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Testing Equality of Cell Populations Based
on Shape and Geodesic Distance

Charles Hagwood*, Javier Bernal, Michael Halter, John Elliott, and Tegan Brennan

Abstract—Image cytometry has emerged as a valuable in vitro
screening tool and advances in automated microscopy have made
it possible to readily analyze large cellular populations of image
data. The purpose of this paper is to illustrate the viability of using
cell shape to test equality of cell populations based on image data.
Shape space theory is reviewed, from which differences between
shapes can be quantified in terms of geodesic distance. Severalmul-
tivariate nonparametric statistical hypothesis tests are adapted to
test equality of cell populations. It is illustrated that geodesic dis-
tance can be a better feature than cell spread area and roundness
in distinguishing between cell populations. Tests based on geodesic
distance are able to detect natural perturbations of cells, whereas
Kolmogorov–Smirnov tests based on area and roundness are not.

Index Terms—Cells, energy, geodesics, hypothesis tests, min-
imum spanning tree, nearest neighbor, shape space.

I. INTRODUCTION

M ANY cell-based studies rely on the determination
of an effect to various treatments to assess and to

compare experimental results, e.g., in cancer studies, drug
screening, toxicology studies, and genomic research. These
studies depend on biological, as well as statistical tools to
process the data [1]. Two issues involved are 1) determination
of a homogeneous population of treatment units, cells, and 2)
differentiating between treated cells and untreated cells. The
isolation and characterization of homogeneous cell populations
are necessary requirements, because a valid comparison re-
quires treatment groups to be made up of homogeneous units,
see [2]. Determination of a homogeneous population can be
an issue in cell-based studies. For example, it is known that
there are potential gains from stem cell treatment. Transplan-
tation of autologous and allogeneic stem cells offer substantial
promise for treating a number of diseases, but determination of
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a homogeneous population of cells is an issue. Many current
methods/sorters for differentiation of cells result in possibly
mixed cell populations. Statistical hypothesis tests are applied
to determine exactly when the results are truly homogeneous
and once a homogeneous population of cells has been treated,
hypothesis testing is used to determine if an effect exists.
Typically statistical inference regarding a treatment effect is

based on extracted attributes, such as cell volume, cell area,
cell perimeter, or other attributes. Halter et al. [3] in a study
used volume to compare populations. Others have used more
involved attributes, such as, extracted Fourier frequency com-
ponents from cell images. Moon and Javidi [4] used SEOL dig-
ital holographic microscopy, Gabor wavelet analysis, to extract
multiple features from an image. However, most extracted at-
tributes like those described above, do not uniquely identify a
cell population. Our goal is to provide statistical tests for issues
1) and 2) based on cell shape, because shape provides a unique
characterization.
Shape governs a cell’s motility, division, taxonomy and,

oftentimes, shape changes are a precursor to disease. What is
shape? Shape is generated by the outline or silhouette of an
object. Although related, the boundary contour and shape of
an object are different. Contours may possess several features,
such as being closed, smooth and simple, but shape requires
additional attributes, viz, scale invariance, translational invari-
ance, and rotational invariance to describe it. That is, shape
is unchanged by a translation, a scale change, or a rotation.
Furthermore, the ability to reconstruct, up to these invariants,
the object’s boundary contour from its shape is an additional
requirement we make. This is something that cannot be done
for many other shape descriptors, such as perimeter, area,
aspect ratio, elongation, eccentricity, etc.
The space of shape representations associated with a space

