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Abstract—In medical imaging, the gold standard for image-
quality assessment is a task-based approach in which one evaluates
human observer performance for a given diagnostic task (e.g.,
detection of a myocardial perfusion or motion defect). To facilitate
practical task-based image-quality assessment, model observers
are needed as approximate surrogates for human observers. In
cardiac-gated SPECT imaging, diagnosis relies on evaluation
of the myocardial motion as well as perfusion. Model observers
for the perfusion-defect detection task have been studied pre-
viously, but little effort has been devoted toward development
of a model observer for cardiac-motion defect detection. In this
work, we describe two model observers for predicting human
observer performance in detection of cardiac-motion defects.
Both proposed methods rely on motion features extracted using
previously reported deformable mesh model for myocardium
motion estimation. The first method is based on a Hotelling linear
discriminant that is similar in concept to that used commonly
for perfusion-defect detection. In the second method, based on
relevance vector machines (RVM) for regression, we compute
average human observer performance by first directly predicting
individual human observer scores, and then using multi reader
receiver operating characteristic analysis. Our results suggest that
the proposed RVM model observer can predict human observer
performance accurately, while the new Hotelling motion-defect
detector is somewhat less effective.

Index Terms—Cardiac motion, cardiac-gated single photon
emission computed tomography, image quality, machine learning,
model observers, numerical observer.

I. INTRODUCTION

N MEDICAL imaging, an important step in the develop-

ment of new imaging devices and algorithms is to optimize
various design parameters, which should ideally be done using
an appropriate image-quality figure of merit [1], [2]. Classical
figures of merit such as mean-square error, or bias and vari-
ance, have been used extensively in the past. Unfortunately, they
do not reflect the fact that the principal agent in medical deci-
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sion-making is usually a human observer nor are they aware of
the specific diagnostic task. Therefore, a consensus has emerged
in the medical imaging field about the need to assess medical
image quality by figures of merit that measure the performance
of human observers for a given diagnostic task [1].

Cardiac-gated single photon emission computed tomography
(SPECT), an important tool in the evaluation of coronary artery
disease [3], is used to perform the following diagnostic tasks:
detection and localization of perfusion defects; evaluation of
severity, extent, and reversibility; evaluation of wall motion and
thickening; and assessment of viability according to guidelines
by the American Society of Nuclear Cardiology [4]. Information
on cardiac motion is used for diagnosis, prediction of progres-
sion, and treatment of coronary artery disease. It is also used to
extract useful diagnostic features such as ejection fraction, via-
bility, etc., [ST-[8].

Proper evaluation of cardiac-gated SPECT should be based
on human observer performance. However, studies involving
human observers are difficult to implement, due to time and
cost constraints. Therefore, numerical surrogates for human
observers [1], [9], [10] are highly desirable tools in the early
stages of design and optimization of devices and reconstruction
methods.

At present, the most widely used model observer is the chan-
nelized Hotelling observer (CHO), a generalized likelihood
ratio test, which has been successfully used as a surrogate for
human observers in perfusion-defect detection tasks [9]-[21].
It has been shown that the CHO, with or without the inclusion
of an internal-noise model, can predict human performance
reasonably well in detection tasks for lesions [12], [13] and
cardiac perfusion defects [14], [15]. Therefore, the CHO has
been widely used to evaluate and optimize image reconstruc-
tion methods [11]-[21] using defect detectability as a figure of
merit.

Inspired by the CHO approach, our group has developed a
model observer methodology for perfusion defect detectability,
which offers several advantages, most notably improved fitting
and generalization accuracy. The approach was based on ma-
chine learning using nonlinear support vector machine (SVM)
regression [22]. The term generalization describes the ability
of a model observer to accurately predict the performance of a
human observer over a wide range of image-reconstruction pa-
rameter settings on which data are not available for model ob-
server tuning. The ability of a model observer to generalize to
unseen data is of utmost importance since the purpose of the
model observer is to evaluate new imaging devices or recon-
struction methods for which human observer performance is as
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Fig. 1. Short-axis, vertical long-axis, and horizontal long-axis views of images
reconstructed via FBP with spatial filtering and motion-compensated filtering
(MC-FBP 3) (left) without motion defect and (right) with an anterior basal mo-
tion defect. Images are two frames from an image sequence: end diastole (ED;
top row) and end systole (ES; bottom row). During human observer studies, the
three views were used to display image sequences.

yet unknown; thus, images evaluated in practice by model ob-
servers are by definition unseen data and not merely different
noise realizations of known types of data.

While model observers for the perfusion-defect detection task
have been studied extensively, little research has been devoted
to development of a model observer for motion-defect detec-
tion tasks. Model observers for perfusion defects are typically
applied on static short-axis slices through the myocardium, and
as such cannot capture motion information. Some research has
been devoted to extension of the CHO to volumetric [23] and
temporal [24] data. However, evaluation of motion visibility
is arguably different from detection of a signal in a random
intensity background. For motion analysis, initial motion ob-
servers were proposed in [25], [26], but these model observers
are not specifically designed to correlate with a human observer.
A more general approach to motion observers has been investi-
gated by our group [27], but not directly in the context of car-
diac SPECT. Therefore, in this paper, we developed and eval-
uated two new model observers for image-quality assessment
of cardiac-gated perfusion SPECT performance in detection of
motion defects.

