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Abstract

The performance of image analysis algorithms applied to magnetic resonance images is strongly 

influenced by the pulse sequences used to acquire the images. Algorithms are typically optimized 

for a targeted tissue contrast obtained from a particular implementation of a pulse sequence on a 

specific scanner. There are many practical situations, including multi-institution trials, rapid 

emergency scans, and scientific use of historical data, where the images are not acquired according 

to an optimal protocol or the desired tissue contrast is entirely missing. This paper introduces an 

image restoration technique that recovers images with both the desired tissue contrast and a 

normalized intensity profile. This is done using patches in the acquired images and an atlas 

containing patches of the acquired and desired tissue contrasts. The method is an example-based 

approach relying on sparse reconstruction from image patches. Its performance in demonstrated 

using several examples, including image intensity normalization, missing tissue contrast recovery, 

automatic segmentation, and multimodal registration. These examples demonstrate potential 

practical uses and also illustrate limitations of our approach.

Index Terms

Neuroimaging; sparse reconstruction; image restoration; magnetic resonance imaging (MRI)

 I. Introduction

Magnetic resonance (MR) imaging (MRI) is widely used to image the brain. Postprocessing 

of MR brain images, e.g., image segmentation [1]–[6] and image registration [7]–[11], has 

been used for many scientific purposes such as furthering our understanding of normal aging 

[12], [13], disease progression [14], [15], population analysis [16], and prognosis [17]. It is 

well known that image analysis algorithms are routinely optimized for a particular type of 

scan (or collection of scans), which could include specification of the tissue contrast (e.g., 

T1-weighted (T1-w) versus T2-weighted (T2-w)), image resolution, pulse sequence 

parameters, field strength of the scanner, and even the particular scanner manufacturer. 

Although many algorithms claim to be robust to variations in the input images, inevitably 
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there will be performance degradation as the input images deviate from a perfect match to 

the images that were used to carry out the algorithm optimization.

There are many practical situations, including multi-institution trials [18]–[20], rapid 

emergency scans [21], and scientific use of historical data [12], where the images are not 

acquired according to an optimal protocol for a given image analysis algorithm. As well, a 

particular tissue contrast that is necessary for a given algorithm might have been omitted for 

a given study or for a particular patient acquisition. In such cases, investigators and 

clinicians have three choices. First, they might apply the algorithm on available images and 

accept a sub-optimal result. Second, they might remove patients with inadequate image data 

from the study. Third, they might design a new image analysis algorithm that will work 

equally well on the image data that is available to them. Upon consideration of these 

options, it seems that each choice leads to concerns, and an alternative is highly desirable. 

This paper is concerned with a fourth alternative: to recover an image with the desired tissue 

contrast and intensity profile using the available images and prior information. There are 

three general approaches described in the literature to carry out this fourth alternative, which 

we briefly describe next. The method we describe in this paper offers an approach with 

significant advantages over existing approaches including improved performance and greater 

applicability.

The most common approach to recovery of images with a desired tissue contrast and 

intensity profile is histogram matching [22]–[29]. Some manner of histogram matching is 

used as a preprocessing step in nearly every neuroimage segmentation and registration 

pipeline because they do improve the accuracy and consistency of results [30], [31]. 

However, its use becomes questionable when applied to data acquired with different pulse 

sequences, especially when pathology is present, and its use in volumetric analysis may lead 

to incorrect results simply because the histograms are forced to follow that of a target image 

which itself contains certain ratios of tissue types. One way to address this last concern is to 

first segment brain structures and match their individual histograms to a registered atlas [32]. 

Although this method produces consistent subcortical segmentations over data sets acquired 

under different scanners, it requires a detailed segmentation of the images before intensity 
normalization has been applied, which leads to a “chicken and egg” situation. It is clearly 

more desirable to normalize the image intensities prior to any significant image analysis 

algorithms have been applied.

A second approach to recover images with a desired tissue contrast and intensity profile is to 

acquire multiple images of the subject with predefined, precisely calibrated acquisition 

parameters [33]. Given this set of images, tissue proton density PD and relaxation parameters 

T1, T2, and  can be estimated by inverting the pulse sequence equations [34], and 

calibrated images with the desired tissue contrast can be computed by using these estimated 

parameters in the appropriate mathematical equation derived from the imaging physics [35]. 

This approach has three disadvantages. First, the imaging equations are typically only an 

approximation to what is used in practice, and therefore the acquired data may not be 

accurately related to the underlying tissue parameters by the assumed imaging equation. 

Second, the required voxel-wise mathematical inversion is generally poorly conditioned, 

which means that noise and artifacts can have a large impact on the accuracy of estimating 
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the underlying tissue parameters. Third, in large imaging studies with many clinical 

scenarios it is difficult to acquire the source image data with consistent, predefined image 

acquisition parameters. Because of these problems, most image processing algorithms are 

not designed to exploit the existence of underlying tissue parameter estimates nor are most 

studies and clinical scans designed to exploit this approach to tissue contrast normalization.

Another way to recover a target tissue contrast and intensity profile is to register the subject 

to a multiple-contrast atlas and to transfer the desired contrast intensities from the atlas 

space to the subject space [36]. This approach enjoys great popularity not only for 

transferring tissue contrasts but also for transferring segmented tissue labels [37], and is 

tacitly assumed by many researchers to be the best current approach for generation of 

images with alternate tissue contrast. However, this approach does not produce an acceptable 

result if the registration result is poor or if there are anomalies or unknown tissues in the 

subject that are not present or spatially distributed differently in the atlas. In the example 

shown in Fig. 1, a T1-w spoiled gradient recalled (SPGR) atlas (Fig. 1(a)) was registered to a 

similar contrast subject image (Fig. 1(c)) using the (inverse consistent and diffeomorphic) 

SyN registration algorithm [7]. The atlas magnetization prepared rapid gradient echo 

(MPRAGE) contrast intensities (Fig. 1(b)) were then mapped through the transformation to 

the subject space, yielding a synthetic subject MPRAGE image (Fig. 1(e)). By comparing 

this result to the subject’s true MPRAGE image (Fig. 1(d)), it is apparent that this approach 

failed to adequately define the ventricles (Fig. 1(d), arrow adjacent to the ventricles) due to 

shortcomings in the registration, and it also failed to represent the WM lesions that are 

present in the original image (Fig. 1(d), arrow denoting the lesion posterior to the ventricles) 

because such lesions are not present in the atlas. The image produced using our approach 

(Fig. 1(f)) shows neither of these problems and compares quite favorably in overall contrast 

and appearance to the true MPRAGE.