of contours is called its shape space. Shape space is not a linear
space, like Euclidean space, for the sum of two closed curves is
not closed under addition. Therefore, classical statistical tech-
niques cannot be applied directly to the contours themselves.
Srivastava et al. [5] developed a theoretical foundation for shape
space where calculus and other analysis can be performed on
tangent spaces at points in the space. Shape space has the struc-
ture of a Riemannian manifold. A manifold is a topological
space that locally looks like Euclidean space [6]. A Riemannian
manifold is a manifold that assigns a metric to each of the avail-
able linear spaces, the tangent spaces at points on the manifold.
With this metric on the tangent spaces, a notion of velocity can
be defined and thus the length of a curve and the geodesic dis-
tance between points in the manifold can be computed. In par-
ticular, in shape space, the geodesic distance between elements
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of the space can be computed. This distance is used as a dissim-
ilarity measure in our statistical tests.
In statistics, determination of equality of populations is usu-

ally formulated as a hypothesis testing problem about distribu-
tion functions of attributes of the populations, e.g.,

versus where is the distribution
function for the attributes of the treated population and the
distribution function for the attributes of the untreated popula-
tion, with data . In the univariate case, , there are
several nonparametric tests, such as, the Wald–Wolfowitz runs
tests, the Kolmogorov–Smirnov test and theWilcoxon rank sum
test. Rank and runs tests are based on ordering the data and it
is difficult to generalize these to higher dimensions. When these
tests are generalized to dimensions , some form of dissim-
ilarity measure or interpoint distance metric between observa-
tions is required. Three multivariate nonparametric tests where
shape space methodology can be applied are: 1) the Minimum
Spanning Tree test of Friedman and Rafsky [7], 2) Schilling’s
[8] Nearest Neighbor Distance test, and 3) Szekely and Rizzo’s
[9] and Aslan and Zech’s [10] statistical Energy test. Here, our
atttibute is shape. In Section II, the methodolgy of shape space
is reviewed and because of the non-Euclidean nature of shape
data, a probability space is created on shape space where statis-
tical inference can be performed. In Section III, these three tests
are reviewed, it is demonstrated how they apply to cell popula-
tions using geodesic distance and then, are compared based on
power calculations.
A test procedure is no good if it cannot clearly distinguish

between distinctly different shapes and between clearly alike
shapes. Our analysis is based on a population of DLEX-p46
cells, a replicate population of DLEX-p46 cells and a popu-
lation of NIH-3T3 cells. DLEX-p46 cells are round, whereas,
NIH-3T3 cells have an elongated, spindly appearance. From
these populations, an inhomogenous population of cells can be
formed by mixing the two populations and a population more
similar to DLEX-p46 or NIH-3T3 in shape can be formed by
choosing a shape along the geodesic paths between theses two
cell lines, see Figs. 2 and 3. The image preparation process
and imaging for these populations are described in Section II
of [11]. K-means (with ) was used as the segmentation
procedure. In Hagwood et al. [11], it was shown that k-means
is a very competitive algorithm compared to the Otsu, Water-
shed, and Canny algorithms for the segmentation of fluores-
cently labeled cells. The cell images evaluated in that studywere
representative of cell images used for high content screening.
In this study, k-means was applied as the segmentation algo-
rithm based on the findings of that previous study and because
the cell density and fluorescent labeling protocol used to gen-
erate these data sets were similar. After image preparation, pro-
cessing and segmentation were completed, all cells are repre-
sented as their 2-D projected boundaries. In Fig. 1, the bound-
aries of two segmented cells are illustrated. For each cell, the
raw boundary points coming from segmentation are interpo-
lated to produce a smooth boundary curve, as required in the
shape space construction. These smooth curves obtained in this
manner are the data used to compute shape representations of
the cells described in Section II. A MATLAB software package

Fig. 1. Boundary curves of two segmented cells.

by Srivastava (http://ssamg.stat.fsu.edu/software) was used to
compute geodesic paths and geodesic distances between shapes.