The first method uses a Hotelling linear discriminant, a sim-
ilar approach to that used in the perfusion-defect detection lit-
erature. The Hotelling discriminant does not have parameters
to be tuned in order to match human observers performance.
In the second approach, based on machine learning, the model
observer aims specifically, by model tuning, to predict each
human observer’s performance in detection of motion defects
(see Fig. 1 for an example of the cardiac motion defects consid-
ered in this work).

In our human observer studies for motion-defect detection,
each human observer was asked to examine an image sequence
and score his or her confidence as to the presence of a car-
diac motion defect at a known location [e.g., on a scale of 1
(low confidence) to 6 (high confidence)]. The performance of
the multiple human observers was then summarized using mul-
tiple-reader multiple-case (MRMC) analysis to obtain the area
under the receiver operating characteristic curve (AUC) [1],
[41].

In our second proposed approach, a model observer was
trained to predict each human observer’s confidence scores by
using numerical features extracted from the image sequences.
Once trained, the model observer yields predicted confidence

scores that attempt to mimic those of each human observer in-
dividually, and these predicted scores can be used to determine
the MRMC AUC in the same fashion as is normally done for
human observers.

The success of the model observer in predicting human ob-
servers’ confidence scores depends strongly on the choice of the
numerical image features on which the model observer is based.
In the perfusion-defect literature, bandpass channels generally
serve as the features. In this paper, aimed at motion-defect de-
tection, we propose a novel feature extraction method based on
motion features and demonstrate that good prediction results are
obtained.

The proposed motion features are extracted from a volu-
metric deformable mesh model (initially developed in [28] for
purposes of image reconstruction), which is used to estimate
a dense cardiac motion field. Selected features and human
observer scores are then used to train a regression model based
on a relevance vector machine (RVM), which is a modern
Bayesian learning methodology [29]. Note that we have pre-
viously reported preliminary results using a Hotelling model
observer (Hotelling-MO) [31], [32] and regression based on
support vector machines [33].

In this paper, we first review the Hotelling-MO (which will
be used as a basis for comparison). Next, we describe the RVM
regression model observer (RVM-MO), the cardiac motion es-
timation scheme, and the proposed feature extraction method.
Finally, we evaluate the performance of both proposed model
observers and provide some discussion.

II. METHODS

In this section, we describe the prediction model and the fea-
tures that characterize the cardiac motion.

A. Prediction of Human Observer as a Regression

Consider a study in which a human observer is presented with
an image sequence (see Fig. 1 for example image frames), for
which he or she is asked to report a score r, corresponding to
his or her level of confidence in the presence of a defect in my-
ocardial motion at a specified location. The human observer’s
score, which is based on viewing the entire image sequence, is
on a scale of 1 (low confidence) to 6 (high confidence). Now, in
the proposed machine learning approach, we model the human
observer’s score as a parameterized regression function of a fea-
ture vector x extracted from the same sequence.

This can be summarized by the following regression model:

)

in which f(.) denotes the regression model and 7 is the mod-
eling error. The parameterized regression model is trained,
i.e., w are optimized, using a set of known human observer
scores and features, {r,,, xn}fl\!1 where Ny, is the number of
training scores for a given observer. Note that, in this work, the
RVM-MO was trained separately for each human observer.
After the regression model was trained, the performance of
the model observer was summarized in the same fashion as for
the human observer, using the MRMC AUC analysis [1], [41].

r=f(x;w)+7n
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B. Hotelling Model Observer (Hotelling-MO)

A model observer based on a Hotelling discriminant is often
used for perfusion-defect detection analysis, where it is applied
on features extracted via channels that mimic the human vi-
sual-system frequency response [9]. In this paper, we describe
a different Hotelling-based model observer that uses features
explicitly based on cardiac motion, as described later, not the
channelized features used in [9]-[21].

Generically, a Hotelling model observer (Hotelling-MO) [9],
[10], [31], is a generalized likelihood ratio test defined as

fHotolling (X) - [Kil()_il — )_(2)] r X (2)
where X; = E [x|H;] is the expected value of the feature vector
under hypothesis 7;, where 7{; signifies that a cardiac motion
defect is present, and H signifies that no such defect is present.
In (2), K = 1/2 (cov[x|Hg] + cov[x|H1]) denotes the average
covariance matrix. Note that the Hotelling-MO only utilizes
image features and the true classes labels, and depends neither
on the human-observer performance, measured by AUC, nor on
the scores. Therefore, it does not require a training step during
which one would adjust model parameters. In practice, the ex-
pected values in (2) are replaced by sample estimates so that K,

X3 and X are calculated for each data set separately.

