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Abstract—Routine ultrasound exam in the second and third
trimesters of pregnancy involves manually measuring fetal head
and brain structures in 2-D scans. The procedure requires a
sonographer to find the standardized visualization planes with a
probe and manually place measurement calipers on the structures
of interest. The process is tedious, time consuming, and introduces
user variability into the measurements. This paper proposes an
automatic fetal head and brain (AFHB) system for automatically
measuring anatomical structures from 3-D ultrasound volumes.
The system searches the 3-D volume in a hierarchy of resolutions
and by focusing on regions that are likely to be the measured
anatomy. The output is a standardized visualization of the plane
with correct orientation and centering as well as the biometric
measurement of the anatomy. The system is based on a novel
framework for detecting multiple structures in 3-D volumes. Since
a joint model is difficult to obtain in most practical situations, the
structures are detected in a sequence, one-by-one. The detection
relies on Sequential Estimation techniques, frequently applied
to visual tracking. The interdependence of structure poses and
strong prior information embedded in our domain yields faster
and more accurate results than detecting the objects individually.
The posterior distribution of the structure pose is approximated at
each step by sequential Monte Carlo. The samples are propagated
within the sequence across multiple structures and hierarchical
levels. The probabilistic model helps solve many challenges present
in the ultrasound images of the fetus such as speckle noise, signal
drop-out, shadows caused by bones, and appearance variations
caused by the differences in the fetus gestational age. This is
possible by discriminative learning on an extensive database of
scans comprising more than two thousand volumes and more than
thirteen thousand annotations. The average difference between
ground truth and automatic measurements is below 2 mm with a
running time of 6.9 s (GPU) or 14.7 s (CPU). The accuracy of the
AFHB system is within inter-user variability and the running time
is fast, which meets the requirements for clinical use.

Index Terms—Fetal brain measurements, fetal head measure-
ments, fetal utrasound, object detection, sequential sampling,
three-dimensional (3-D) ultrasound.
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I. INTRODUCTION

U LTRASOUND is the most common imaging modality in
obstetrics and gynecology [1] allowing real-time visual-

ization and examination of the fetus. In the common practice
of 2-D exams, practitioners are trained to mentally reconstruct
a 3-D anatomy based on images of standard 2-D planes re-
sulting in high variations of biometric measurements depending
on skill and training [2]–[4]. The most recent breakthrough in
ultrasound imaging has come with the increasing use of sys-
tems capable of acquiring 3-D volumetric data. The advantage
of such data is in visualization of planes in which 2-D acqui-
sition is not possible, surface rendering of anatomies, and pos-
texam data processing and review [2]. The 3-D acquisition de-
creases the examination time [4], [5] and reduces inter- and
intra-observer variations of biometric measurements [3], espe-
cially for less experienced sonographers. Similar to 2-D exams,
the major bottleneck remains the navigation to the standardized
planes [6], in which measurements are performed. For example,
to find the ventricular plane in the fetal brain, a clinician needs
to find cavum septi pellucidi, frontal horn, atrium, and choroids
plexus (Fig. 1). Finding the 2-D planes in a 3-D volume is te-
dious and time consuming. The process introduces a learning
curve for an ultrasound specialist, who needs to recognize arti-
facts caused by a 3-D reconstruction and understand the effects
of various settings [2]. After the correct plane is found, the mea-
surements are typically performed by manually placing calipers
at specific landmarks of the measured anatomy.
This paper describes a system for automatic fetal head and

brain (AFHB) measurements from 3-D ultrasound. The stan-
dardized measurements can be used to estimate the gestational
age of the fetus, predict the expected delivery date, assess the
fetal size, and monitor growth. The input to the AFHB system
is an ultrasound volume and a name of an anatomical part to
be measured. Specifically, the parts we focus on here are fetal
head and brain structures commonly measured and assessed in
the second and third trimesters of pregnancy (see Fig. 2, for ex-
amples). The output of the system is a visualization of the plane
with correct orientation and centering as well as biometric mea-
surement of the anatomy according to The International Society
of Ultrasound in Obstetrics and Gynecology [6]. Such system
will greatly reduce the time required to obtain fetal head and
brain measurements, decrease the clinician strain, and minimize
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Fig. 1. Standard planes for performing the basic examination of the fetal ner-
vous system and the fetal neurosonogram [6]: Ventricular plane (a), thalamic
plane (b), cerebellar plane (c), choroid plexus plane (d), and median plane (e).
Each plane is defined exactly by what anatomical landmarks and structures
should be visible according to the guidelines of the International Society of Ul-
trasound in Obstetrics and Gynecology [6] (see Section II for details).

training associated with manual navigation to the standardized
planes.
The state-of-the-art techniques for finding anatomical struc-

tures in 3-D ultrasound images focus on automatic [7], [8]
and semi-automatic [9] segmentation and detection [10], [11].
The most promising techniques are based on machine learning
[10]–[13], pixel-wise classification [7], and deformable models
[13], [14]. Although several existing detection algorithms
can correctly identify structures of interest, they typically
do not provide the visualization plane (standardized planes
are especially important in obstetrics), do not compute the
anatomical measurements, or they are too slow to be used in a
clinical practice. Computer vision approaches for multi-object
detection [15]–[17] rely on an individual detector for each
object class followed by postprocessing to prune spurious de-
tections within and between classes. Individual object detectors
can be connected by a spatial model to exploit relationships
between objects [18]. Relative locations of the objects provide
constraints that help make the system more robust by focusing
the search in regions where the object is expected based on
locations of the other objects. The most challenging aspect
of these algorithms is designing detectors that are fast and
robust, modeling the spatial relationships between objects, and

Fig. 2. Using the input volume (a), AFHB system provides the following mea-
surements: (b) lateral ventricles (LV), (c) cerebellum (CER) and cisterna magna
(CM), and (d) occipitofrontal diameter (OFD), biparietal diameter (BPD), and
head circumference (HC). In addition, the system provides automatic detection
of median plane for visualization of corpus callosum (CC) and a plane for visu-
alization of choroid plexus (CP), see Fig. 1.