II. SHAPE SPACE

Shape-based analysis of objects has a long legacy in statis-
tics [12], computer vision and object recognition [13], biology
[14], etc. In these fields, shape similarity measures, ,
between two shapes and are usually defined [15] and the
tests presented in Section III are useful for these fields. A large
part of past analyses was based on using landmarks as summary
points on an object, see [16] and [17]. Shape analysis based just
on boundary data of a smooth curve or surface was developed
by [5], [18], [19], among others. Shape theory based on just
bounday data is used here.
Let be a parametric represen-

tation of a curve, assumed to be smooth and closed,
. For example, a parametrization of the unit

circle is . Srivastava et al. [5] defined
the shape of the curve represented by as the result of a
function, the shape function, acting on . As required, this
shape function acting on smooth, simple closed curves is
invariant under scaling, translation, rotation and reparametriza-
tion. First the shape function scales all curves to have length
. This produces scale invariance. Let denote the Eu-

clidean norm on and
a smooth closed curve of length , the

precursor to shape space. Because of differentiation, any
translation will correspond to the same represen-
tation in . One may recover from , since

up to a constant. The required invari-
ance with respect to rotations and reparametrizations is taken
care of by identifying their actions on the pre-shape space .
The corresponding quotient space is the
shape space, where SO2 represents all rotation actions and
all reparameterizations. Points in are just equivalence classes
generated by rotations and reparametrizations that contain
curves with the same shape, [20].
The mathematical structure needed to study may

be obtained from the mathematical structure of .
The space is a subset of the space of square inte-
grable functions on , . Furthermore,

, therefore points
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Fig. 2. Eight points along the geodesic path between a DLEX-p46 cell and a NIH-3T3 cell, geodesic distance between cells is 0.92.

Fig. 3. Eight points along the geodesic path between two DLEX-p46 cells, geodesic distance between cells is 0.62.

in lie on a sphere in . The condi-
tion is closed implies, from the recovery condition

, that . Thus,
.

The sphere is a differential manifold and as a level surface of
a sphere in , is a differential manifold, Do
Carmo [6]. A manifold is a space such that each of its points
has a neighborhood about it that is homeomorphic to a ball
in some Euclidean space, . When this homeomorphism is
differentiable the space is called a differentiable manifold,
Do Carmo [6]. Its coordinate mappings provide the means to
perform calculus on it. The space is a Riemannian manifold.
A Riemannian manifold is a manifold that assigns a metric to
its tangent spaces [21]. With this metric on the tangent spaces,
a notion of velocity can be defined and thus the length of a
curve can be computed. Paths between points in a Riemannian
manifold of minimum length are called geodesics. In the case of
, these geodesics are used to determine how close the shapes

of curves are to each other. Dissimilarity between cells can
then be quantified as the length of the geodesic path connecting
them. Figs. 2 and 3 show points on two geodesics.
Under the Riemannian structure that the shape space in-

herits from the pre-shape space , the geodesic distance be-
tween two equivalence classes and in , ,
as given by Srivastava et al. [5], is

where is the geodesic distance function in the pre-shape space
. Srivastava et al. [5] provide algorithms for solving the op-

timization problems associated with computing and .
Finally, in our procedure, the concept of an orientable differ-

entiable manifold is used to define a volume element of . A
manifold is orientable if it is not twisted like the Mobius strip
[6]. That is, one can consistently choose a “clockwise” orienta-
tion for all loops around the manifold. Spheres, planes and tori
are orientable. Thus, in such manifolds a measure can be de-
fined, as well as, Borel sets. Because is a level curve in an
orientable manifold it is orientable [22]. Therefore, can be
made into a probability space with measure , where is de-
fined by its value on the volume elements of .