C. Relevance Vector Machine Model Observer (RVM-MO)

In this work, we used a relevance vector machine (RVM) to
perform a nonlinear regression [29], [43]. An RVM is a so-called
kernel machine, meaning that it is defined as a sum of kernel
functions as follows:

Zwﬂ X, Xn) + 7 3)

fR\\I X3 W

inwhichx,,n =1,..., N, are training examples, and k(x, x’)
is a kernel function. For notational simplicity, (3) can alterna-
tively be rewritten as

in which

p(x) = [1,k(x,x1),..., k{x, XN)]T

In (3), one can think of the kernel function as a similarity
metric that compares a data vector x to each of the training ex-
amples x,,. These comparisons are then weighted by the coef-
ficients w,, to form the prediction. Alternatively, one can think
of (3) as a basis function expansion in which the basis functions
are kernel functions involving the training example points x,,.

The RVM is a very specific type of kernel machine, in which
a probabilistic model is defined that promotes sparsity, meaning
that most of the weights w,, will be zero. Thus, the RVM has
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an internal mechanism that helps avoid overfitting. The training
examples x,, associated with nonzero weights w,,, known as
relevance vectors (RVs), play the central role in this model, as
they entirely define the summation in (3).

The RVM regression model assumes additive Gaussian mod-
eling error and Gaussian distribution of the weights i.e.,

N

N (W (x), %) w ~ [ Mwal0, ).

n=1

’f‘N

Here, A/(.|.) denotes a Gaussian probability density function
and ~ means “obeys.”

The RVM methodology [29] is a probabilistic Bayesian
kernel regression model that introduces a hierarchical prior

model on previously defined scale parameters, o, 2 and a,,
that can be summarized as
M
—2 —20 e
o, ~G(o,"|c,d); e Hmzlg(amm,b). 4)

Here, G(.|.) denotes the Gamma probability density function.
To make the hyper-priors noninformative (i.e., flat), we fix their
parameters to small values, i.e.,a = b= ¢ = d = 10~ * , which
is typical in RVM implementations.

Here it is important to note that the true prior over the weights
in w, given as

plwy,) = /‘/\/('wn|0,(ygl)g(anm,b)dan Q)

is a multidimensional Student ¢ distribution. This distribution
encourages sparsity of the weights in w [29] since it is sharply
peaked around zero in each direction.

Now, this being a Bayesian approach, we desire to find a pre-
dictive distribution of #* given the observed data {r,,, xn};:;l as

P(fr) = /p(ﬂw?a,zl)p(wh,a,,?,a)
p(a??., a|r)dw da?7 da (6)

marginalized over all nuisance model parameters (parameters
that are not of immediate interest but which define the regres-
sion model), where r = [r1, T2 rn]T denotes the observed
data and @ = |1, e, . . . OA\] scale parameters. This is ana-
lytically intractable and we must seek an effective approxima-
tion as described next [29]. For clarity, the notation suppresses
implicit conditioning upon the set of input vectors {x,,} in (6)
and subsequent expressions.

Here, following RVM methodology, one assumes
an approximation that the posterior of p(o7,alr) can
be replaced by a delta functlon at its mode [29] or
equivalently that: [ p (F|r, a,,, a)p ( ol alr) do’da =
o (fr,02,a)8 (03p, avp) doida is a good approxi-
mation. Usmg the fact that p(7# |w o) and p(w(r, 07, a) are
multidimensional Gaussian distributions, and using (6) and
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TABLE I
RVM ALGORITHM

0. For notational simplification, define a so-called
design matrix ® as:

va
@=o(x,)....0(x,)] - (8)
1. Assign initial values to o, , o .
2. Compute w covariance matrix as:

z=(070'@+A) ©)
where A = diag(or) -

3. Compute mean of w:

L=0"Z®r. (10)
4. Approximate hyperparameter values:

/}/Vlzl_an[z]nn’ (11)

+2
o =529 (12)

w +2b
2
o |r—ul] +24

and: o, =~ . (13)

M—ZN:)/”+2C

n=1

5. Repeat steps 2-4 until convergence.

the approximation described above, one can calculate the
predictive distribution of #* as

P ~p(il) =N (FleTe (x),02 + 0 (x)" Se (x)) ()

where p and X are, respectively, the mean vector and covari-
ance matrix of the weight vector w. These parameters are es-
timated iteratively as described in Table I. Iterative steps in
Table I are derived using expectation-maximization of the log-
likelihood function and as such converge to a local maximum.
A complete description of the RVM methodology and deriva-
tion can be found in [29]. In this work we used the MATLAB
Spider toolbox for implementation of the RVM training and
testing [34]. Also note that in this work we used linear ker-
nels, i.e., k(x,x’) = xTx’ to limit model complexity, reducing
the number of parameters that must be tuned for performance.
For instance, radial basis functions (RBF) or polynomial kernels
would introduce kernel parameters that must be tuned during
training, typically using cross-validation procedures [22].

D. Feature Estimation

The proposed regression model uses a combination of fea-
tures extracted from the image intensity and estimated cardiac
motion from the image sequence on a 50 voxel region cov-
ering myocardium motion defect. The goal of this step is to
build a dictionary of potentially relevant features from which
the final features are selected in the feature selection step de-
scribed below.