determining the detection order. Structural learning approaches
[19], [20], have been frequently applied to articulated 2-D pose
estimation [21]. Although structural dependency in the model
can improve robustness, these approaches have not yet been
applied to fast and accurate pose estimation in 3-D images.
The segmentation algorithms [7], [11]–[14] could, in principle,
compute the measurements from the final segmentations, but
they require the entire structure to be segmented which is slow
and not as robust.
Although several successful techniques have been proposed

for echocardiography [22], there are additional challenges in
ObGyn applications. Similarly, the images have low signal-to-
noise ratio, speckle noise, and other imaging artifacts. In addi-
tion, there are strong shadows produced by the skull and large
intra-class variations because of differences in the fetus age.
As gestational age increases, the skull bones develop, which
makes it difficult for the acoustic signal to penetrate to the brain
anatomy. This results in decreased detail in the image. Finally,
some structures in the fetal brain are much smaller (less than 5
mm) than structures measured in echocardiography.
In this paper, we propose a detection system that addresses the

challenges above. Our approach is motivated by Sequential Es-
timation techniques [23], frequently applied to visual tracking.
In tracking, the goal is to estimate at time the object state
(e.g., location and size) using observations (object appear-
ance in video frames). The computation requires a likelihood
of a hypothesized state that gives rise to observations and a
transition model that describes the way states are propagated
between frames. Since the likelihood models in practical sit-
uations lead to intractable exact inference, approximation by
Monte Carlo methods, also known as particle filtering, has been
widely adopted. At each time step , the prediction step involves
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sampling from the proposal distribution of
the current state conditioned on the history of states
up to time and the history of observations up to time
. The estimate is then computed during the update step based
on the prediction and all observations. In detection, the sequence
of probability distributions specifies a spatial order rather than a
time order. The posterior distribution of the pose (state) of each
anatomical structure is estimated based on all observations so
far. The observations are features computed from image neigh-
borhoods surrounding the anatomies. The likelihood of a hy-
pothesized state that gives rise to observations is based on a de-
terministic model learned using a large annotated database of
images. The transition model that describes the way the poses
of anatomical structures are related is Gaussian. We will discuss
several transition models specific to fetal head anatomies.
The computational speed and robustness of our system is

increased by hierarchical processing. In detection, one major
problem is how to effectively propagate detection candi-
dates across the levels of the hierarchy. This typically involves
defining a search range at a fine level where the candidates from
the coarse level are refined. Incorrect selection of the search
range leads to higher computational cost, lower accuracy, or
drift of the coarse candidates towards incorrect refinements.
The search range in our technique is part of the model that is
learned from the training data. The performance of our detec-
tion system is further improved by starting from structures that
are easier to detect and constraining the detection of the other
structures by exploiting spatial configurations. The difficulty
of this strategy is selecting the order of detections such that
the overall performance is maximized. Our detection schedule
is designed to minimize the uncertainty of the detections. The
Automatic Fetal Head and Brain measurement system auto-
matically finds the standard visualization plane of a requested
anatomy and displays the measurement value. The system is
fast: eight structures and six measurements are displayed on
a standard desktop computer within 14.7 or 6.9 s when using
CPU or GPU, respectively. The average difference between
ground truth and automatic measurements is below 2.0 mm and
all measurements are within inter-user variability.
Compared to an earlier version of the work [24], this paper

handles more structures (eight structures and six measurements
versus only three structures and three measurements) by in-
troducing new anatomy-specific transition models. The need
for a large number of observation and transition models is ad-
dressed by the generalization of the earlier architecture yielding
the Integrated Detection Network (IDN). The experiments are
performed on more data sets (2089 versus only 884 in [24])
and more thorough evaluation uses two types of measurements
and two baseline comparisons. Finally, the experiments are ex-
tended with a new section on clinical evaluations using an inter-
national panel of experts. Previous algorithm [10] handled only
three structures and three measurements. They were computed
at a single image resolution level which resulted in lower accu-
racy and higher computational cost.
The paper is organized as follows. We start by giving an

overview of the anatomical measurements of fetal head and
brain obtained in the second and third trimesters of pregnancy

(Section II). We continue by reviewing background literature
on detection and measurements in ultrasound images and rel-
evant literature on multi-object detection in computer vision
(Section III). The Automatic Fetal Head and Brain measure-
ments algorithm is explained in Section IV. The evaluation in
Section V focuses on qualitative and quantitative analysis of
the AFHB system. Section VI summarizes clinical evaluations
performed at several sites internationally. We will conclude the
paper in Section VII.

II. ANATOMICAL MEASUREMENTS OF FETAL HEAD
AND BRAIN STRUCTURES

Transabdominal sonography is the technique of choice to in-
vestigate the fetal central nervous system (CNS) during late first,
second and third trimesters of gestation in low risk pregnan-
cies [6]. Major components of this exam are visualizations and
measurements of fetal head and brain structures in standardized
planes shown in Fig. 1.
During second and third trimesters, three standardized scan

planes, thalamic, ventricular, and cerebellar, allow detection of
most cerebral anomalies [25].
The thalamic plane is used for the biometry of the head,

namely for measuring the biparietal diameter (BPD) and the oc-
cipitofrontal diameter (OFD). The biparietal diameter is mea-
sured outer-to-outer (i.e., across two outer boundaries of the
skull)1. The head circumference (HC) is computed as an ellipse
cirucmference using BPD and OFD measurements as ellipse
axes. The major landmarks in the thalamic plane include the
frontal horns of the lateral ventricles, the cavum septi pellucidi,
the thalami, and the hippocampal gyruses [6]. The plane should
not show any part of the cerebellum.
The ventricular plane is slightly craniad to the thalamic plane

and it gives optimal visualization of the body and atrium of the
lateral ventricles [25]. The ventricles are medially separated by
the cavum septi pellucidi (CSP). To find the ventricular plane, a
clinician needs to see cavum septi pellucidi, frontal horn, atrium,
and choroids plexus. The plane is used to measure the size of lat-
eral ventricles (LV). The best measurement is obtained by mea-
suring the inner diameter (width) of the atrium (Fig. 1). In the
standard ventricular plane, only the hemisphere on the far side
of the transducer is usually clearly visualized, as the hemisphere
close to the transducer is frequently obscured by artifacts.
The cerebellar plane is obtained by slight posterior rotating

the thalamic plane to show the cerebellar hemispheres. The cere-
bellum appears as a butterfly-shaped structure formed by the
round cerebellar hemispheres [6]. Other landmarks include the
cisternamagna, the thalamus, and the cavum septi pellucidi. The
cisterna magna is a fluid-filled space posterior to the cerebellum
[6]. The cerebellar plane is used to measure the antero-posterior
diameter of the cisterna magna (CM) and the width of the cere-
bellar hemispheres (CER) [25].
The median (or mid-sagittal) plane shows the corpus cal-

losum (CC) with all its components; the cavum septum pel-
lucidi, the brain stem, pons, vermis, and posterior fossa [6].
The corpus callosum is a midline structure overlying the lateral
ventricles that carries nerve fibers connecting the right and left