III. HOMOGENEITY TESTS

The general notion of how to test equality of populations of
vector space data has been around for some time. Many such
tests rely on using the vector space metric as a dissimilarity
measure to distinguish between populations. On the other hand,

the notion of homogeneity tests for data in more general spaces
is relatively new. Using results from Section II, the framework
of these vector space tests can be generalized to test equality
of populations in shape space, with geodesic distance as the
dissimilarity measure. For two cell populations and , let

and be samples of
boundary contours from each population and let
be the total number of cells. Let be shape space and let

be the subspace of shapes associated with and the
subspace of shapes associated with . As shown in Section II,
a probability space can be created on the shapes with
probability measure and a probability space can be created
on the shapes with probability measure . Via a standard
construction, see [23], a probability measure can be created on
the product of these two spaces, making it possible to define

, the geodesic distance from to , as a well
defined random variable. With this we can test
against the alternative , that is, we can test if the
shapes of these cell populations are statistically identical.
Data
We used as data a sample of 100 DLEX-p46 cells,

a sample of 100 cells from a replicate population of
DLEX-p46 cells and a sample of 100 NIH-3T3 cells. Fig. 4
shows cells from these populations. We used and to
test whether two replicate populations of DLEX-p46 cells are
indeed replicates, and we used and to test equality
of DLEX-p46 and NIH-3T3 populations. Then, we formed a
mixed sample by taking and mixing a certain percentage
of and looked to see how large has to be before our

tests detect the cells. The best test is that one that detects
the NIH-3T3 cells with smallest . This last test is just a power
comparison of the three tests. The data for our tests are six 100
100 geodesic distance matrices, between and ,

and , and , and , and , and and .
We tested

(1)

(2)

(3)

is the probability measure associated with population and
is associated with the mixed population of DLEX-p46

cells and NIH-3T3 cells.
A parametric test of against , which requires providing

distribution functions for and is difficult to formulate at
this level of development of shape theory.Multivariate nonpara-
metric tests are available that can be generalized to shape data.
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Fig. 4. Top row: Cells from two Replicate populations of DLEX-p46 cells.
Bottom Row: Cells from two Replicate populations of NIH-3T3 cells.

Three popular tests for determining whether two populations
originate from the same source are the Friedman–Rafsky Min-
imum Spanning Tree Test [7], the Shilling Nearest Neighbor
Test [8], and the Energy Test [9], [10]. These tests have been
used frequently, and in this section they have been adapted to
test against .
Friedman–Rafsky test
The Friedman–Rafsky [7] nonparametric test is a multi-

variate generalization of the Wald–Wolfowitz runs test [24]
for testing equality of two univariate populations. In the
Wald–Wolfowitz runs test, independent observations on two
populations , and are pooled
and ordered in ascending order. Runs are defined as sequences
of consecutive observations from the same sample in the
sequence of ordered pooled observations. A small number of
runs indicates the populations are different.
Friedman and Rafsky generalized order to , by re-

placing the ordering for univariate samples by an ordering on
weighted spanning trees, with each observation in the pooled
sample being a tree node. Edges are weighted by the distance be-
tween the two nodes forming an edge. Trees are ordered by com-
paring the sum of their edge weights. The Minimum Spanning
Tree (MST) is the tree with minimum total weight and it is used
to redefine runs in , as follows. Break theMST at edges where
defining nodes are from different populations, count the number
of disjoint trees, that results. Small indicates the popula-
tions are different. Friedman and Rafsky showed as

(4)

where is a standard normal random variable and

(5)

(6)

where equals the number of edge pairs that share a common
node, which equals , the degree of the
th node. For small values of , the null hypothesis is rejected,
i.e., rejected if

(7)

where is the quantile of the standard normal distri-
bution. The p-value at the data is

(8)

For our problem, the shapes of the contours,
are the nodes and the

edge weights are the geodesic distances.
Schilling Nearest Neighbor test
The Nearest Neighbor test was developed by Schilling [8],

also see [25], as a nonparametric procedure to test equality of
multivariate populations. To test form the pooled
sample, and let

(9)

(10)

Define the th Nearest Neighbor, , of as th
largest, , in the ordering of

from smallest to largest, where in our case
, the geodesic distance. Define

(11)

(12)

and for predetermined , form the statistics

(13)

is the proportion of all Nearest Neighbor comparisons in
which a point and its neighbor are members of the same sample.
For large values of is rejected. Schilling showed that
as with tending to some constant, for

, then

(14)

where is the standard normal distribution and

(15)

(16)

Here, are constants described in [8]. Schilling’s
original paper was written for points in . If
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the , then . We used and for our
example . Schilling showed in this case

(17)

One rejects in favor of if

(18)

where is the quantile of the standard normal distri-
bution. And, the p-value for this test is

(19)

where is the observed Schilling proportion and is the
standard normal cumulative distribution function.
Energy test
The energy test was proposed by Zech and Aslan [10], [26].