1) Feature Based on Image Sequence Intensity: The first fea-
ture we used is the normalized myocardial regional maximum

Fig. 2. Mesh model fitted to the left ventricle at end diastole. Cross sections
correspond to sagittal and transverse views. Endocardial and epicardial surfaces
are highlighted, with dotted lines delimiting tetrahedral mesh elements.

intensity, which is similar to myocardial brightening features we
used in [25] to capture wall thickening, and is routinely used in
clinical myocardium evaluation. The normalization, which was
done with respect to the maximum intensity in the whole data
set, was needed because spatio-temporal filtering methods can
produce images with different dynamic ranges.

2) Features Based on Cardiac Motion Estimation: Since the
model observer task is to predict a human observer’s confi-
dence level in the presence of a cardiac motion defect, we pro-
pose to use features extracted from an estimated cardiac mo-
tion field. For this motion estimation, we utilized a deformable
mesh model as previously reported in [28] and [44]. Here, we
briefly review the main points of this motion estimation proce-
dure. First, we fitted a left ventricular shape model as described
n [35]. This shape model directs the mesh structure creation
so that it contains nodes located on the endocardial and epicar-
dial surfaces, as shown in Fig. 2. In addition, the surface detec-
tion method also estimated the myocardium long axis that was
used in a later step of feature extraction along axial, radial, and
circumferential directions. Next, this volumetric mesh structure
was deformed by iteratively minimizing the following image
matching criterion:

J(D*) = (1= M Em(D*) + AEs(DM)  (14)
where D*! = {d®!}V_| denotes the set of V nodal dis-
placements between time-frames & and {, £/, is the intensity
matching criterion, and Es is a smoothing constraint and A is
a parameter that controls the tradeoff between the two criteria.
The intensity-matching criterion is defined to account for

myocardial brightening [28], [36]

3 2
,; /v [f"'(r) ~ il A5 ) | e
(15)

where f1.(r) represents the intensity of the image at frame  and
spatial location r, d*!(r) is the displacement at location r be-
tween frames k and /, obtained by linear interpolation from a set
D*/! of nodal displacements and | D} | denotes the volume of the
bth tetrahedral mesh element D,’J atframe k (whereb=1,.... B

Epm(DR =
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TABLE 11
RESULTS OF FEATURE SELECTION PROCEDURE

t-statistic
Feature from Frame Feature component  Quantity using FBP-SO

data
1 2 tangential std. dev. 4.723
2  Estimated cardiac 6 divergence mean 4.433
3 motion vector-field 3 divergence mean 4.401
4 6 tangential maximum 4.260
5 5 intensity maximum 6.034
6 Image intensity 9 intensity maximum 4.746
7 7 intensity maximum 4.707

is the total number of mesh elements and & = 1,..., K is the value of a single feature under hypothesis H;, Sx, x, is the stan-

number to time gates). The smoothing constraint is defined by

v
2
Es(D®) =" ||y —db| (16)
v=1
where d¥ is the displacement of node v(v = 1,...,V where

V' is the total number of nodes) between frames & and /, and
d* is the average displacement of the nodes connected to node
v. Note that the weight A was empirically set to A = 107°
which yielded good mesh structures in a previous study by our
group [28]. Finally, the volumetric motion field, defined by 3-D
vectors, between end-diastolic and all other frames is linearly
interpolated on a Cartesian voxel grid.

From the interpolated volumetric-vector-motion field we cal-
culated the following quantities per voxel.

1) Norm (Dx).

2) Divergence (Dp).

3) Axial component (D4 ).

4) Radial component (Dg).

5) Tangential component (D).

Next, for the 50 voxel region, covering the myocardial motion
defect, for each frame and quantity listed above, we calculated
regional mean, median, histogram peak, maximum, minimum,
and standard deviation values.

The last feature added here was the blood pool volume esti-
mated from the deformed mesh model endocardial surface.

The result of the feature extraction procedure yielded a total
of 5 x 6 4+ 2 = 32 features, and each of these can be extracted
for each of the 16 time frames in the sequence of myocardial
images. Among these many features only seven were retained
after the feature selection procedure described next.

E. Feature Selection

For each feature component we calculated the value of inde-
pendent two-sample t-test statistics that measure feature sepa-
rability of the two classes; in our case, between motion features
extracted from image sequences with and without a motion de-
fect, defined as

A 1 a7

2
Sw07w1 VN

where Hy and H; correspond to the defect-absent and defect-
present hypotheses, respectively, #; = E [2|H;] is the expected

dard deviation pooled across the two hypotheses, and NV is the
number of samples in each group.

Only the 10 best features (those having the largest ¢-statistic
values) were further considered. Next, from the best ten fea-
tures we extracted a set of seven that had the smallest cross
correlations among them. The feature selection was performed
using only FBP-SO data, described in the following section,
and selected features are reported in Table II with the corre-
sponding ¢-statistics. Note that since the feature selection was
based only on one reconstruction method, we eliminated bias
when the model observer was tested on the other data set.