The method proposed in this paper, MR image example-based contrast synthesis 

(MIMECS), combines the idea of example-based image hallucination [38], [39] with non-

local means [40]–[42] and sparse priors [43], [44] to synthesize MR contrasts using patches

—i.e., small regions of the image—from a multiple-contrast atlas (also called a textbook in 

[36]). The core idea of MIMECS is that each subject patch can be matched to a combination 

of a few relevant patches from a dictionary in a non-local fashion [43], [45], [46]. It is 

different from classical histogram matching in the sense that a patch can be thought of as a 

feature vector of its center voxel, thus including local neighborhood information for that 

voxel. We show the results of seven case studies which demonstrate potential uses and 

limitations of MIMECS in realistic scientific and clinical scenarios.

There are several advantages of MIMECS compared to previous synthesis methods. First, it 

is a completely automatic pre-processing step that can precede any image processing task. 

Second, there is no need to use multiple, calibrated pulse sequences in order to estimate 

underlying tissue parameters. Third, even though MIMECS uses an atlas, there is no need to 

carry out subject-to-atlas registration, thus avoiding potential errors due to misregistration or 

missing tissues. Finally, it does not require any segmentation of the subject. This last point, 

detailed in Sec. III-C, is a unique feature of this work improving on our previous patch based 
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results [47]–[49], and is important in the field of sparse reconstruction as it alleviates the 

need for atlas training.

The paper is organized as follows. First, we summarize the idea of sparse priors and 

establish some notation that will be used throughout the paper. Then the atlas based patch 

matching synthesis algorithm is explained in a sparse priors paradigm, Fig. 2 provides a high 

level overview of the algorithm. Finally, we demonstrate the applicability of MIMECS on a 

variety of case studies.

 II. Background

Sparse signal reconstruction maintains that because most signals are sparse in some way it is 

not necessary to observe the full signal in order to accurately reconstruct it. The idea has 

been successfully applied to many image processing algorithms including denoising [46], 

image restoration [50], [51], and super-resolution [43], often improving on state-of-the-art 

algorithms. For example in [46], authors use a K-SVD algorithm [52] to generate an 

overcomplete set of bases from natural image patches and apply it to a denoising problem. 

Dictionary based patch matching methods [53], [54] are also popular for natural image 

restoration. In our case, we build an overcomplete dictionary using patches from human 

brain images to both normalize a given contrast and synthesize alternate MR tissue contrasts. 

This section presents the mathematical formulation and key results that are needed to 

explain our approach.

Suppose we want to reconstruct a vector x ∈ ℝN that is s-sparse, i.e., having at most s non-

zero elements, and our observations are b = Ax, where b ∈ ℝd, s < d < N, and A ∈ ℝd×N. 

Since this is an under-determined system, we cannot directly invert the system to find x, and 

additional penalties or constraints must therefore be used. Since x is known to be sparse, it 

makes sense to formulate an objective function that tries to find a sparse solution that is also 

consistent with the measurements, as follows,

(1)

Here, ε1 is the noise level in the measurements, || · ||p is the ℓp norm; in particular, ||x||0 is the 

number of non-zero elements in x. There are relatively simple conditions on A that 

guarantee a feasible solution to (1), however the solution of this problem is combinatorial in 

nature, and therefore NP-hard.

It has been shown that if ||x||0 is small [55], the optimal solution to (1) can also be found by 

solving,
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This is a convex programming problem and can be solved in polynomial time. If ε2 is 

unknown, we can rewrite the above in the following form,

(2)

where λ is a weighting factor. The resulting sparsity in x̂ decreases as λ increases. The 

formulation in (2) is now the standard way to frame a “sparse prior” estimation problem and 

is the core idea behind MIMECS.

 III. Method

The MIMECS method is based on analysis of image patches, which are p × q × r 3D 

subimages associated with each voxel of the image. Patches are typically small and centered 

on the voxel of interest—e.g., p = q = r = 3 or p = q = r = 5. For convenience we write a 

patch as the 1D vector b of size d × 1, where d = pqr. The voxels within a patch are always 

ordered in the same way, using a consistent rasterization, in order to create this 1D 

representation. Fig. 2 provides an illustrative overview of the MIMECS algorithm.

 A. Atlas description

We define an atlas as an (n + 1)-tuple of images, {a1, a2, …, an, an+1}, where ak has tissue 

contrast , k = 1, …, n+1. All atlas images ak are co-registered and sampled on the same 

voxel locations in space. At each voxel, 3D patches can be defined on each image and are 

denoted by the d × 1 vectors ak(i), where i = 1, …, N, is an index over the voxels of ak. Since 

ak’s are co-registered, each of them has the exact same number of voxels N. The primary 

aim of MIMECS is to synthesize the  contrast image using a set of n subject images 

having contrasts  to . We define the  contrast dictionary A1, A1 ∈ ℝnd×N, where the ith 

column of A1 is f(i) = [a1(i)T … an(i)T]T, i.e., an ordered (according to their contrasts 

through ) column vector composed of patches ak(i), which is the ith patch from the atlas ak. 

The contrast dictionary A2, A2 ∈ ℝd×N, is constructed in a similar manner but only contains 

the patches found in the atlas an+1, which correspond to the  tissue contrast. By 

construction, the ith columns of A1 and A2 correspond to the same spatial location and 

represent the  through  and  contrasts, respectively.

 B. Contrast synthesis algorithm

We assume that there are n subject (input) images {s1, …, sn} available with contrasts  to 

. They are co-registered and sampled on the same voxel locations in space. We note that 

{s1, …, sn} are not registered to {a1, …, an+1}. Also, if there are fewer subject images than 

the number of images in the atlas, then the atlas contrasts that do not match the subject 

contrasts are removed, n is reduced (to a minimum of n = 1), and MIMECS is carried out on 

the available subject images. We first decompose the subject images sk into d × 1 patches 

sk(j), where j is an index over the voxels of sk. For every j, we stack all the patches sk(j) in a 

nd × 1 vector b1(j), in the order of their contrasts  through , b1(j) = [s1(j)T … sn(j)T]T, 
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b1(j) ∈ ℝnd. For simplicity of terminology, we also call any nd × 1 vector a “patch”. The aim 

is to obtain a synthetic  contrast subject image ŝn+1 using {s1, …, sn} and {a1, …, an+1}.

We assume that for a subject image patch b1(j), a small number of relevant and similar 

examples can always be found from a rich and overcomplete patch dictionary, A1, which has 

the same contrasts (and assembled into patch vectors in the same order) as b1(j). It is 

unlikely that a single patch from A1 will perfectly match b1(j), but it is quite likely that an 

optimal linear combination of a small number of patches will yield a very close 

approximation. The problem of finding a few patches to form the linear combination can be 

solved either by comparing noise characteristics, as derived in non-local means [40]–[42], or 

by assuming the weight vector x(j) is sparse [44], which is the approach we take here. This 

leads to the following generic expression for the desired solution

(3)

where A1 is a subset of “relevant” patches taken from the atlas images {a1, …, an}. The 

relevant patches are chosen according to their ℓ2 distance from the subject patch, b1(j), as 

suggested in [45]. The details are given in Sec. IV. Once the sparse weight x(j) is found, the 

 contrast subject patch estimate is found by applying the same linear combination to the 

corresponding  contrast dictionary, A2, i.e.,

(4)

The idea of transferring estimated coefficients from one dictionary to another, as we do here, 

has been explored previously in the context of super-resolution [43] and label fusion [39], 

[41].