1In some countries, outer-to-inner measurement for BPD is more common.



SOFKA et al.: AUTOMATIC DETECTION AND MEASUREMENT OF STRUCTURES IN FETAL HEAD ULTRASOUND VOLUMES 1057

hemispheres. The visualization of this plane is used to assess
the anomalies and agenesis of the corpus callosum. There is no
measurement associated with CC.
The lateral ventricle is filled with echogenic choroid plexus

(CP). As with lateral ventricles, only the hemisphere on the far
side of the transducer is usually clearly visualized. The plane is
located craniad from the cerebellar plane. The visualization of
this plane is useful for examining choroid plexus for cysts.

III. PRIOR WORK ON QUANTITATIVE ULTRASOUND ANALYSIS

In this section, we review previously published literature on
the detection and segmentation of anatomical structures in ul-
trasound images. In addition to the challenges in echocardiog-
raphy [22], we are facing new challenges in the obstetrics appli-
cation: 1) The algorithm needs to handle several different struc-
tures in the brain, 2) the appearance of structures varies more
dramatically across the data set, 3) relationships between struc-
tures should be explored to take advantage of the additional con-
straints, and 4) the algorithm must be very efficient. We start the
review by a survey of works on detecting and measuring struc-
tures in 2-D and 3-D ultrasound images. We then examine a few
papers on segmentation of ultrasound structures, which could
be used to provide measurements. We also briefly review sev-
eral algorithms that detect and segment brain structures in CT
and magnetic resonance imaging (MRI). Finally, we examine
several related papers on multi-object detection from computer
vision.
The literature on detecting andmeasuring fetal head and brain

structures in 3-D ultrasound images is limited. This is due to the
above challenges posed by the ultrasound modality, by the vari-
ability of the fetal anatomical structures, and by relatively new
use of 3-D ultrasound in obstetrics practice. To capture this high
variability, the most promising techniques use nonparametric
appearance models obtained from large databases of annotated
examples. Carneiro et al. [10] presented a system for detecting
and measuring three structures: cerebellum, cisterna magna, and
lateral ventricles. The algorithm uses a pose detector trained
with probabilistic boosting tree (PBT) [26] to find the structures
and semi-local context to leverage prior knowledge of struc-
ture locations. However, only three structures (two standardized
planes) are found and the algorithm operates on a single resolu-
tion level. This results in lower accuracy and higher computa-
tional cost. Yaqub et al. [7] trained random forest classifier on
10 volumes to classify voxels to belong to one of five classes:
background, choroid plexus, posterior ventricle cavity, cavum
septum pellucidum, and cerebellum. The results shows that dis-
criminative techniques are useful for identifying structures in ul-
trasound volumes. However, the testing data set is small (only
10 volumes), the visualization plane must be found manually,
and the technique does not produce automatic measurements.
Pauly et al. [8] proposes to detect substantia nigra echogenici-
ties in 3-D transcranial ultrasound by a probabilistic model con-
sisting of data and prior terms learned by random forests. The
voxel classification uses mean intensity features and exploits the
symmetry of the brain anatomy. The above papers [7], [8] iden-
tify and detect structures in ultrasound volumes of the fetus but
do not focus on providing highly accurate measurements of the
structures.

Several papers in the literature are concerned with detecting
andmeasuring structures other than brain. The approaches focus
on designing specialized features [11], [27] and use discrim-
inative learning to build robust detectors [12], [28]. Rahmat-
ullah et al. [28] automatically find stomach visualization plane
in 3-D ultrasound volumes by searching for stomach bubble and
umbilical vein landmarks. The algorithm relies on AdaBoost
training algorithm and detects the plane in 6 s on average with
model trained on 2384 images. This computation time is low-
ered to under 1 s by using phase-based global features in the
first level of the detector [11]. The algorithm only identifies an
axis-aligned plane in a 3-D scan and therefore does not find the
plane orientation. Romeny et al. [27] find centers of ovarian fol-
licles using the so-called winding number of the intensity singu-
larity. The number is indicative of intensity minima at a given
scale. It is computed as a path integral of the angular increment
of the gradient direction vector in a closed neighborhood. Chen
et al. [12] estimate the size and position of individual ovarian
follicles by a probabilistic framework. In this framework, the
parameter space is partitioned and clustered to efficiently search
the hypotheses in a high dimensional space. The best position
and size candidate is used to initialize robust 3-D segmentation.
Some of the above algorithms use discriminative learning to
reach accurate results at acceptable computational speeds [12],
[28], [29]. However, none of the techniques provides plane ori-
entation for the visualization of the structures. In addition, it is
not always straightforward how to extend these algorithms to
the fetal head and brain structures.
Sometimes, the detection algorithms are used to initialize