III. SIMULATED DATA AND OBSERVER STUDY

In this section, we describe the procedure to obtain simu-
lated cardiac-gated SPECT data, followed by a description of
the human observer studies.

A. Simulated Dataset

1) Phantom: Inthis work, we used the Mathematical Cardiac
Torso (MCAT) phantom [37] wherein a cardiac motion defect
was inserted as described previously in [38]. This was accom-
plished by replacing a segment of the anterior left ventricular
(LV) myocardium by a segment contracting less vigorously or
with abnormal myocardial motion. To obtain a continuous tran-
sition between the abnormal segment and the remainder of the
LV myocardium, intermediate levels of motion were introduced.
The phantom was simulated on a grid of 128 x 128 x 128 voxels
over 16 time frames (gates) with a voxel size 0f 0.317 cm. Note
that, in order to isolate cardiac motion detection, the simulated
MCAT phantom did not contain perfusion defects. Simulated
phantoms with and without motion defect, as well as the differ-
ence image, are shown in Fig. 3.

2) Acquisition: The gated-SPECT acquisition was simulated
using the SIMIND software package [39], including effects of
nonuniform attenuation, camera response, and photon scatter.
The projections were simulated at 64 x 64 bins with 64 camera
angles over 360° and 16 gates. Acquisition noise was introduced
at a level corresponding to 0.5M photon counts collected from
the heart region. This simulation setup (count level, measure-
ment dimensions and resolution) represents a typically observed
study at University of Massachusetts Memorial Medical Center
(UMMMC) using a low-energy high-resolution collimator.

This was repeated for 100 noise realizations with defect
present and 100 with defect absent.
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Fig. 3. Short-axis, vertical long-axis, and horizontal long-axis views (through
the cardiac motion defect location) of the MCAT phantom at the end-systole for
(top) data with no motion defect, (middle) data with a simulated motion defect
in the anterior basal region, and (bottom) difference image.

3) Image Reconstruction: Image sequences were re-
constructed using a conventional, frame-by-frame, filtered
back-projection (FBP) method. Reconstructed images were
further postprocessed by one of the following three filtering
methods which were considered to illustrate the application of
the proposed model observers.

1) FBP-SO. Each frame was separately filtered by a spatial
Butterworth filter with order 5 and cutoff frequency 0.22
cycles per pixel [40], as routinely used at UMMMC in clin-
ical patient evaluations.

2) FBP-121. In this method, also clinically used, each frame
was first temporally filtered with the kernel %4 {1,2,1} fol-
lowed by a spatial Butterworth filter identical to the one
used for FBP-SO [30].

3) MC-FBP. In this approach, a motion-compensated spatio-
temporal filtering method for cardiac SPECT image se-
quences, previously reported in [28], was applied. This
method consists of two steps:

* myocardial motion estimation;
* motion-compensated spatio-temporal filtering of the
FBP reconstructed image sequences.

In the first step of MC-FBP we used the motion-estimation
procedure described in Section II-D for motion feature extrac-
tion. Specific details can be found in [28]. Once the deforma-
tion field 6%!(r) was estimated, we applied the following mo-
tion-compensated spatio-temporal filter:

N K |Dl|
Felr) = WM fi(r + 6 (r)) b reDf b =1,2,...,B
=1

D5
(18)
in which f,(r) is the kth frame (temporally filtered) §*!(r) rep-
resents the estimated displacement at location r between time
frames k& and [ . Here, h*"! is a weighting window defined as

h*t = C(1 — 2K ~'min(|k —

K —[E=1)) (19)

where C is a constant, ensuring unit de gain, and -y controls the
strength of the temporal filter. Selection of the «v parameter is an
important step in the evaluation of this reconstruction algorithm.
The quantitative analysis reported in [28] showed image quality
improvement compared to existing clinical methods, as mea-
sured using peak signal-to-noise ratio (PSNR) and region-of-in-
terest bias-variance analysis. Using these figures of merit the
“optimal” filter strength was found to be v = 0. In this man-
uscript we evaluated v € {2,3,4} denoted by MC-FBP 2,
MC-FBP 3, and MC-FBP 4, respectively.

B. Human Observer Study

Five human observers (sometimes referred to as readers)
performed an observer study using datasets described in the
previous section. Human observers were familiar with cardiac
SPECT images and familiar with the five types of image
reconstruction studied in this paper but were not medical ex-
perts. For each postreconstruction method a number of image
sequences were presented in a loop as a cine (see Fig. 1 for
example of systolic and diastolic frames). The human observers
were asked to score these sequences according to the level
of confidence in the presence of an anterior (location known
exactly) cardiac-motion defect (scores ranging from 1 to 6). For
each reconstruction method, the study contained 180 images to
score, preceded by training with 20 image sequence examples.
A static random noise image was displayed between image
sequences for 5 s. One study was performed per day to reduce
the effects of fatigue, starting with the FBP-SO and FBP-121
datasets, followed by MC-FBP 2, 3, 4 studies. Images within
each of the five datasets were presented in a random order for
each observer.