It is important to consider why we seek a sparse representation. The sparsest representation 

x(j) is just a single column of A1 which is approximately equal to b1(j). In this case, the 

corresponding column of A2 gives the  contrast of b1(j). However, our formulation will 

not yield unit sparsity in general, but instead a small number of patches from A1 whose 

linear combination gives b1(j). The motivation behind choosing a sparse x(j) to reconstruct 

b1(j) is twofold. First, to reconstruct a subject patch, we want to pick those atlas patches that 

are close in intensity, i.e., those that are likely to be from the same tissue classes, so it would 

be undesirable to pick a large number of patches that might tend to mix the tissue classes. 

Second, if too many similar atlas patches are used to reconstruct b1(j), then the 

corresponding  contrast patch will be overly smooth due to the cumulative effects of 

small mismatches in each patch. Empirically, we have found that non-sparse x(j) tends to 

produce smooth images acting much like a denoising process, while highly sparse x(j) 
produces noisy images. In Sec. IV, an empirical way of choosing the sparsity level is 

described.
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Since the combinatorics of (3) makes it infeasible to solve this problem directly, we use an 

ℓ1 minimization strategy and reformulate the problem as,

(5)

where f(i) denotes the ith column of A1, also defined in Sec. III-A. As in (2), λ is a weighting 

factor that encourages a sparse solution when it is large. Given this optimal combination of 

the patches in A1, which best approximates the subject patch b1(j), the  contrast patch is 

estimated using (4). The full contrast image ŝn+1 is reconstructed by taking the union of all 

central voxels in the reconstructed patches.

There are two key differences in our solution (5) as compared to (2). The first, is the 

positivity constraint on the coefficients x in (5). The reason we impose this condition is to 

encourage the selected patches—i.e., those used in the sparse reconstruction of the subject 

patch—to have the same “texture” as the subject patch. For example, we do not want a 

boundary that is GM on the left and WM on the right to be approximated with a negative 

coefficient multiplying a patch having exactly the opposite orientation. The image being 

approximated may “look” the same, but the underlying tissues would be wrong and a patch 

that is synthesized would have incorrect tissues and thus have the wrong appearance. This 

condition is therefore designed to encourage “gray matter patches” to be used to synthesize 

“gray matter patches” and so on. We note that computational aspects of this positivity 

constraint has been previously explored in Lasso [56], and that this constrained ℓ1 

minimization procedure has been shown to be equivalent to an ℓ0 minimization procedure 

(like (1) with a similar positivity constraint) if x(j) is sufficiently sparse [57].

The second difference between (5) and (2) is the requirement that the columns of A1 

(denoted by f(i), i = 1, …, N) be normalized to unity. This constraint is necessary in order to 

guarantee the uniqueness of the solution (by removing the scaling ambiguity), and is a 

common feature of patch-based techniques in computer vision and image processing [43], 

[45]. However, unit normalization of patches taken from the atlas MR images, removes the 

relationship between overall patch intensity and the patch texture, which is essential to 

distinguish between a “pure” GM patch and a “pure” WM patch, which can only be 

differentiated by their intensities and not the texture. Therefore, in Sec. III-C we propose a 

novel approach that normalizes patches in the (nd + 1)-dimensional space rather than the nd-

dimensional space in order to preserve the desired intensity information.

 C. Normalization of A1

To guarantee a unique solution to (5), the columns of A1 are normalized such that , 

∀i = 1, …, N. However, if scale is directly removed from an MR image patch, then a key 

feature in distinguishing tissue types is lost and patches used in the sparse reconstruction are 

less likely to be selected from the same tissue type. It is common in the sparse reconstruction 

literature to use prior training to learn how to select a subset of patches from which to 

synthesize a given subject patch. In our prior work [47]–[49] we used an atlas selection 
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method based on image classification in order to restrict the dictionary to patches that are 

likely to come from appropriate tissue classes [47], [48]. We note that the present method 

supports this strategy since we use a subset A1 of patches from which to select a sparse 

collection (see Sec. IV). However, an important goal in the present work is to eliminate both 

the dependency on prior training and the requirement for a classification step prior to 

synthesis. We have accomplished this using the “trick” of normalizing the patches (e.g., 

b1(j)’s or f(i)’s) in a (nd + 1)-dimensional space rather than the nd-dimensional space, which 

we now describe.

All the atlas and subject patches are first globally normalized such that their maximum of 

their norms is unity. Define,

Then the patches are scaled as follows,

This global scaling guarantees that relative intensities are preserved and that all intensities of 

both subject and atlas fall in the range [0, 1]. Now, we project both the subject patch and all 

atlas patches to the unit sphere in ℝnd+1 as follows,

At this point, both the subject patch and the atlas patches are normalized to unity, satisfying 

, ∀i, and , ∀j. The normalization criterion in (5) is therefore 

automatically satisfied if the  contrast dictionary A1 is changed to  such 

that the columns of  are f′(i), i = 1, …, N.

Given this new normalization, we rewrite (5) as

(6)
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The solution of (6) yields a nonnegative combination of the columns of  that sparsely 

approximates . The resulting reconstructed patch matches both the pattern and 

intensities within the target patch. We use this solution x̂(j) ∈ ℝN to synthesize the 

contrast subject patch in ℝd. This works correctly because we maintain the association of 

columns in A1, A2 and . Once b̂2(j) is found from (4), we use only its central value in the 

reconstructed image ŝn+1.

 IV. Implementation

 A. Patch size and ℓ1 Solvers

For all the experiments reported in this and subsequent sections, we used patches of 

dimension 3 × 3 × 3 voxels, i.e. d = 27. We used two freely available ℓ1 solver packages, the 

large-scale ℓ1-regularized least-squares (ℓ1_ls) [58] and CVX [59], to optimize (6). From our 

experience, ℓ1_ls is the faster of the two, typically having ~ 1 ms run-time per patch, while 

CVX on average takes ~ 10 ms. However, CVX is more robust, managing to produce 

reasonable results in cases where ℓ1_ls does not converge. Thus, we use ℓ1_ls as our ℓ1 

solver except in the following three cases:

1. the algorithm does not converge and gives null output,

2. the output x̂(j) contains a complex number,

3. experimentally we have found that for typical SPGR images, ||x̂(j)||1 has a 

Laplacian distribution [60], [61] with mean 1 and small variance (~ 0.005). 

Thus if ||x̂(j)||1 ≫ 1 for some j, the algorithm is assumed to converge to an 

undesirable solution.

For these cases, ℓ1_ls having failed, we use CVX.