tracking [22] or segmentation [12] of anatomical structures in
3-D ultrasound. The literature on (semi-) automatic segmenta-
tion is larger than literature on automatic detection andmeasure-
ment (see survey by Noble et al. [30]). These techniques could,
in principle, be used to provide measurements of the structures
after they have been segmented. The most reliable algorithms
are based on pixel-wise classifiers [7], machine learning [11],
[12], and deformable models [13], [14]. Gooding et al. [9] pro-
pose a semi-automatic method for segmenting ovarian follicles.
The method relies on the level-set framework to incorporate re-
gional constraints and to deal with signal dropouts. The seg-
mentation results are used to report volume measurements of
the follicles. Hong et al. [13] propose a 3-D left ventricle seg-
mentation algorithm which uses a set of 2-D slices and a dis-
criminative classifier to find the ventricle boundary. The con-
sistency of the slices across shapes is ensured by a nonrigid
shape alignment step. Juang et al. [31] propose a graph-based
technique for automatic segmentation of the left ventricle and
atrium in 3-D ultrasound volumes. The graph is constructed in
a cylindrical coordinate space as determined by a central axis
from the radial symmetry transform. In [32] textures extracted
with Gabor filters are classified as belonging to prostate or back-
ground. The extracted textures can also be used within a hier-
archical deformable segmentation model [14] to produce 3-D
segmentation. All these segmentation techniques deal with the
same challenges of the ultrasound images stated above, but our
goal is different. Unlike segmenting a particular structure in its
entirety, we are concerned with providing an accurate measure-
ment. Therefore, we need to find the pose of the structure as
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robustly as possible and then automatically compute the mea-
surement. Although requirements on measurement accuracy are
very high, the process of detecting andmeasuring the structure is
typically much faster and more robust than segmentation, where
delineation of the whole boundary needs to be found.
There have been several methods in literature focused on

detecting and segmenting fetal structures in 2-D images. The
early techniques relied on filtering, morphological operators,
and hough transform [33]. These techniques tend to be slow
and are typically designed for a specific anatomy which makes
them difficult to generalize to new structures. Chalana et al.
[34] describe a method for detecting the biparietal diameter and
head circumference based on active contour model. Although
the technique is real-time, it requires manual initialization. The
major drawback of this approach is the lack of the appearance
term to improve the robustness and accuracy. Zhang et al. [35]
first automatically select the plane for measuring gestational sac
from a 2-D ultrasound video by a multi-scale AdaBoost classi-
fier. The sac is then measured in real-time by an active contour
model initialized from normalized cuts. Carneiro et al. [36] pro-
posed a system for detecting and measuring several anatomies
in 2-D ultrasound images using the same underlying algorithm.
The method learns to discriminate between the structures of in-
terested and background via Probabilistic Boosting Tree clas-
sifier [26]. An efficient search technique makes the system run
in under half second. The published 2-D methods for detecting
and measuring fetal anatomical structures often provide robust
results at fast computational speeds. However, the detection and
automatic measurements are harder in 3-D. First, the 2-D al-
gorithms do not need to find the best measurement plane (this
is done during the acquisition by the sonographer). Second,
the search space of the structure of interest is much smaller
and therefore the 2-D algorithms can be fast. Finally, the 3-D
anatomy necessitates that the features and prior constraints are
designed in 3-D rather than 2-D.
MRI has been often used to image brain of adults but it is less

frequent for the imaging of fetuses. Tu et al. [37] combined dis-
criminative classifier based on probabilistic boosting tree (PBT)
[26] for appearance modeling and a generative classifier based
on principal component analysis (PCA) for shapemodeling. The
weights for these two terms learned automatically. The system
takes 8 min to run to segment eight brain structures. Anquez
et al. [38] segment fetal eyes and skull bone content in MRI
volumes. The eyes are first found by template matching. The
eye locations are then used to position a mean shape model of
the skull. The segmentation of the skull bone content is per-
formed by graph cuts, first in a midsagittal plane and then in
3-D. MRI fetal scanning is expensive and not approved for fe-
tuses of gestational age below 20 weeks. Due to motion of the
fetus during the scan, the motion correction must be applied
[39]. Finally, more constrained scanning procedure and different
imaging characteristics (higher signal-to-noise ratio, no signal
drop outs, and no shadowing artifacts) make these techniques
difficult to extend to the ultrasound domain.
Detecting multiple objects is studied from multiple aspects

in computer vision literature. In our review, we focus on sam-
pling, multi-resolution, and detection order selection problems.
Many object detection algorithms [16], [26], [40] test a discrete

set of object poses for an object presence with a binary classi-
fier. Unlike these algorithms, that typically sample the param-
eter space uniformly, we sample from a proposal distribution
[41] that focuses on regions of high probability. This saves com-
putational time as fewer samples are required and increases ro-
bustness compared to the case, where the same number of sam-
ples would be drawn uniformly. Speedup can also come from
using regression forests and a sparse set of samples in a volume
[42]. However, these techniques have only been applied to de-
tecting axis-aligned bounding boxes around organs in CT vol-
umes and it is not straightforward how to obtain highly accurate
measurements of the organs.
Multi-object detection techniques have focused on models

that share features [43] or object parts [17]. This sharing results
in stronger models, yet in recent literature, there has been a de-
bate on how to model the object context in an effective way
[44]. It has been shown that the local detectors can be improved
by modeling the interdependence of objects using contextual
[45]–[47] and semantic information [48]. The relationships be-
tween parts is often modeled as a Markov random field or con-
ditional random filed [49]. This results in accurate detection of
each individual part but at a high computational cost. Therefore,
it is not possible to apply these techniques in an online system.
Furthermore, the part-based model assumes the parts undergo
articulate motion or nonrigid deformation which is not the case
in fetal head and brain structures. In our sequential sampling
framework, the interdependence between objects is modeled by
a transition distribution, that specifies the “transition” of a pose
of one object to a pose of another object. This way, we make
use of the strong prior information present in medical images of
human body. The important questions are how to determine the
size of the context region (detection scale) and which objects to
detect first in an optimal way.
Multi-scale algorithms usually specify a fixed set of scales

with predetermined parameters of the detection regions [17],
[50]. Choosing the scale automatically has the advantage since
objects have different sizes and the size of the context neigh-
borhood is also different. We propose a multi-scale scheduling
algorithm that is formulated in the same way as the detection
order scheduling.
The order of detection has been specified by maximizing the

information gain computed before and after the detection mea-
surement is taken [51], by minimizing the entropy of poste-
rior belief distribution of observations [50], and by submod-
ular maximization to guarantee optimal detection speed [52].
Our scheduling criterion is based on probability of states (object
poses) within the ground truth region. Other measures could be
used as well thanks to the flexible nature of the Sequential Sam-
pling framework.