The resulting performances for the five human observers
were summarized using AUC with DBM-MRMC [41] analysis.
The AUC values for each reconstruction method and corre-
sponding standard deviations are reported in Fig. 4. Results
suggest that motion-compensated filtering, at any of the tem-
poral filtering level under consideration, produced images on
which human observers can perform better than on FBP-SO or
FBP-121 images. This observation is quantitatively supported
by results shown in Table III where we report p-values of pair
wise hypothesis test that reconstruction methods have equal
AUC values. Here a smaller p-value indicates that it is less
likely that the tested methods have equal AUC values. In addi-
tion, the presented p-values indicate that human performance
was statistically indistinguishable between temporal smoothing
strengths of v = 3 and v = 4. Table III also indicates that
AUC values for v € {3,4} were only marginally better than
for v = 2.

In [28], using traditional nontask-based quantitative figures of
merit such as peak-signal-to-noise ratio and bias-variance, the
“optimal” filter strength of v = 0 was found. By visual analysis,
sequences for v = 0 looked unnatural and somewhat erratic,
which made it very difficult to assess motion. Therefore, in this
paper we considered ¥ € {2, 3, 4} and the results presented here
indicate a different optimal value around v € {3, 4}. This con-
firms that the traditional figures of merit, might point to a sub-
optimal filtering parameter value. Thus, image quality should
be assessed by human observer or task-based model observer.
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Fig. 4. Human observers’ performance summarized by AUC for five different
reconstruction methods and five observers. Error bars represent one standard de-
viation estimated using DBM MRMC software package [41] for random-reader
random-case analysis.

TABLE III
HUMAN OBSERVER PERFORMANCE; P-VALUES OF PAIRWISE HYPOTHESIS
TEST THAT RECONSTRUCTION METHODS HAVE EQUAL AUC VALUES

p-value

FBP-SO FBP-121  MC-FBP2 MC-FBP3 MC-FBP 4
FBP-SO - 0.74 0.06 0.02 0.02
FBP-121 - 0.03 0.01 0.01
MC-FBP 2 - 0.13 0.21
MC-FBP 3 - 0.73
MC-FBP 4 -

Note that the purpose of this work was not to evaluate the
various postprocessing algorithms, but rather to use these algo-
rithms as examples with which to evaluate the proposed model
observers.

IV. EVALUATION OF THE MODEL OBSERVER

In this section, we present a comparison of the model
observers in terms of generalization accuracy in predicting
human-observer performance in motion defect detection. In
the first experiment, two clinically used post-reconstruction
filtering methods (i.e., FBP-SO and FBP-121) were consid-
ered. Next, in the second experiment we evaluated the model
observer’s utility for image quality assessment. Here, we used
the proposed RVM model observer method, trained on images
from two clinically used postreconstruction filtering methods,
FBP-SO and FBP-121, to predict human observer performance
using images derived by a postreconstruction motion-compen-
sated temporal filtering method [28].

As we have pointed out previously [22], an important purpose
of a model observer is to provide an estimate of a human-ob-
server performance as a measure of image quality for recon-
struction methods not yet evaluated by a human observer ROC
study. Therefore, to be useful, a model observer must exhibit
good generalization properties.

Bear in mind that the goal of our methods is to predict av-
erage human-observer performance, even though the proposed
RVM-MO method achieves this by first predicting each indi-
vidual human observer’s performance as an intermediate step.
Therefore, throughout we measured success by determining the
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TABLE IV
COMPARISON 1; AUC VALUES FOR FIVE OBSERVERS: RVM MODEL OBSERVER
TRAINED ON FBP-121 DATASET AND TESTED ON FBP-SO AND TRAINED
ON FBP-SO DATASET AND TESTED ON FBP-121. IN BOTH CASES, THE
RVM-MO 1s BETTER PREDICTING HUMAN OBSERVERS AUC VALUES
THAN HOTELING-MO

Tested on FBP-SO Tested on FBP-121

Human | pypMMO  Hotelling-Mo | HU™@M | puM.MO  Hotelling-MO

observer Observer
Observer#1 | 0.871 0.869 0.875 0913 5
Observer#2 | 0.728 | 0.789 0.790 0.855 N
Observer #3 | 0.668 | 0677 0.550 0.909 5
Observer#4 | _0.869 | 0.867 0.841 0.905 -
Observer #5 | 0.755 | 0.869 - 0.793 0.899
Average 0778 | 0.814 0.896 0.769 0.896 0.932

extent to which the model observers could accurately predict
average human-observer AUC.

1) Experiment 1: model observer generalization perfor-
mance over FBP-SO and FBP-121 data sets.

