used each one of the 128 structures in the IBSR database
and compared our method (PSTAPLE) to the other methods. Table I shows the Dice
coefficient of 16 × 2 + 1 = 33 structures and the average Dice coefficient of 128 structures
for the 12 methods. A paired-samples t-test was conducted to compare Dice coefficient of
PSTAPLE and Multi-STEPS as the next most accurate method. There was a significant
difference in the Dice coefficient of PSTAPLE (μ = 0.717, σ = 0.12) and Multi-STEPS (μ =
0.710, σ = 0.12); t(127) = 2.4168, p < 0.05, and 95% confidence interval of [0.001 0.012]. In
addition, there is a statistically significant difference between PSTAPLE (μ = 0.717, σ =
0.12) and Probabilistic voting (μ = 0.683, σ = 0.16); t(127) = 7.6437, p < 0.05, and 95%
confidence interval of [0.025 0.043]. Moreover, comparison of PSTAPLE (μ = 0.717, σ =
0.12) and STAPLE (μ = 0.708, σ = 0.13) shows a statistically significant improvement;
t(127) = 2.1234, p < 0.05 and confidence interval of [0.001 0.018]. The results indicates that
our new fusion algorithm has higher performance compared to the other fusion algorithms.
Also, it can clearly be seen that both GMM classifier and fusion algorithm have statistically
significant contribution in the improvement. To show the superiority of our method in the
multi-category segmentation, we carried out two different experiments. In the first
experiment, we used the generalized Dice coefficient to compare accuracy of Local MAP
PSTAPLE and Local MAP STAPLE for the whole brain segmentation. Generalized Dice
coefficient is computed as:

(22)

where A and B indicate the two multi-label segmentations to compare and l denotes the label
of the structures. Fig. 2 shows the comparison of two methods for the segmentation of 34
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structures in the IBSR datasets. Average generalized Dice coefficient of our method is 0.933
while Local MAP STAPLE has the average of 0.912. Also, a paired-samples t-test was
conducted to compare Dice coefficient of Local MAP PSTAPLE and Local MAP STAPLE.
The Dice coefficient difference between local MAP PSTAPLE (μ = 0.933, σ = 0.0095) and
local MAP STAPLE (μ = 0.912, σ = 0.0148) was statically significant; t(17) = 12.9998, p <
0.05 and confidence interval of [0.018 0.024]. It can be seen that our method is significantly
superior to the Local MAP STAPLE.

In addition, we have compared our method with the methods of [1], [2], [25], [19], [18]. We
used generalized Dice coefficient for the comparison and the results are shown in Fig. 3.
Comparison of our method (μ = 0.934, σ = 0.0095) and method of [25] (μ = 0.924, σ =
0.0115) as the next most accurate method indicates a statistically significant difference
between the methods; t(17) = 9.5269, p < 0.05 and confidence interval of [0.008 0.012]. It is
also can be seen that while NLS and Multi-STEPS outperform locally weighted fusion
methods in the binary segmentation problem, they have poor performance in the multi-
category segmentation. Average generalized Dice coefficient of NLS and Multi-STEPS for
IBSR dataset is 0.915 and 0.912, respectively. It is worth mentioning that local MAP
implementation of these methods may overcome this problem and may significantly increase
their accuracy.

In addition, Fig. 4 shows the comparison of the segmentation results generated by Local
MAP PSTAPLE (f), method of [1] (a), method of [2] (b), Multi-STEPS (c), NLS (d),
PICSL-MALF (e) and expert manual segmentation (g) in two representative IBSR dataset
(h).

Next, we used our developed method (Local MAP PSTAPLE) and methods of [1], [2], [25],
[19], [18] for the segmentation of NMM datasets. The same parameters described in the
previous section are used in this experiment. Fig. 5 shows the comparison of the
segmentation results generated by Local MAP PSTAPLE (f), method of [1] (a), method of
[2] (b), Multi-STEPS (c), NLS (d), PICSL-MALF (e), and expert manual segmentation (g)
in coronal images of two representative NMM datasets (h). In addition, quantitative
evaluation with generalized Dice coefficient is also considered to compare the methods. The
results of the comparisons are shown in the Fig. 6. The average generalized Dice coefficient
of our method, method of [1], method of [2], Multi-STEPS, NLS, and PICSL-MALF are
0.851, 0.846, 0.846, 0.839, 0.833, and 0.844 respectively. The differences between our
developed method (µ = 0.851, σ = 0.0169) and the method of [1] (µ = 0.846, σ = 0.0150) and
method of [2] ( µ = 0.846, σ = 0.0150) as the next most accurate methods were statistically
significant with t(14) = 4.9536, p < 0.05, and confidence interval of [0.003 0.007] and t(14)
= 5.3940, p < 0.05 and confidence interval of [0.003 0.007], respectively. However, there
was no difference between the methods of [1] and [2]; t(14) = 1.4595, p > 0.05 and
confidence interval of [−0.0001 0.001].