IV. SEQUENTIAL SAMPLING FOR MULTI-OBJECT DETECTION

The input for our system is an ultrasound volume containing
the head of a fetus with a gestational age between 16 and 35
weeks. For fetuses older than 35 weeks, the ultrasound signal
has a difficulty penetrating the skull. The brain structures are de-
tected by a multi-object detection system as follows. The state
(pose) of the modeled object is denoted as and the se-
quence of multiple objects as . In our
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Fig. 3. In multi-object detection, the set of observations is a sequence of image
patches . The sequence specifies a spatial order of structures. The struc-
tures are detected in this order which is automatically determined.

case, denotes the position , orientation , and
size of the object . The set of observations for object are ob-
tained from the image neighborhood . The neighborhood
is specified by the coordinates of a bounding box within an 3-D
image , , where is image intensity. The sequence
of observations is denoted as . This
is possible since there exists prior knowledge for determining
the image neighborhoods . The image neighbor-
hoods in the sequence might overlap and can have different
sizes (Fig. 3). An image neighborhood might even be the en-
tire volume . The observations with a likelihood
describe the appearance of each object and are assumed con-
ditionally independent given the state . The state dynamics,
i.e., relationships between object poses, are modeled with an ini-
tial distribution and a transition distribution .
Note that here we do not use the first-order Markov transition

often seen in visual tracking.
The multi-object detection problem is solved by recursively

applying prediction and update steps to obtain the posterior dis-
tribution . The prediction step computes the proba-
bility density of the state of the object using the state of the
previous object, , and previous observations of all objects
up to

(1)

When detecting object , the observation is used to compute
the estimate during the update step as

(2)

where is the normalizing constant.
As simple as they seem these expressions do not have

analytical solution in general. This problem is addressed by
drawing weighted samples from the distribu-
tion , where is a realization of state
with weight .

In most practical situations, sampling directly from
is not feasible. The idea of importance sam-

pling is to introduce a proposal distribution which
includes the support of .
In order for the samples to be proper [41], the weights are

defined as

(3)

Since the current states do not depend on observations from
other objects then

(4)

Note, that was left out of the first term since the states in the
sequence do not depend on it. The states are computed
as

(5)

Substituting (4) and (5) into (3), we have

(6)

(7)

(8)

In this paper, we adopt the transition prior as the
proposal distribution. Compared to the more general proposal,

, the most recent observation is missing. In
practice, this does not pose a problem in our application since
the predicted samples are near the likelihood peaks. The impor-
tance weights are then calculated as

(9)

In future, we plan to design more sophisticated proposal dis-
tributions to leverage relations between multiple objects during
detection.
When detecting each object, the sequential sampling

produces the approximation of the posterior distribution
using the samples from the detection of the pre-

vious object as follows.
1) Obtain samples from the proposal distribution,

.
2) Reweight each sample according to the importance ratio

(10)

Normalize the importance weights.
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3) Resample the particles using their importance weights to
obtain more particles in the peaks of the distribution. Fi-
nally, compute the approximation of

(11)

where is the Dirac delta function.

A. The Observation and Transition Models

The set of best instance parameters for each object is
estimated using the observations

(12)

Let us now define a random variable , where
indicates the presence and absence of the

object . To leverage the power of a large annotated dataset,
we use a discriminative classifier (PBT [26]) to best decide be-
tween positive and negative examples of the object. PBT com-
bines a binary decision tree with boosting, letting each tree node
be an AdaBoost classifier. This way, the miss-classified positive
or negative examples early on can still be correctly classified
by children nodes. We can now evaluate the probability of an
anatomy being detected as , which denotes
posterior probability of the object presence with parameters
given observations . This is a natural choice for the observa-
tion model in (12)

(13)

In tracking, often a Markov process is assumed for the transi-
tion kernel , as time proceeds. How-
ever, this is too restrictive for multiple object detection. The best
transition kernel might stem from an object different from the
immediate precursor, depending on the anatomical context. In
this paper, we use a pairwise dependency

(14)

We model as a Gaussian distribution estimated from
the training data. The statistical model captures spatial relation-
ships between the structures while ignoring abnormal configu-
rations that may be caused by brain malformations. During de-
tection, the predictions are used as the best available estimates
even for abnormal cases.

B. Integrated Detection Network

Large number of observation and transition models creates
a need for flexible architecture that would simplify algorithm
design. To address this need, we propose Integrated Detection
Network (IDN), which simplifies design, modification, tuning,
and implementation of sophisticated detection systems [53]. As
shown in Fig. 4 (left), IDN is a pairwise, feed-forward network.
IDN consists of nodes that perform operations on the input data
and produce zero or more output data. The operations, such as
candidate sample detection, propagation, and aggregation, are

Fig. 4. IDN consists of nodes that operate on data (left). Illustration of the IDN
and order selection (right). See text for details.

only related to each other through data connections. This makes
it possible to easily add new nodes and data types to an existing
network. The design is a generalization of the hierarchical de-
tection network (HDN) [24], which only focused on detection
nodes. The same network is used in both detection and training
which enables rapid prototyping and algorithm evaluation. Fur-
thermore, the basic network building blocks (such as rigid de-
tector encapsulating position, orientation, and size detection)
can be designed and interconnected into complex hierarchies.
Such flexible design makes it easy to manage large-scale detec-
tion systems.

C. Detection Order Selection

Unlike a video, where the observations arise in a naturally
sequential fashion, the spatial order in multi-object detection
must be selected. The goal is to select the order such that
the posterior probability is maximized in the
neighborhood region around the ground truth. Since deter-
mining this order has exponential complexity in the number
of objects, we adopt a greedy approach. We first split the
training data into two sets. Using the first set, we train all
object detectors individually to obtain posterior distributions

. The second set is used for
order selection as follows.
We aim to build an IDN from the order selection as illustrated

in Fig. 4 (right). Suppose that we find the ordered detectors up
to , . We aim to add to the network
the best pair (or feed-forward path) that maximizes the
expected value of the following score over both and
computed from the second training set:

(15)

where is the neighborhood region around the ground truth
. The expected value is approximated as the sample mean of
the cost computed for all examples of the second training data
set. The order selection above is related to the learning struc-
tured predictors [19], [20] with the difference of selecting the
predicted objects in a greedy fashion.
During hierarchical detection, larger object context is consid-

ered at coarser image resolutions resulting in robustness against
noise, occlusions, and missing data. High detection accuracy is
achieved by focusing the search in a smaller neighborhood at the
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finer resolutions. The resolution level and the size of the image
neighborhoods can be selected using the same mechanism
as the order selection by introducing additional parameters [24].