We first evaluated the proposed RVM-MO’s generalization
properties by training it using the FBP-SO dataset and testing
it on the FBP-121 dataset, and then reversing the roles of the
two datasets, for each of the five human observers individually.
The ability of the proposed RVM-MO to predict each human
observer separately is valuable especially in cases when the ob-
servers perform very differently, as they did in our human ob-
server study. The final accuracy of the model observers was
measured in terms of accuracy in predicting the humans’ aver-
aged AUC. The proposed RVM-MO was also compared to the
Hotelling-MO. Note that the Hotelling-MO does not depend di-
rectly on the human observers’ scores and only aims to predict
average human observer performance. In addition it does not
require a training step during which one would adjust model
parameters. In this model the expected values were replaced by
sample estimates calculated for each dataset separately.

Table IV shows AUC values estimated using the DBM
MRMC tool [41] for: five human observers, Hotelling-MO and
RVM-MO for two possible combinations of training-testing
data sets. Note that the RVM model observer had a reasonably
close match in AUC values, and that the Hotelling-MO was not
adjusting to each individual observer’s performance. A more
quantitative comparison of the AUC values is given in Table V,
which shows p-values for testing the hypothesis that human-ob-
server and model-observer AUC values are equal (p-values are
also estimated using DBM-MRMC). One can observe that the
Hotelling-MO had a low p-value, meaning that its AUC values
were different from those of the human observers, while the
RVM-MO had significantly higher p-values, indicating much
better agreement with human observers.

2) Experiment 2: practical application

Here we consider the behavior of the proposed RVM-MO
in a typical application. Specifically, after the RVM-MO was
trained (tuned) using the FBP-SO and FBP-121 datasets, it
was used to evaluate a recently proposed motion-compensated
post-reconstruction strategy, MC-FBP. Here our goal was to
find the optimal temporal filtering parameter (from a set of
v€{2,3,4}) that maximized the model-observer performance
in a cardiac-motion-defect detection task. Note that we also
performed human observer studies so that we could evaluate
how well the model observers predict human performance. The



MARIN et al.: NUMERICAL SURROGATES FOR HUMAN OBSERVERS IN MYOCARDIAL MOTION EVALUATION FROM SPECT IMAGES 45

TABLE V
COMPARISON 1; P-VALUES OF HYPOTHESIS TEST THAT HUMAN OBSERVER
AND MODEL OBSERVERS AUC VALUES ARE EQUAL. IN BOTH CASES, THE
RVM-MO HAS BETTER (LARGER) p-VALUES THAN THE HOTELLING-MO

p-value

FBP-SO FBP-121
Human observers vs.
Hotelling-MO 0.01 0.01
Human observers vs.
RVM-MO 0.39 0.04
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Fig. 5. Comparison 2; Area under the ROC curves (AUC) for MC-FBP
datasets with different strength of motion-compensated filtering vy € {2, 3,4}
(“HumO” denotes “human observer”). Error-bars indicate the standard devia-
tion estimated by the DBM MRMC tool [41].

results of this experiment are presented in Fig. 5, which shows
the AUC of the human observers, together with predicted AUC
of the model observers as a function of the filter strength,
and an estimate of the AUC standard deviation, both calculated
using the DBM MRMC software [41]. These results suggest
that the RVM-MO captured human performance better than the
Hotelling-MO. This observation can be evaluated more closely
in Table VI where we show AUC values for five observers
together with predicted AUC values.

It may at first appear paradoxical that the human observer
sometimes achieves better detection performance than the
Hotelling-MO (e.g., Observer #1 in MC-FBP 3 and MC-FBP
4; and Observer #4 in MC-FBP 2), which is based on the
likelihood ratio. This may happen because the features used by
the model observer do not capture all of the image information
used by human observers, or that some of the Hotelling model
assumptions are violated.

Next, we present a quantitative comparison in Table VII,
which reports the p-values for a hypothesis test that human-ob-
server and model-observer AUC values are equal. This table
shows that the predictions made by the RVM-MO achieved very
good agreement with human-observer performance, whereas
those made by the Hotelling-MO did not.

In short, the results presented in Tables [IV-VII suggest that
the proposed RVM-MO performed well in capturing the perfor-
mance of the human observers as measured by the AUC.

One may argue that a reasonably useful model might not re-
produce absolute AUC values, as does RVM-MO, and it may be
sufficient for the model to predict only the rankings. To the best

of our knowledge there has not been a reported study exploring
this issue, and no guidance has been proposed as to which metric
is the most appropriate. However, if only the ranking is con-
sidered, both proposed methods (RVM-MO and Hotelling-MO)
perform equally with rank correlation value of one.

V. DISCUSSION

This paper proposes two model observers for prediction of
human performance in detection of cardiac motion defects. We
argue that, since cardiac motion is an important diagnostic fea-
ture, task-based image quality assessment should include mea-
sures of cardiac motion visibility. For instance, temporal fil-
tering methods for noise reduction in SPECT tend to reduce
motion visibility and might have undesired effects on diagnostic
performance, in particular for diagnosis based on motion assess-
ment. However, measuring only perfusion-defect detectability
at a given image frame, as has been done in the literature, might
not reflect the degradation in motion visibility. Using an image-
quality measure explicitly based on cardiac motion could assist
in the development of motion-compensated reconstruction and
processing methods for gated SPECT by offering a task-based
evaluation of the performance. In particular, methods or pa-
rameters that excessively blur motion could be easily excluded
from further consideration. Additionally, if it is possible to sim-
ulate both perfusion and motion defects with a given mathemat-
ical phantom (MCAT [37], NCAT [42]), then noise realizations
could be generated once, and both image-quality measures (de-
tectability of perfusion and motion defects) could be evaluated
simultaneously. This would yield a metric closer to the actual
diagnostic value of an image.