Also, see Szekely and Rizzo [9]. The concept of statistical en-
ergy is based on the principles of potential energy in physics.
The potential energy of a continuous charge distribution is

(20)

If the charge distribution is split into negative and positive
charges, , then (20) becomes

(21)

From electrostatics the potential energy is minimized when
. If the integrals are discretized and a

sample is considered a sample of
generalized positive charges of charge and a sample

as a sample of negative charges of charge
, then the statistical energy in the pooled sample is

(22)

where has been generalized to , any measure of
distance between and .We use the geodesic distance between
cell shapes and as .
For large positive values of the test statistic , the equality

hypothesis should be rejected. is a degenerate V-statistic and
its asymptotic distribution is known not to be normal.
Permutation Distributions
Oftentimes, an asymptotic normal test requires a large sample

for the asymptotic distribution to be accurate and hence useful.
When the asymptotic distribution is not accurate, a permutation
distribution provides an alternative. A permutation distribution
is an approximate distribution for the test statistic based

on resampling the pooled data
from the two populations. The first ’s being the first
population. Let be a
permutation of . is applied to each of the

possible two samples, ,
. In practice, the permutation distri-

bution is approximated by the without replacement bootstrap
distribution of , (see [27, p. 207]). Let be inde-
pendent with replacement bootstrap replicates. Histogram these
results and use this as the distribution for . The permutation
distribution p-value is

(23)
where is evaluated at the original sampled data. One may
think of the p-values as the likelihood that a test statistic of this
magnitude occurred merely by chance. Small p-values indicate
that the data provide evidence that the null hypothesis is false.

IV. TEST RESULTS

Test I:

Fig. 5 contains the test results of Test I for testing for equality
of a population of DLEX-p46 and a replicate population of
DLEX-p46 cells. Here, we expect not be rejected by each
test. Permutation histograms for the energy, Nearest Neighbor,
and MST test statistics are shown, as well as, the asymptotic
normal test statistic distributions for the MST and Nearest
Neighbor tests are shown. For the Nearest Neighbor test
statistic, we took . We did not find much difference
between to . Fifteen hundred bootstrap samples
were used for the energy and Nearest Neighbor tests. Because,
the MST algorithm is a very time consuming algorithm, only
500 bootstrap replicates were used to calculate its permutation
distribution. With sample sizes , the Nearest
Neighbor asymptotic normal and permutation histogram densi-
ties differ in their tails. Sample sizes of 100 are not large enough
for the Nearest Neighbor asymptotic normal distribution to be
accurate. The asymptotic MST normal distribution is a good
approximation to its permutation distribution. The tests have
ALS p-values 0.25, 0.26,0.78. Thus, the hypothesis cannot
be rejected at significance levels of 25% or better in each case.
Test II

Fig. 6 shows the permutation distributions for the three test sta-
tistics for testing equality of DLEX-p46 and NIH-3T3 cell pop-
ulations, as well as, the asymptotic normal test statistic distribu-
tions for the MST and Nearest Neighbor tests are shown. Here,
each test is expected to reject . All the p-values were of the
order of and were set to zero. is strongly rejected by
all tests. Again, in the tails the asymptotic and permutation dis-
tributions differ.
Test III:
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Fig. 5. Test I (DLEX-p46 versus DLEX-p46 Replicate). (a) Energy test statistic. (b) Nearest neighbor test statistic . (c) Minimum spanning tree test
statistic.