D. Anatomy-Specific Transition Models

Sequential sampling in the detection of fetal head and brain
structures is constrained by the anatomical domain present in the
neurosonography scans. We take advantage of this constraint by
designing two anatomy-specific transition models, one for the
cisterna magna and one for lateral ventricles and choroid plexus.
The cisterna magna is found posterior to the cerebellum in

the cerebellar plane. Both structures are measured in the same
plane which reduces the search space of the automatic detection:
the pose of the cisterna magna is predicted from the pose of
the cerebellum within the cerebellar plane. We can write the
transition model from (14) as

(16)

where
and denote the mean and variance of the pose
transition between cerebellum pose estimate and cis-
terna magna. Furthermore, and

due to the planar constraint. It is
important to note, that the CER estimate is computed
first using all samples, rather than sequentially propagating
them. This has two effects. First, CM samples are enforced to
lie on the plane of the CER estimate. Second, the orientation of
CM samples is within the CER estimate plane. As a result, this
prediction model yields faster CM detection due to the reduced
search subspace and more robust results due to the elimination
of incorrect CER samples and enforced local search. Typically,
200 samples are used for position and orientation and 50
samples are used for size estimation.
It is possible to make use of the constrained scanning proce-

dure to design transition models specific to LV and CP. The fetal
head volume is typically scanned through the sphenoid phon-
tanel and squamosal suture by finding the right angle along the
side of the head. Following this procedure, the acquired scan
shows the axial view and the variation of the scan orientation is
constrained by the acquisition angle. The choroid plexus plane
always have constrained orientation with respect to the scanning
probe. Since only the hemisphere on the far side of the trans-
ducer can be clearly visualized (Section II), only LV measure-
ment and CP visualization in this hemisphere is required. We
take advantage of this constraint by training a separate detector
for LV and CP in left and right hemispheres. The samples are
propagated only to one side as determined by the orientation of
the head from cerebellum candidates. The transition model as-
sumes the following form:

(17)

TABLE I
ANNOTATION COUNTS FOR EACH STRUCTURE IN IMAGES
FROM SIEMENS ANTARES AND SIEMENS S2000 SYSTEMS

where , and ,
denote the mean and variance of the pose transition between
cerebellum and left and right lateral ventricle. The orientation

specifies the orientation of a cerebellum
sample . The reference orientation indicates the
volume orientation vector. Due to the constrained scanning pro-
cedure, the angle between and will be close to 0 or
180 depending on whether the brain was scanned through the
left or right side of the head. In practice, only one of the tran-
sition models is used in each volume. This way, the candidates
are always sampled in the hemisphere further away from the
probe which increases the robustness and speed of the lateral
ventricle detection. Similar procedure is followed for CP tran-
sition model.

V. EXPERIMENTAL EVALUATION

The AFHB algorithm is evaluated in terms of the ability to
detect the correct anatomical structures (Section V-A) and in
terms of providing accurate measurements of these structures
(Section V-B). The next section (Section VI) summarizes clin-
ical evaluations using feedback from experts in ultrasound ob-
stetrics exam.
We use a total of 2089 fetal head volumes with sizes ranging

from 94 75 125 mm to 279 173 221 mm and the size
average of 186 123 155 mm. The volumes were acquired
using Siemens Antares and Siemens S2000 ultrasound systems.
The data sets were converted from acoustic to Cartesian coor-
dinate system and resampled to 1 mm resolution. The gesta-
tional ages ranged from 16 weeks to 35 weeks. The annotation
counts for each structure are summarized in Table I. Overall,
13 366 structures were annotated by an experienced sonogra-
pher with higher counts for S2000 volumes. Out of the total of
2089 volumes, 1982 were used for training and 107 for testing.
To further increase the number of annotations, we took advan-
tage of the symmetry in the anatomy of the head and a standard-
ized position of the head in the scan (axial acquisition through
the squamosal suture). The data (and annotations) were flipped
along , , and axes, which resulted in a total of 8356 vol-
umes and 53464 annotations.
All structures were annotated by finding the accurate plane

and drawing the measurement line according to the guidelines
of the International Society of Ultrasound in Obstetrics and Gy-
necology [6] (see Section II for an overview). Since the corpus
callosum does not have a measurement associated with it, for
the purposes of training a detector, we annotated this structure
as follows. The annotation line was drawn in the median plane
from the bottom of the genu inside the body of corpus callosum.
Similarly, the choroid plexus is annotated by extending the an-
notation line along its longest axis in the plane where the choroid
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Fig. 5. During training, database of annotated images is used to train the IDN at resolutions 4, 2, and 1 mm. During detection, the IDN is used to automatically
provide measurements on a new image. The arrows in the IDN diagram indicate the interdependency and detection order of brain structures: cerebellum (CER),
cisterna magna (CM), lateral ventricles (LVL—left, LVR—right), corpus callosum (CC), and choroid plexus (CPL—left, CPR—right). Detection of occipitofrontal
diameter (OFD), biparietal diameter (BPD), and head circumference (HC) is performed by the skull (SKU) detector.

plexus is most visible (see Fig. 10). The annotation planes to-
gether with the measurement lines define uniquely the poses.
The line center, the line orientation with the annotation plane,
and the line length define the position , orientation , and size
parameters of each pose. Therefore, the position of the anno-
tation plane is defined by the line center and the orientation of
the plane is defined by the line orientation. The 3-D size pa-
rameter of the pose is extended by a fixed ratio to increase the
context (the scaling ranges from 1.2 to 10.0 depending on the
resolution and structure size). Since the BPD and OFD mea-
surements are in the same plane, they are combined into a single
pose. The 3-D size parameter of the pose then consists of (OFD
length BDP length depth). The depth was conveniently
chosen as the BPD length. The poses are used to train a detector
for each structure. The detected poses are mapped back to mea-
surement lines and visualization planes for display.