 B. Dictionary Selection

A typical 256 × 256 × 199 isotropic MR image, with voxels of size 1 mm3, contains about 

one million non-background patches. It is computationally intractable to solve (6) with all 

such patches included in the dictionary . Recall that for 3 × 3 × 3 patches, our dictionary 

, could potentially be a 28 × 1, 000, 000 matrix, if N is assumed to be indexing 

over all patches in the atlas image a1. To avoid the computational bottleneck of large N we 

construct a dictionary for each patch , that is of size N = 100. This is done by selecting 

100 patches from the global collection of one million patches, thus drastically reducing run 

time. In keeping with the literature [45], we construct our patch dictionary, , to consist of 

only those atlas patches that are close to  in an ℓ2 sense. It is also in accordance with 

the assumption that the atlas patches should be close to the subject patch. To achieve this in 

our setting, we sort the atlas patches, , i = 1, 2, …, N, by their ℓ2 distance to the current 

patch, . The nearest 100 patches, , i = 1, 2, …, 100, are then used to generate the 

dictionary, , for the current patch, then x̂(j) is found using (6). To accelerate the search for 

the 100 nearest patches, we use a k-d tree [62]. We construct  as the corresponding 
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contrast patches for the collection a2(i), i = 1, 2, …, 100. Our selection of N = 100 is based 

on our experience, having observed that smaller N does not always yield the best candidate 

patches and larger N generally shows little improvement in the reconstruction result.

To demonstrate the validity of the choice of atlas patches using such an ℓ2 proximity criteria 

between them, Table I shows the fractions of major atlas tissues used to reconstruct a subject 

patch, averaged over all subject patches from a 256 × 256 × 199 real SPGR image, shown in 

Fig. 3. The classification of the center voxel of a patch is used to classify the patch. Ideally, 

the table should contain 1 at the diagonal entries with 0 otherwise. From the table, 78% of 

the atlas patches, that are used to reconstruct the subject ventricle patches are from atlas 

ventricle patches, while the remainder are from atlas CSF (16%) and GM (6%). However, 

we have observed that the non-zero fraction of atlas GM patches used to synthesize subject 

ventricles can be attributed to the partial volume effect at the boundary of WM and 

ventricles, which is reconstructed by GM patches. Similarly, the non-zero contributions of 

atlas CSF and WM patches (10%) to reconstruct subject GM patches can be attributed to the 

partial volume near CSF-GM and GM-WM boundary. On the other hand, the zero 

contribution of atlas WM patches to reconstruct subject CSF patches or atlas CSF patches 

for subject WM patches indicate that the tissues are not “interchanged” while reconstructing, 

which provides evidence that the (d + 1)-dimensional normalization and the coefficient 

positivity aspects of the algorithm, as described in Sections III-B and III-C are working as 

desired.

 C. Sparsity regularization coefficient

The sparsity regularization term, λ, is an important parameter in our algorithm as it is used 

for tuning the sparsity of the reconstruction. Through empirical experiments involving 

hundreds of thousands of patch reconstructions, we have found the algorithm itself to be 

very stable for λ ∈ [0, 0.85]; but the quality of reconstruction varies within this range. To get 

a quantitative sense of the synthesis, we experimentally assessed how the error in synthesis 

is affected by the choice of λ. Accordingly, we created an atlas pair {a1, a2} using patches 

from one part (several contiguous slices) of a subject’s SPGR ( ) and MPRAGE ( ) and 

then synthesized other slices of the MPRAGE image from the SPGR. Shown in Fig. 3 are 

three examples of reconstructed MPRAGEs using different values of λ and a graph of the 

root mean square error between the synthesized MIMECS MPRAGEs and the true 

MPRAGE. We conclude from this experiment that values of λ in the range [0.05, 0.85] are 

visually acceptable and produce similar error levels. However, since our original goal was to 

recover a solution that satisfies an ℓ0 criterion, we choose to use a larger λ from this range 

because sparser solutions produced by ℓ1 minimization are more likely to agree with the 

desired ℓ0 solution [55]. We have therefore used λ = 0.80 in all of our experimental results 

reported below.

 V. Results

In order to verify the correctness of our MIMECS software implementation, to demonstrate 

its most basic behavior, and to compare it to histogram matching methods, we first made 

extensive use of the Brainweb phantom data [63], the Kirby-21 reproducibility data [64], and 
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the BIRN traveling subject data [18]. These results are omitted here for paper length 

considerations, but they can be found in [65]. The most important results from this set of 

experiments can be summarized as follows. First, we found that features and noise that are 

present in the subject s1 image but not in the atlas a1 image are suppressed to some degree in 

the reconstruction. This was true both in recovering the same tissue contrast (a kind of 

“sanity check”) and in recovering different tissue contrasts. This observation suggests that 

MIMECS can be used for noise suppression (though other methods such as non-local means 

might be better) and also serves as a caution that the MIMECS atlas should contain a patch 

dictionary that is rich enough to encompass the patches that are expected to be found in the 

source image. Second, the experiments confirmed that sparsity is important when 

reconstructing patches with significant detail because otherwise the detail will be smoothed 

out. Third, MIMECS is fairly robust to the specifics of the subject pulse sequence. In 

particular, we found that an atlas comprising both an SPGR and MPRAGE can be used to 

synthesize either an MPRAGE or SPGR image even if the subject image did not precisely 

match the SPGR or MPRAGE pulse sequence parameters of the atlas. Fourth, we found that 

MIMECS normalization is comparable or better than histogram matching when normalizing 

the same tissue contrast (e.g., T1-w from T1-w) and, of course, is far more general in that it 

can recover missing contrasts. Finally, we found that errors in MIMECS synthesis do not 

take on specific anatomical features, but instead resemble a typical noise pattern of MR 

images. This was true in both normalization of the same contrasts and synthesis of alternate 

contrasts. We note that most of the above observations will be evident in the results below, 

which is another reason why we did not include these results here.

In this section, we focus on potential uses of MIMECS in clinical and scientific studies 

rather than focusing solely on performance-oriented criteria (since we have previously 

reported such results in [47]–[49], [65]). Accordingly, each result should be thought of as a 

“case study” designed to demonstrate a potential use. Some studies provide numerical 

results that demonstrate improvement over the state of the art, while others only show 

compelling visual results. One case study is cautionary, demonstrating a limitation of 

MIMECS in a potential application.

The results presented here all involve real, not simulated, MR images. Using a standard 

preprocessing pipeline for neuroimages, the images were skull-stripped [66], [67], corrected 

for intensity inhomogeneities using N3 [68], and then normalized using a global linear 

scaling such that the mode of WM intensities were at unity [28]. The MIMECS algorithm, 

applied to a 256 × 256 × 199 image, takes 1–2 hours on a 12-core 2.7GHz Linux machine 

using Matlab (2012a, The MathWorks, Natick, MA, USA). The bulk of the computational 

time is spent in the ℓ1 solver.

 A. Longitudinal analysis of multi-contrast data

In large longitudinal studies (such as the BLSA [19] or ADNI [20]), the scanner and/or 

acquisition protocol can change over time. An example of such phenomenon is observed in 

the BLSA data set where 14 scans of a normal subject were acquired in consecutive years. 