Fig. 6. Test II. (a) Energy test statistic. (b) Nearest neighbor test statistic . (c) Minimum spanning tree test statistic.

In Fig. 7, the powers of the three tests against a specific mixture
alternative are shown. From Test I, we know that DLEX-p46
and its replicate are equivalent populations and from Test II we
know that DLEX-p46 and the NIH-3T3 populations are com-
pletely different. The power alternative we use is to contami-
nate the replicate DLEX-p46 sample with NIH-3T3 cells. This
mixture is compared to the other DLEX-p46 population. We see
what mixing proportion is needed for the tests to detect the con-
tamination. Seven populations are created with mixing propor-
tions starting at 10% and going to 28% by 3% increments. Then,
seven runs of Test III at each mixture proportion are performed
and p-values of the tests are recorded at each run (see Fig. 7).
The Energy test has the most power to detect the contamination
quickest. It detects the contamination at the 0.05 significance
level at about a 14% mixing proportion and it detects the con-
tamination at the 0.03 significance level at a mixture of 16%.
The other tests are less powerful and take up to a 25% mixing
proportion to detect the contamination at the 5% significance
level.

V. OTHER DESCRIPTORS

It was stated in the Introduction that typically univariate cell
attributes or descriptors have been used to describe a cell pop-
ulation. An often used attribute is cell spread area, [28], [29].
When using cell spread area, the population is identified by its
cell areas and equality of populations becomes the two sample
problem in statistics. A popular nonparametric statistical test
used for the two sample problem is the Kolmogorov–Smirnov
statistic. Let and denote the distribution functions
of the populations of spread areas. To test

Fig. 7. Power plots: p-values versus contamination proportions for
versus .

the Kolmogorov–Smirnov test rejects at significance level
if where are the
empirical distribution functions of and is the
quantile for the two sided Kolmogorov–Smirnov test statistic.

This test statistic and its quantiles can be found in [30]. Fig. 8
contains a plot of the empirical distribution functions of spread
areas for the three populations discussed in the Section IV.
For Test I, with cell area as attribute, the Kol-

mogorov–Smirnov test resulted in the p-value 0.11, and for
Test II the test resulted in the p-value . Thus, cell
area distinguishes these populations as well.
The data in Table I show for cell area, the univariate Kol-

mogorov–Smirnov test is not as powerful as the energy test
based on shape. As in Section IV, when a DLEX-p46 popu-
lation is mixed with NIH-3T3 cells at various proportions and
Test III is performed, the Kolmogorov–Smirnov tests detects
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Fig. 8. Empirical cumulative distribution functions for the populations of
DLEX1, DLEX2 (DLEX-p46 and its replicate), and NIH-3T3 cell spread areas.

TABLE I
P-VAUES FOR DLEX-P46 VERSUS MIXTURE OF A REPLICATE DLEX-P46
AND NIH-3T3 FOR KOLMOGOROV–SMIRNOV WITH CELL SPREAD AREAS

Fig. 9. Seven points along a geodesic path between a cell from a DLEX-p46
population (first cell on left) and a cell from a NIH-3T3 population (first cell on
right).

contamination of the DLEX-p46 population with NIH-3T3 cells
after 22% contamination. The energy test detects the contamina-
tion at about 14% contamination. Also, we performed the Kol-
mogorov–Smirnov test with roundness ( )
as a descriptor. For Test I, with cell roundness as attribute, the
Kolmogorov–Smirnov test resulted in the p-value 0.24, and for
Test II the test resulted in the p-value . Also, round-
ness as a descriptor distinguishes equality of these populations.