IV. Conclusions
We have developed a new Expectation-Maximization algorithm that simultaneously
estimates the hidden ground truth and performance parameters from a set of probabilistic
segmentations. The algorithm can be used for the fusion and evaluation of statistical
classifiers, manual segmentations specified as confidence levels, or any set of probabilistic
segmentations of a target image.

In this paper, we have used the algorithm for the parcellation and segmentation of brain
structures. Intensity and label map images of each one of the aligned templates have been
used to train a local GMM based classifier. Each one of the trained classifiers has been used

Akhondi-Asl and Warfield Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 October 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to segment the target image which generates a probabilistic segmentation of the target
image. We then locally estimate template performance by comparison to a hidden reference
standard. In this way, we have identified local regions where the template matches or does
not match due to uncaptureable inter-individual anatomical dissimilarities between the target
image and the template and also the errors due to intrinsic registration inaccuracies which
are then fused.

As a result of this work, we have introduced two distinct fusion algorithms: PSTAPLE,
which uses global performance parameters and is useful when the performance of the raters
does not vary spatially; and Local MAP PSTAPLE, which addresses the problem of spatial
variability of the rater performance.

These new fusion algorithms were tested on two brain databases. These results, in turn, were
compared to those of other state-of-the-art segmentation methods. We demonstrated that
PSTAPLE and Local MAP PSTAPLE have higher accuracy compared to other state-of-the-
art methods described in the literature.

The algorithm we have described enables the fusion of probabilistic input segmentations.
Many intensity and label fusion algorithms generate such probabilistic segmentations. Our
fusion approach allows the characterization of the performance of such algorithms even in
the absence of a reference standard segmentation.

Although we have used a local GMM based classifier to generate the probabilistic
segmentations, it may be possible to improve the accuracy of the segmentation by utilizing
more sophisticated classifiers. This is one of the important aspects of the algorithm which
needs further development.
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Fig. 1. Illustration of Synthetic Data Segmentation Results
Comparison of segmentation results generated by PSTAPLE (h), and STAPLE (i) using
three samples from (a,d), three samples from (b,e), and two samples from (c,f). The target
image is shown in (g) and the corresponding segmentation is shown in (h). It can be seen
that using intensity information PSTAPLE has perfect segmentation accuracy. However,
STAPLE could not find the correct answer because there is no way to distinguish between
the template segmentations.
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Fig. 2. Quantitative Comparison of the IBSR Multi-Atlas Segmentation Results
Comparison of generalized Dice coefficient of M12: Local MAP STAPLE and M13: Local
MAP PSTAPLE for 34 structures in 18 IBSR datasets. It indicates that Local MAP
PSTAPLE is superior to the Local STAPLE. The horizontal axis represents each subject.
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Fig. 3. Quantitative Comparison of the IBSR Multi-Atlas Segmentation Results
Comparison of generalized Dice coefficient of M13: Local MAP PSTAPLE, M1: method of
Artaechevarria et al. [1], M2: method of Sabuncu et al. [2], M7: Multi-STEPS [18], M8: NLS
[19], and M9: PICSL-MALF [25] for 34 structures in 18 IBSR datasets. It indicates that
Local MAP PSTAPLE is superior to the other methods. The horizontal axis represents each
subject.
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Fig. 4. Illustration of IBSR Multi-Atlas Segmentation Results
Comparison of segmentation results generated by M13: Local MAP PSTAPLE (f), M1:
method of [1] (a), M2: method of [2] (b), M7: Multi-STEPS [18] (c), M8: NLS [19] (d), M9:
PICSL-MALF [25] (e), and expert manual segmentation (g) in an axial image of a
representative IBSR dataset (h). Circles show the regions that Local MAP PSTAPLE clearly
outperforms other methods.
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Fig. 5. Illustration of NMM Multi-Atlas Segmentation Results
Comparison of segmentation results generated by M13: Local MAP PSTAPLE (f), M1:
method of [1] (a), M2: method of [2] (b), M7: Multi-STEPS [18] (c), M8: NLS [19] (d), M9:
PICSL-MALF [25] (e) , and expert manual segmentation (g) in coronal images of
representative NMM datasets (h). Circles show the regions that Local MAP PSTAPLE
clearly outperforms other methods.
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Fig. 6. Quantitative Comparison of the NMM Multi-Atlas Segmentation Results
Comparison of generalized Dice coefficient of M13: Local MAP PSTAPLE and methods of
M1 [1], M2 [2], M7 [18], M8 [19], and M9 25 for 53 structures in 15 NMM datasets. It
indicates that Local MAP PSTAPLE is superior to the other methods. The horizontal axis
represents each subject.
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