The first 11 scans were acquired using an SPGR protocol on a GE 1.5T scanner, while the 

last 3 scans were acquired using an MPRAGE protocol on a Philips 3T scanner. It is noted in 
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[69] that it is difficult to analyze these data consistently. There has been several recent 

publications trying to address this problem [70]–[72].

To account for the change in acquisition protocol, we used MIMECS to synthesize images 

having SPGR contrasts from the three MPRAGE scans of one BLSA subject. A subject from 

the BIRN traveling subject database [18] having both SPGR and MPRAGE scans was used 

as the atlas. Fig. 4 shows real and synthetic images from this subject. The MIMECS images 

clearly display the SPGR tissue contrast, which is observed to be very similar to the earlier 

time frames. The synthetic images are visibly less noisy and slightly blurrier than the 

original SPGR and MPRAGE images.

Since analysis of longitudinal changes in brain volume is the primary objective in the BLSA 

study (cf. [12]), we used a state-of-the-art longitudinal segmentation algorithm called 

longitudinal FreeSurfer [71] (longFS) to segment and label the resulting data. LongFS can 

only be applied to data having the same pulse sequence (either SPGR or MPRAGE), so we 

were able to apply it to 14 volumes comprising the original 11 SPGR volumes and the 3 

MIMECS SPGR volumes. Plots showing the computed GM and ventricle volumes as a 

function of subject age are shown in Fig. 5 (red with asterisks). For comparison, we applied 

longFS to each of the longitudinal segments acquired using the same pulse sequence. 

Accordingly, Fig. 5 also shows the GM and ventricle volumes for the 11 time frames having 

SPGR (blue with triangles) data and the 3 time frames from both the original MPRAGE 

(using the -mprage flag in longFS) and the MIMECS SPGRs (pink with crosses and green 

with squares, respectively).

The first key observation to make from Fig. 5 is that longFS yields very different 

segmentation results and corresponding volume measurements given source data with 

different pulse sequences. Every neuroimage segmentation algorithm that we have ever 

tested shares this discrepancy, so this observation should not be interpreted as an indictment 

of longFS. The second key observation is that MIMECS synthesis permits longFS to make 

very consistent longitudinal segmentations (at least as far as the volume measured from 

these segmentations) across the entire collection. Even the segmentation results from the 

short sequence of synthetic SPGRs are more consistent with the older data. Therefore, we 

conclude that MIMECS may be a useful preprocessing step prior to analysis of volume 

changes in longitudinal neuroimaging studies.

 B. Average atlas construction

While developing voxel based measures from a population, it is common practice to register 

all the images to an average atlas space. However, pooling data from two populations can be 

difficult when individual images from two populations are acquired with different pulse 

sequences or on heterogeneous scanners. In this case study, we show that by synthesizing 

contrasts using MIMECS, a better average atlas can be created while pooling subjects from 

two different data sets. This MIMECS case study represents a new capability; the use of 

multiple data sources in atlas construction enabling richer and more complete analyses.

As a straight forward demonstration of this, we selected five normal subjects from the BLSA 

database (1.5T GE, SPGR) and five normal subjects from the OASIS [73] databases (1.5T 
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Siemens, MPRAGE), all male and right-handed with age range 60–70 years. A state-of-the-

art registration tool SyN [7] was used to create average atlases from these ten subjects. A 

cross-section and zoomed region of this result are shown in Figs. 6(a) and 6(b). We then 

synthesized volumes with MPRAGE contrast from the five BLSA subjects and created an 

average atlas from the ten MPRAGE contrast images. This result and a zoomed region are 

shown in Figs. 6(c) and 6(d). Visually, the atlas created from all MPRAGE contrasts has 

sharper features than the one with the mixture of SPGR and MPRAGE contrasts (compare 

Figs. 6(b) and (d)).

To show a quantitative improvement in atlas quality, Figs. 6(e) and 6(f) show the voxel-wise 

standard deviations of intensities from the ten subjects used to create each of the atlases 

(after deforming them into the atlas space). It can be seen that the standard deviations are 

much smaller when synthetic MPRAGEs are combined with OASIS MPRAGEs, especially 

around the ventricles and in the GM, indicating better feature matching in registration. We 

then segmented the two atlases using TOADS [2]. A t-test shows that the average standard 

deviations of CSF, ventricles and GM are significantly lower (p-value < 0.01) for the atlas 

obtained with all MPRAGE contrasts compared to the one obtained with the mixture of 

SPGR and MPRAGE contrasts. This average atlas construction case study represents an 

enhancement to existing technologies, which would provide for richer atlas construction and 

perhaps more accurate deformation fields carrying each subject into the average atlas space 

(and vice versa).

 C. Segmentation bias in cross-sectional analysis

When pooling data from different studies, the choice of scanning protocols introduces 

algorithm bias in the quantification even the simplest biomarkers, such as GM and WM 

volume. To study this bias we used 42 age-matched normal subjects (male, right-handed, 

and 60–70 years of age), 21 from the BLSA database (all SPGR scans) and 21 from the 

OASIS [73] database (all MPRAGE scans). The images were then skull-stripped [67] and 

segmented with FreeSurfer [74]. Plots of average ventricle and brain (GM+WM) volume are 

shown in Fig. 7. It is known that FreeSurfer generally overestimates brain volume when 

using SPGR data [75], and we observe this same tendency here (Fig. 7(a)). To test the null 

hypothesis that volumes volumes for each structure are the same, we use a Wilcoxon rank-

sum test with a significance level of 0.01. The average brain volumes (GM+WM) computed 

from the SPGR scans are significantly higher (p-value < 0.01) than the MPRAGE brain 

volumes. There was no statistically significant difference for the ventricle volumes for the 

two populations.

We then used MIMECS (with a BIRN SPGR/MPRAGE atlas, as above) to synthesize 

MPRAGE contrasts from the SPGR scans and then used FreeSurfer to segment the synthetic 

scans. As shown in Fig. 7(a), the brain volumes computed this way are comparable to those 

computed using OASIS/MPRAGE data; the same Wilcoxon rank-sum test shows that the 

MPRAGE and synthetic MPRAGE come from the same distribution. We also observe that 

the ventricle volumes do not change in a statistically significant way after synthesis, again, 

with respect to a Wilcoxon rank-sum test. This case study shows that MIMECS can remove 
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the systemic bias in volumetric analysis arising from scanner and pulse sequence differences 

in studies that pool multi-site and multi-center data.