While the limited number of observers, reconstruction
methods and images restricted the conclusions we could draw
in this paper, our results strongly suggest that the proposed
RVM model observer can correlate with human observer per-
formance, even if trained on different types of reconstructed
images. The results also suggest that the proposed method
can adapt to different observers even if there is substantial
variability in performance between the observers.

It is also worth emphasizing that both comparisons presented
in Section IV use an RVM model observer trained and tested
on fundamentally different images; RVM-MO was trained on
FBP-SO and FBP-121 images, while testing was performed
on motion-compensated filtered images, thus complicating
the prediction problem. It would be interesting to see if the
promising generalization properties presented in this paper
extend to different types of images, such as images obtained via
maximum-likelihood iterative reconstruction, and further be-
tween different types of iterative reconstruction with different
types of prior information.

A broader set of data could provide a test bed to evaluate
whether some important image details are not preserved in a
certain set of reconstruction methods (e.g., because they have
been blurred by temporal processing) while becoming visible
and important for human diagnosis in another set (e.g., obtained
using motion-compensated filtering). In this scenario, the model
observer would likely benefit from training on a broad data set.

In addition, it will be important to explore various training set
choices. For example, one could hypothesize that noniterative
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TABLE VI
COMPARISON 2; AUC VALUE FOR FIVE OBSERVERS: RVM MODEL OBSERVER TRAINED ON FBP-SO AND FBP-121 DATASET AND TESTED ON FBP-MC 2, 3, 4

MC-FBP 2 MC-FBP 3 MC-FBP 4
Human | oypmMo  Hoteling-Mo | HUMaN | puMaMO  Hotelling-Mo | HYM8N | RuM-MO Hotelling-MO
observer observer observer
Observer #1 0.858 0.842 - 0.912 0.874 - 0.908 0.867 -
Observer #2 0.819 0.821 - 0.822 0.863 - 0.853 0.842 -
Observer #3 0.739 0.754 - 0.789 0.747 - 0.743 0.773 -
Observer #4 0.926 0.851 - 0.895 0.865 - 0.880 0.861 -
Observer #5 0.828 0.854 - 0.829 0.865 - 0.855 0.862 -
Average 0.834 0.824 0.896 0.849 0.842 0.910 0.847 0.841 0.905
TABLE VII quality assessment of cardiac SPECT images. It focuses on vis-

COMPARISON 2; P-VALUES OF HYPOTHESIS TEST THAT HUMAN OBSERVER
AND MODEL OBSERVERS AUC VALUES ARE EQUAL THE RVM-MO HAS
SIGNIFICANTLY BETTER AGREEMENT WITH HUMAN OBSERVER THAN
HOTELLING-MO

p-value
MC-FBP2 MC-FBP3 MC-FBP 4
Human observer vs.
Hotelling-MO 0.05 0.09 0.16
Human observer vs.
RVM-MO 0.85 0.73 0.58

and iterative methods are different enough so that a complete
training set should include images of both types. In a machine
learning formulation, the performance of a classifier/regression
is not guaranteed to be preserved when the testing samples lie far
from the convex hull of the training samples. Further studies on
a larger variety of reconstruction methods are needed to define
a sufficient training set for cardiac-gated SPECT.

An advantage of using RVM over other regression models is
that it reduces the complexity of the model (compared to the
support vector machine, for example). Thus, even if a training
set would include a large number of reconstruction methods,
the computational cost associated with the training and testing
procedures would remain reasonable. In particular, since there
is no kernel parameter to optimize, there is no need for cross-
validation during the training phase (as needed in [22]).

VI. CONCLUSION

In this paper, we present two numerical surrogates for human
observers in task-based image quality assessment where the task
is cardiac-motion-defect detection. Both proposed methods rely
on motion features extracted using our previously reported de-
formable mesh model for myocardium motion estimation. In the
first approach we used a Hotelling linear observer in a manner
similar to that used traditionally for perfusion-defect detection.
In the second proposed observer, the human observer modeling
was approached as a Bayesian nonlinear regression problem
using RVMs. In this regression we aimed to predict the human
observer’s level of confidence in the presence of a cardiac mo-
tion defect based on extracted image and motion features. Our
results suggest that the RVM model observer provides good pre-
diction of human-observer performance, and do so more ac-
curately than a Hotelling linear observer using the same mo-
tion features, over a wide range of reconstruction methods. The
proposed RVM model observer provides a new tool for image

ibility of cardiac-motion defects rather than that of perfusion
defects.
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