VI. PERTURBATION OF CELLS

The goal of this section is to compare the previous tests based
on shape versus those based on area and roundness when the
populations are closer in shape. We do this by comparing a
DLEX-p46 population with a perturbation of it. Cells in the
DLEX-p46 population are perturbed using the following pro-
cedure. We pair cell from the file of DLEX-p46 cells with cell
from the file of NIH-3T3 cells, (file order).
Then, the geodesic path with endpoints from the th pair is de-
termined. Fig. 9, shows one such path. The second cell from the
left on the path is taken as the perturbed DLEX-p46 cell. The
total geodesic distance along the path in Fig. 9 is 0.71 and the
distance from first cell on left to the second cell is 0.12. This
new population contains 100 perturbed cells. The mean path
length over all 100 paths is 0.62 and the mean distance over
all paths from the second cell to the DLEX-p46 endpoint cell is
0.102. We tested to determine equality of the DLEX-p46 popu-
lation and its perturbation. The three tests based on shape re-
jected equality of the populations with p-values smaller than

. Kolmogorov–Smirnov tests based on area and round-
ness gave p-values 0.23 and 0.07, respectively. Thus, a Kol-
mogorov–Smirnov test with significance level and

Fig. 10. Empirical cumulative distribution function of a population of
DLEX-p46 cell areas and the empirical cumulative distribution function of a
population of cell areas for a perturbed population of DLEX-p46 cells.

with either cell spread area as data or cell roundness as data
would not reject the hypothesis that the perturbed population
of DLEX-p46 differs from the population of DLEX-p46 cells.
Fig. 10 contains a plot of the area empirical distribution func-
tions of the two populations (the geodesic algorithm scales all
curves to have length one). This example provides evidence that
to detect subtle, but significant changes in shape, geodesic dis-
tance is a better descriptor than area or roundness.

VII. SUMMARY

We illustrated the viability of using cell shape to test equality
of two cell populations. In order to test if two cell populations
are statistically identical, at least three steps are required: 1)
image processing and segmentation, 2) defining an appropriate
cell descriptor and 3) defining a test statistic. This paper con-
centrated on steps 2) and 3). Shape was emphasized as our de-
scriptor. In addition to the fact that shape serves as an important
surrogate for many biological responses, there is a one-to-one
(up to invariants) correspondence between a cell’s shape and
its boundary contour. We presented the methodology of shape
space theory that allows one to define a probability measure
on shape space and to compute the geodesic distance between
cells. With this theory, one can associate with a shape popula-
tion, , a probability measure . The problem of equality of
two cell populations then can be formulated as the hypothesis
testing problem where and are shapes
of two cell populations. To test , three test statistics, the
Energy, the Nearest Neighbor, Minimum Spanning Tree tests
frommultivariate statistics for data in Euclidean space, were ap-
plied to shape data using geodesic distance instead of Euclidean
distance.
We tested, using samples of size 100, 1) whether a population

of DLEX-p46 cells has the same shape distribution as a popu-
lation of replicate DLEX-p46 cells and 2) whether a population
of DLEX-p46 cells has the same shape distribution as a pop-
ulation NIH-3T3 cells. All three tests showed that the shapes
of the DLEX-p46 are statistically equivalent to the shapes of
the a replicate population of DLEX-p46 cells. They rejected
the hypothesis that the shapes of DLEX-p46 cells are similar to
shapes of NIH-3T3 cells. The three tests were compared based
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on their power to reject equality of a DLEX-p46 population
and a replicate DLEX-p46 population mixed with k% NIH-3T3
cells. The Energy test is the most powerful in detecting the
contamination of the replicate DLEX-p46 population with
NIH-3T3 cell. Because these three cell populations are either
far apart or very close, the same conclusions were reached
by the Kolmogorov–Smirnov test applied to cell spread area.
When a shape perturbation is performed on the DLEX-p46
cells, the tests based on geodesic distance detected the pertur-
bation, whereas the test based on area failed to do so. Both
the Nearest Neighbor test and the MST test are computer time
consuming (at least for the MATLAB program we used). The
Energy test runs quite fast.
In conclusion, all three tests are viable tests for testing

equality of cell populations using shape. The Energy test is the
most accurate and requires less computer time than the others.
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