 D. Distortion correction in b0 scans

Diffusion MR images are acquired using echo-planar techniques and are geometrically 

distorted by susceptibility and eddy currents unless corrected [76]. Although eddy current 

distortion correction can be carried out by consideration of the MR physics and pulse 

sequence alone, susceptibility causes subject-dependent distortion and is generally carried 

out retrospectively by deformably registering the b0 image to a structural image such as a 

T1-w or T2-w image [77]. The b0 image—a minimally-weighted diffusion image—has a 

tissue contrast similar to that of a conventional T2-w spin-echo image, thus making T2-w 

images the preferred target for distortion correction. But what happens if no T2-w image 

was acquired as part of the protocol? In this case, the correction might be attempted by 

registering the b0 image to the T1-w image, leading generally to an inferior result. Here, we 

consider an alternative approach using MIMECS.

Figs. 8(c) and 8(e) show an MPRAGE image and a b0 image, respectively, acquired in the 

same imaging session of a subject from the Kirby-21 database [64]. The b0 image shows 

significant distortion in the anterior portion of the brain. Fig. 8(g) shows the b0 image after it 

has been registered to the MPRAGE image using SyN [7] (with mutual information as the 

similarity metric). By comparing the GM/WM boundary generated by FreeSurfer 

segmentation of the MPRAGE (see Fig. 8(f)) to the underlying intensities of the registered 

b0 image (see Fig. 8(h)), it is clear that the correction is inadequate.

Given the atlas shown in Figs. 8(a) and 8(b), we used MIMECS to synthesize T2-w image 

from the MPRAGE image; the result is shown in Fig. 8(d). We then registered the b0 image 

to the synthetic T2-w using SyN (with the cross-correlation similarity metric), yielding the 

distortion-corrected b0 image shown in Fig. 8(i). The red arrow in Fig. 8(i) indicates an area 

of improvement, which can be visually confirmed on the zoomed region containing the 

GM/WM contour shown in Fig. 8(j).

This case study demonstrates a potential use of MIMECS in cases where data is missing. It 

also reveals a new potential approach to registration of multimodal data, wherein synthesis 

of the alternate tissue contrast is used with a cross-correlation metric rather than the 

conventional mutual information metric applied to different tissue contrasts. This concept 

could have far more general applicability than the simple case example demonstrated here.

 E. High resolution T2-w synthesis

Because of time constraints, T2-w scans are often acquired at lower resolution than T1-w 

scans. If high-resolution (hi-res) T2-w scans were available, however, they could be used for 

many purposes including lesion segmentation [78], [79] and b0 dewarping (as described in 

the previous section). Super-resolution techniques using non-local means have previously 

been proposed to synthesize hi-res T2-w images [38], [80]. These methods use patches from 

both the hi-res T1-w image and a lo-res T2-w image and index into an atlas comprising 

these two images and a hi-res T2-w image.

Roy et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MIMECS provides an alternate way to carry out super-resolution, where the hi-res T2-w 

image can be synthesized directly from a subject’s high-res T1-w image. This means that 

acquisition of the lo-res T2-w image is unnecessary (for image processing purposes). As an 

example, consider the SPGR and T2-w images shown in Figs. 9(a) and 9(b), respectively. 

Both data sets were acquired axially with native resolutions of 0.94 × 0.94 × 1.5 mm and 

0.94 × 0.94 × 5 mm, so the low through-plane resolutions are readily apparent as vertical 

blurring in both of these coronal images—and, clearly, it is much worse in the T2-w image. 

We use Brainweb [63] T1-w and T2-w images as the atlas images, a1 and a2, as shown in 

Figs. 9(c) and 9(d), because both are available at high resolution. MIMECS is then used to 

synthesize a hi-res T2-w image from the SPGR image alone, and the result is shown in Fig. 

9(f). For comparison, an upsampled (super-res) result using the non-local means method of 

[80] is shown in Fig. 9(e). It is readily apparent by visual inspection that MIMECS produces 

a superior hi-res T2-w image over both the original T2-w acquisition and the non-local 

means result.

 F. MIMECS image segmentation

In this section, we show that MIMECS can also be used as a tissue classification and image 

segmentation method. In this experiment, we use five atlases, each containing a T1-w SPGR 

images and its segmentation into CSF, GM, and WM tissue classes. The segmentations, 

illustrated in the top center of Fig. 10, were carried out by FreeSurfer [74] followed by 

expert manual corrections.

In order to make use of MIMECS when label images rather than image intensities are 

involved, we must rethink its steps. Consider a single atlas (an image and its segmentation) 

and a single voxel (with its corresponding subject patch) in the MIMECS procedure (as 

described in Section III-B). Determination of the sparse coefficient vector x ̂(j), which 

defines an optimal combination of atlas patches that best match the subject patch (see (5)), 

can be carried out as usual. But to use this vector to form a linear combination of label 

patches as in (4) does not make sense since the labels are discrete quantities. Two simple 

modifications are needed to solve this problem.

First, we form the contrast dictionary A2 as usual; it comprises a single patch in each 

column and each patch is a collection of labels from a2. Let us represent the labels as 

follows: CSF (k = 1), GM (k = 2), and WM (k = 3). We now form a vector contrast 

dictionary  with its elements defined by

(7)

This process is equivalent to viewing the a2 dictionary image as a vector membership 

function rather than a label image. The elements of this dictionary are now interpreted as 

vector membership functions and we are free to form convex combinations of these vectors 

in order to produce new (fuzzy) membership functions.
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This leads us to the second modification of the usual MIMECS process. It is desirable for 

the linear combination of vector membership functions to be convex combinations; in this 

way the elements of the resultant membership function will add up to unity and can also be 

viewed as either probabilities or partial fractions of the tissue classes. Since the elements of 

x̂(j) are non-negative, we can guarantee its use in making a convex combination by simply 

dividing the inner products by the sum of the elements of x̂(j). Accordingly, we form a 

MIMECS-based membership function as follows

(8)

The result of this whole process is a fuzzy tissue classification at each voxel and therefore a 

fuzzy (or soft) segmentation of the subject image. We have found that the result produced 

with just one atlas is not highly accurate. To produce a more robust result, we apply this 

exact approach to five atlases and average the resulting membership functions at each voxel. 

To produce a hard classification—as in the segmentations that are used in the atlas—we use 

the conventional maximum membership criterion.

An example of the MIMECS tissue segmentation process is shown in Fig. 10. Note that the 

membership functions (upper right) look very much like the soft segmentations produced by 

fuzzy C-means or mixture model methods; they can be used exactly as one might use such 

functions in subsequent segmentation or analysis stages. A hard segmentation is shown on 

the bottom right. Hard segmentations from SPM, fully-automatic FreeSurfer (with default 

parameters), and manually-corrected FreeSurfer are shown for comparison (see bottom row). 

The MIMECS segmentation has many desirable visual features and compares quite 

favorably to the manually-assisted FreeSurfer result.

For quantitative comparison, Dice coefficients for the SPM, fully-automatic FreeSurfer, and 

MIMECS results against the manually-corrected FreeSurfer result were computed, yielding 

0.8630, 0.8811, 0.8837, respectively. MIMECS shows a small improvement in this example. 