A. IDN for Fetal Head and Brain Measurements

The structure poses defined in the previous section are used
to train a IDN (Section IV-B) on the training data set. The re-
sulting network showing all structures at three resolution levels
is shown in Fig. 5. All-in-all, the network contains 10 detectors,
54 classifiers, and a total of 45 IDN nodes. The IDN nodes
consists of position (10), orientation (9), and size detectors
(8), as well as candidate prediction (7), splitting/joining (4),
aggregation (6), and data handling (1). There is one detector
for each of the eight structures with combined skull detector
(SKU) for OFD, BPD, and HC, and there are two additional
resolution levels for CER. LV and CP have a separate detector
for left and right side (Section IV-D). Each detector consists of
a classifier trained to detect position, position+orientation, and
position+orientation+size ( detectors classifiers).
Each classifier is also bootstrapped to increase robustness
against false positives [24], [54] ( ). This is done
by training the second classifier using the samples processed
by the first classifier. There is no classifier for CER 4 mm
orientation, size, and CER 2 mm size since the low resolution

Fig. 6. Error measures computed to evaluate automatic measurements. The
length error is computed as a difference between lengths of the automatic mea-
surement and manual annotation. The plane error is computed as a maximum
distance between corresponding line end-points. The latter also considers inac-
curacies in structure position and plane orientation.

does not provide enough detail to detect these reliably [53]
( classifiers). Additional nodes comprise of candi-
date aggregation and prediction [53].
Our first experiment tests the accuracy of correctly detecting

the fetal head and brain structures. This is done by running the
detector on each of the 107 unseen volumes and comparing the
pose (position, orientation, and size) of each detected structure
with the pose of the corresponding annotated structure. The ori-
entation error was calculated by angular distance (using quater-
nion representation). For CC and CP, the orientation error only
considers normal of the measurement plane. The size error was
computed as the Euclidean distance between two 3-D points,
where the point vectors represent sizes of the detected and an-
notated structures.
The quantitative analysis of the pose detection errors is in

Table II. Mean of the 95% smallest errors was computed by
comparing the detected locations to manual labeling2. The po-
sition error is lower than 2 mm on all structures but skull (SKU)
with standard deviation below 1 mm. The skull is the largest
structure and it is hard to determine the skull center accurately
even during annotation. The orientation error is lowest for CER

2Large failures have low probability values and are deferred to manual
measurement.
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Fig. 7. Sorted length measurement errors (left) and plane measurement errors (right) computed for all structures using measures from Fig. 6. The gradual increase
of errors shows that the measurements are accurate for all structures with only a few outliers (towards the right of the figures). The largest error is for head
circumference (HC) since it is the longest measurement (Table III. The plane measurement errors are larger since they also account for errors in the detection of
the measurement plane.

and CM since there is no ambiguity in annotating these struc-
tures. The error is larger for LV but still acceptable as seen from
the clinical evaluations (Section VI). Annotating LV is chal-
lenging due to small size and difficulty in finding the inner di-
ameter of the atrium accurately [6]. Annotation of CP is also
challenging since it is a banana-shaped structure and finding the
best visualization plane can be hard. The size errors tend to be
larger for larger structures which is in agreement with the level
of accuracy that can be achieved when measuring these struc-
tures. Overall, the detection errors are lower when compared to
[24] and [10]. These papers report position detection error above
2 mm for CER, CM, and LV.

B. Automatic Measurement

Our second analysis is focused on providing automatic mea-
surement of fetal head and brain structures. The measurement
value is shown along with the visualization of the measurement
plane to the obstetrician during ultrasound exam. The measure-
ment line is obtained directly from the detected pose. The po-
sition and orientation parameters define the center and orienta-
tion of the measurement line, respectively. The size parameter
defines the measurement line length.
We computed the error in two different ways. The first value,

length error, was computed as a difference between lengths
of the automatic measurement line and the annotation line.
This measure therefore ignores the inaccuracies in the structure
position and plane orientation. Evaluating this error is useful
since it determines the impact of using the automatically de-
termined measurements in clinical practice. The second value,
plane error, was computed as a maximum distance between
corresponding line end-points (see Fig. 6). This measure incor-
porates differences between detected and annotated positions
and plane orientations.
The evaluation of the automatic measurement errors is in

Table III and Fig. 7. The values for OFD, BPD, and HC were all
computed from the detected skull (SKU) pose. The HC is com-
puted as an ellipse circumference given major and minor axes
as provided by OFD and BPD. The HC plane error is computed

as a maximum of OFD and BPD plane error for each measure-
ment. The table does not show errors for CC and CP since there
is no clinical interest in the measurement of these structures.
The length error is shown in the second column of the table.
The error tends to be larger for larger measurements (e.g., HC
and OFD). The average measurement lengths for all structures
is in the seventh column. The third column shows the error as
a percentage with respect to ground truth length. Small struc-
tures have higher percentage errors since even small inaccura-
cies have larger effect compared to the measurements of these
structures. The plane error is shown in the fourth column. The
values are higher than for the length error since this error mea-
sure takes into account inaccuracies in the plane orientation.
The IDN plane errors are consistently lower when compared
to the results when independently detecting structures at 1 mm
resolution (shown in fifth column) and when detecting struc-
tures with a hierarchy of 4, 2, and 1 mm resolution detectors
(sixth column). The plane errors for the hierarchical detection
are lower than for the single-resolution detection. Comprehen-
sive evaluation in Fig. 7 shows the accuracy on all of the testing
cases.
Our next evaluation includes visual comparison of different