The most important point to be made is that this MIMECS segmentation approach does not 

rely on any statistical (spatial or intensity) prior. Instead it obtains its result through the use 

of dictionary examples alone. Similar methods in the literature (e.g., [39], [81]–[83]) are 

gaining wide support because of their superior performance and generalizability in 

comparison to model-based methods.

 G. FLAIR synthesis

FLAIR (fluid attenuated inversion recovery) images have become important in detecting 

lesions in the brain, especially in WM. Many older studies did not use the FLAIR pulse 

sequence, so image processing algorithms designed to exploit the FLAIR tissue contrast 

cannot be directly applied. Also, since the FLAIR pulse sequence is very sensitive to patient 

motion some FLAIR images are “spoiled” by motion artifacts and are also not amenable to 

image processing algorithms. We therefore carried out a study on the use MIMECS to 

synthesize FLAIR images.
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The atlas we used for this experiment has three images: a1 has an MPRAGE contrast, a2 has 

a T2-w contrast, and a3 has a FLAIR contrast. Cross-section of the atlas images are shown in 

the left-hand column of Fig. 11. The goal is to apply MIMECS using two subject images—

an MPRAGE image and a T2-w image—to synthesize a FLAIR image. Both the atlas and 

the subject has WM lesions, so the presence of a unique lesion patch signature in the subject 

should also be present in the atlas.

Cross-sections of subject images and the synthetic MIMECS FLAIR image are shown in the 

right-hand column of Fig. 11. The true FLAIR image for this subject, which is not used in 

the synthesis algorithm, is shown for comparison. It is immediately evident that the lesions 

in the synthetic FLAIR image have been rendered as if they are GM—i.e., they are not 

bright like lesions in true FLAIR images. It is relatively easy to understand why this 

happens. If one visually identifies a lesion in the (atlas or subject) FLAIR image, it is readily 

apparent that these same regions on both the MPRAGE and T2-w have intensities that are 

similar to GM within their respective tissue contrasts. Thus, patches involving lesions in 

both MPRAGE and T2-w are indistinguishable from patches involving GM.

This experiment reveals a limitation of MIMECS synthesis. Stated simply, the set of pulse 

sequences used to synthesize a new image must contain intensity signatures that can 

uniquely identify the tissue classes that are present in the tissue contrast to be synthesized. 

This is certainly a cautionary note about MIMECS synthesis and it deserves further study to 

determine its specific limitations. On the other hand, the ability to synthesize images devoid 

of lesions presents an opportunity to enhance lesions by subtraction. The bottom right image 

in Fig. 11 is a subtraction image (true subject FLAIR minus synthetic FLAIR) that shows 

potential for visual enhancement of lesions or for computational assistance in finding 

lesions.

 VI. Summary and Discussion

MIMECS is a new approach to image intensity normalization and tissue contrast synthesis. 

It is based on sparse dictionary reconstruction methods with a novel patch normalization 

approach that makes dictionary selection straightforward. For each voxel, a dictionary is 

found by casting all patches into one higher dimension and searching for “like” patches 

using a rapid kd-tree search with the ℓ2 metric. A sparse and non-negative combination of 

dictionary patches is found to match the subject patch is found using an ℓ1 solver. These 

same coefficients are then used to combine patches in another dictionary that is physically 

matched to the first dictionary. This process is shown in several provided examples to be 

capable of providing intensity normalization, tissue contrast synthesis, and tissue 

segmentation.

MIMECS shares strong similarities to non-local means methods [45], some of which have 

been applied in the medical imaging community for noise reduction [42], [84], [85], super-

resolution [80], and segmentation [39], [41], [81]. Including our earlier conference 

publications on this topic [47]–[49], [86], MIMECS is the first approach of this class to be 

proposed and evaluated for contrast synthesis. The use of nonnegative coefficients in 

combining patches is a important aspect, heretofore not considered, in using the patch-based 
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framework for contrast synthesis. As well, the proposed dictionary selection technique, 

which uses a higher-dimensional space to normalize patches, is novel and important in 

practical scenarios since it avoids prior segmentation (as we used in earlier reports) or atlas 

selection training. Finally, the importance of sparsity was demonstrated in Section IV-C and 

Fig. 3.

Comparisons with histogram matching methods (cf. [25], [87]) were omitted from this paper 

for length considerations, but results are included in [65] and previous conference reports 

[47]–[49]. Histogram matching methods are used in nearly every neuroimage processing 

pipeline and remain important. In fact, MIMECS depends on a crude histogram matching 

method (linear normalization to the WM peak) at its outset. But histogram matching has 

serious limitations. For example, histogram matching in its most basic form changes the 

intensities of the subject image so that its histogram is exactly equal to that of the target. If a 

simple tissue classifier (such as the EM algorithm for a Gaussian mixture model) were 

applied to these two images, then the computed volumes of the corresponding tissue classes 

would be identical. This process would therefore disguise potential differences in a 

population of subject images. More sophisticated histogram matching methods have been 

designed, of course, and their results are more sensible. But the whole approach becomes 

more suspect as the pulse sequences vary significantly and it is entirely wrong to perform 

histogram matching between images that have fundamentally different tissue contrasts. 

MIMECS therefore provides an alternative to histogram matching which does not suffer 

from these fundamental problems.

Our results demonstrate a collection of potential applications of MIMECS. We particularly 

emphasize the potential for MIMECS to solve the “missing” or “mis-matched” tissue 

contrast problem in routine neuroimage processing tasks. For example, the BLSA 

longitudinal study has been active for so long that the SPGR images that were acquired at 

1.5 T on older scanners has been replaced by MPRAGE images that are acquired at 3.0 T on 

modern scanners. MIMECS offers a straightforward way to carry out consistent volumetric 

analysis across this large time span. The use of diverse data from multiple institutions and 

multiple studies creates similar difficulties, as illustrated by our average atlas and 

segmentation bias examples. These examples showed how MIMECS could be used to 

synthesize “like” data for potential improvement in the statistical analysis of anatomical 

shape differences through average atlasing or for merging volumetric analysis of normal 

subjects for greater power in cross-sectional studies.

The average atlas example demonstrated how registration could be improved by synthesizing 

images having the same tissue contrast. This was taken a step further with the example 

involving geometric distortion correction in diffusion MRI. Taken together, these two 

examples reveal a new approach to multimodal registration, one in which a “proxy” image is 

synthesized from either the subject or target image and registration is carried out using a 

simple image similarity criterion such as cross-correlation. This approach deserves further 

scrutiny since it provides an alternative to the mutual information similarity metric, which is 

problematic to optimize and often fails to provide accurate results, especially in deformable 

registration applications.
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Super-resolution algorithms, and especially patch-based methods have gained a lot of 

attention in recent years [81], [83]. The MIMECS framework has strong similarity to other 

patch-based methods, but offers a twist—direct synthesis of an alternate tissue contrast—

that could be advantageous. In fact, it is not difficult to envision putting some of the 

fundamental notions together, for example, having a multi-resolution atlas within the 

MIMECS framework. Again, certain elements of the MIMECS framework—non-negative 

patch combination and patch normalization in a higher-dimensional space—offer immediate 

advantages.

Use of patches for direct segmentation has been previously reported [81]. The advantages of 

MIMECS for this purpose are not clearly established in this paper as we did not include a 

comparison with these particular methods. However, our comparison to established state-of-

the-art segmentation algorithms demonstrates a strong potential for its use in this way in the 

future. Like other patch-based methods, the use of examples rather than generative models 

may be advantageous when models are difficult to ascertain with precision as is often the 

case in medical imaging. A key limitation of this approach at present is that it provides only 

a tissue classification, not a structural labeling. FreeSurfer, to which it is compared 

subdivides the GM into anatomical structures with labels, a critically important set in many 

neuroimaging analyses.

Our final experiment involved FLAIR image synthesis, and it provides a cautionary lesson 

about the limitations of MIMECS. The FLAIR pulse sequence is unique in its ability to 

reveal WM lesions by nullifying the CSF signal using a 180° inversion recovery pulse. This 

accentuates the lesion signal relative to all other brain intensities. It is a nonlinear 

relationship to the signal coming from other pulse sequences because of the inversion 

recovery step, and this is (partly) what makes it impossible to synthesize using MIMECS 

directly. Lesions are not invisible in MPRAGE and T2-w images, but they are not 

distinguishable from GM by intensity and local pattern alone. We note that PD images, 

typically collected along with the T2-w images, do not help us since the lesions in a PD 

image also look like GM.

While we did illustrate how synthesizing images containing the absence of lesions could 

potentially be useful in lesion detection, the question still remains as to whether alternate 

methods or different source images might make FLAIR synthesis possible. It is also natural 

to ask what other anatomical features or pathologies might not be synthesized using standard 

MIMECS techniques and how these omissions might affect subsequent image processing 

steps such as segmentation and registration.

In summary, our case studies demonstrate the immediate utility of MIMECS for a wide 

variety of neuroimage processing tasks. There remains a great deal of flexibility in its use, 

particularly in the choice of atlas and source image(s) and new applications can be expected 

to be found. MIMECS represents a new class of neuroimage processing methods with a 

potentially rich future.
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Fig. 1. 
(a) Atlas T1-weighted SPGR and (b) its corresponding T1-weighted MPRAGE. (c) A 

subject T1-weighted SPGR scan and (d) its T1-weighted MPRAGE image. The atlas SPGR 

is deformably registered (using SyN [7]) to the subject SPGR. This deformation is applied to 

the atlas MPRAGE to obtain (e) a synthetic subject MPRAGE. (f) The synthetic MPRAGE 

image generated by our algorithm, MIMECS.
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Fig. 2. 
An illustration of the MIMECS algorithm. The region of the image labeled A, shows the 

construction of the atlases A1 and A2, see Section III-A for details. Region B shows the 

input subject images converted into patches b1(j). Region C denotes the estimation of the 

coefficients x(j) which relate b1(j) to the patches of the atlas A1. Finally, region D shows the 

computation of the synthetic image ŝn+1 by using the learned coefficients x(j) to compute the 

patch b̂2(j) based on the atlas A2. Section III-B describes regions B, C, and D.
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Fig. 3. Effect of sparsity of x(j) on the  contrast
The left most column shows a subject’s SPGR (top) and MPRAGE (bottom) acquisitions. 

The second, third, and fourth columns of the top row show synthetic MPRAGEs generated 

using another portion of the subject’s MPRAGE as the atlas. The synthetic MPRAGEs were 

generated using λ values of 0.05, 0.80, and 0.95, respectively. The plot shows the MPRAGE 

synthesis error vs. the average sparsity of all x(j)’s, averaged over all non-zero voxels. The 

average sparsity scale is on the top of the plot while the sparsity regularization parameter, λ, 

is plotted on the bottom axis.
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Fig. 4. 
The left column shows images from four (out of fourteen) time-points of a normal BLSA 

subject, where each image was acquired approximately one year apart. The right column 

shows synthetic SPGR images, synthesized using MIMECS applied to the corresponding 

MPRAGE images in the left column.
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Fig. 5. 
GM and ventricle volumes from longitudinal FreeSurfer [71] of a normal subject with 14 

scans (first 11 are SPGR, last 3 are MPRAGE).
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Fig. 6. 
(a) Average atlas created using SyN from five BLSA (SPGR) and five OASIS (MPRAGE) 

images and (b) a zoomed region. (c) Average atlas from five synthetic MPRAGEs from 

BLSA and five OASIS images (MPRAGE) and (d) a zoomed region. (e) Intensity standard 

deviation image from SPGR+MPRAGE atlas and (f) intensity standard deviation image 

from sMPRAGE+MPRAGE atlas.
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Fig. 7. 
(a) Brain volume (GM+WM) and (b) ventricle volume computed using FreeSurfer [74] on 

21 normal subjects from the BLSA (SPGR) database and 21 normal subjects from the 

OASIS (MPRAGE) database, as well as on the 21 synthetic MPRAGEs generated from the 

BLSA SPGR images.
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Fig. 8. 
(a) and (b) show an atlas pair consisting of MPRAGE and T2-w scans of a normal subject 

from the Kirby-21 data set. A subject MPRAGE scan (c) is used with MIMECS to 

synthesize a T2-w image of the subject (d). The acquired subject b0 image (e) is deformably 

registered to the subject T1-w image using SyN (with the MI criterion) yielding the 

corrected image (g). Contours generated from FreeSurfer on the T1-w image (f) are shown 

on the geometry corrected b0 image (h). The acquired b0 image is deformably registered to 

the synthetic MIMECS image using SyN (CC criterion) to create a MIMECS corrected 

image (i). Overlaid contours on this image (j) reveal much better geometry correction.

Roy et al. Page 32

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Coronal views of (a) SPGR (native resolution 0.94 × 0.94 × 1.5mm) and (b) T2-w (native 

resolution 0.94 × 0.94 × 5mm) scans of a subject. (The T2-w image has been upsampled to 

the SPGR resolution using trilinear interpolation.) Brainweb (c) T1-w and (d) T2-w 

phantoms used as an atlas in MIMECS. (e) A hi-res T2-w image upsampled using a non-

local super-resolution method. (f) MIMECS synthesized hi-res T2-w image.
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Fig. 10. 
The top row shows a subject T1-w SPGR image, three of the five classification atlases, and 

fuzzy memberships produced by MIMECS-based tissue classification. Hard segmentations 

from two leading automatic methods and a manually-corrected method are compared to the 

hard segmentation of MIMECS.
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Fig. 11. 
The lefthand column contains an atlas for FLAIR synthesis. The righthand column shows 

the subject’s true images, a synthetic MIMECS FLAIR image, and a subtraction image (true 

FLAIR minus synthetic MIMECS FLAIR).
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