results along with the length and plane errors. Fig. 8 shows ex-
ample results for CER, CM, and LV. Fig. 9 shows example re-
sults for OFD, BPD, and HC. Finally, Fig. 10 shows results for
CC and CP. Length and plane errors are reported for each case
(note, that larger plane error does not necessarily mean that the
length error will also be large as can be seen from the way they
are computed (Fig. 6). For each structure, two cases are shown:
one case with lower than average plane error and one case with
higher than average plane error as compared to the overall sta-
tistics (Table III). The purpose of this examination is three-fold.
First, different scans are selected for each measurement which
shows the high variability in the dataset. Second, the overview
gives a clear idea how measurement errors correlate with the
visual appearance of the respective planes and all structures
that should be present according to the scanning guidelines [6].
Third, the larger plane errors do not necessarily mean that the
scan would be rejected for diagnostic purposes—they are still
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Fig. 8. The automatic measurement results (cyan) compared to ground truth (red) for cerebellum (CER), cisterna magna (CM), and lateral ventricles (LV).
The first row of each structure shows results with approximately average plane error and the second row shows results with higher than average plane error.
Plane and length errors on the left are reported (in mm). Note, that the cases with higher error are still acceptable for clinical use. The last two columns show the
agreement of the detection plane in the sagittal and coronal cross section.

acceptable for assessing fetal health, size, and growth. This is
because the automatic measurements are within inter-user vari-
ability as we will show in the next section.
The average running times of the entire system (including

data loading) is 45.2 s on computer with Intel Core 2 Duo,

2.66 GHz processor. When using GPU (nVidia GeForce 9800
GT) on the same machine, the running time is 6.9 s. The GPU
implementation includes detectors (feature extraction and clas-
sification) for each structure. On a computer with Intel Six-core
processor with hyper threading, 2.40 GHz, the running time is
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Fig. 9. Automatic measurement results (cyan) compared to ground truth (red) for occipitofrontal diameter (OFD), biparietal diameter (BPD), and head circum-
ference (HC). Plane and length errors on the left are reported (in mm). See the text for details.

14.7 s using IDN network (Fig. 5), 23.6 s using a hierarchy of 4,
2, and 1 mm resolutions for each structure independently, and
35.8 s using 1 mm resolution for each structure.

VI. CLINICAL EVALUATION

TheAFHB algorithmwas evaluated in a clinical setting. Total
of 10 experts (doctors and sonographers) in ultrasound obstet-
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Fig. 10. Automatic detection results (cyan) compared to ground truth (red) for corpus callosum (CC) and choroid plexus (CP). Errors of detecting center and
plane orientation are indicated (in mm). Annotation lines are shown for reference but they are not used clinically. See the text for details.

rics exam were recruited from Europe, Asia, and United States.
The results of the fully automatic algorithm are compared with
respect to the experts and quantitatively analyzed in the next
sections.
The following evaluation protocol was followed for each ex-

pert. The AFHB prototype system was installed on a laptop
computer. All experts used the same set of 10 volumes of dif-
ferent quality and varying degree of imaging artifacts. The eval-
uation started by loading the first volume and running the AFHB
algorithm. The user then selected the first structure which trig-
gered automatic navigation to the measurement plane and au-
tomatic placement of the calipers to indicate the measurement.
The user then had a choice to accept the automatic measure-
ment and proceed to the next structure or manually correct the
plane and the measurement result. This was done by using a
mouse to navigate to the new measurement plane and manually
placing the calipers to indicate the measurement. This process
was repeated for all structures. Finally, the corrected results
were saved such that the next volume can be processed. The
evaluation focused on the measurements and therefore corpus
callosum and choroid plexus planes were excluded.
Statistical analysis of the results is performed using modified

Williams index [34]. Williams index measures an agreement of

a reference user (e.g., automated system) with the joint agree-
ment of other users. This is done by evaluating how much the
reference user agrees with the other users compared to the agree-
ment of the other users among themselves. Let us represent the
database of measurements as , , ,
where is a user index and is case (image) index. The au-
tomated measurement is denoted by and the users by

. The index is computed for each structure as

(18)

where with being the mea-
surement error. The index is computed for both point and length
measurement error.
A confidence interval for the Williams index is computed

using a jackknife nonparametric sampling technique [55]

(19)
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TABLE III
AVERAGE MEASUREMENT ERRORS FOR EACH TRAINED DETECTOR APPLIED ON UNSEEN VOLUMES. SECOND COLUMN SHOWS THE LENGTH ERROR
AND THE FOURTH COLUMN SHOWS THE PLANE ERROR COMPUTED ACCORDING TO FIG. 6. PLANE ERROR IS LARGER OVERALL SINCE IT CONSIDERS

INACCURACIES IN THE PLANE ORIENTATION. THIRD COLUMN SHOWS THE LENGTH ERROR AS A PERCENTAGE WITH RESPECT TO GROUND TRUTH LENGTH.
FIFTH AND SIXTH COLUMN SHOW RESULTS OF DETECTING EACH STRUCTURE INDEPENDENTLY AT 1 MM RESOLUTION AND WITH A HIERARCHY OF 4, 2,
AND 1 MM RESOLUTIONS, RESPECTIVELY. SEVENTH COLUMN SHOWS THE AVERAGE MEASUREMENT LENGTHS COMPUTED FROM GROUND TRUTH (GT).

SEE THE TEXT FOR A DISCUSSION OF THESE RESULTS

Fig. 11. Ranges of plane and length measurement errors (minimum andmaximum) computed as an average over the 10 users and for each brain structure. Plots also
show the deviation of each user with respect to initial AFHB result with a green marker. User variability can be quite large, especially for the longer measurements.
Average changes to the results provided by AFHB system are small.

TABLE II
AVERAGE POSE DETECTION ERRORS FOR EACH TRAINED DETECTOR
APPLIED ON UNSEEN VOLUMES. STATISTICS WERE COMPUTED TO

SHOW ERRORS IN POSITION, ORIENTATION, AND SIZE OF THE BOUNDING
BOX. ERRORS TEND TO BE HIGHER WHEN THERE IS AN UNCERTAINTY

IN ANNOTATION (e.g., SKU POSITION AND LV ORIENTATION).
ERRORS TEND TO BE LOWER FOR STRUCTURES THAT ARE CLEAR TO
ANNOTATE (e.g., CER ALL MEASURES AND CM ORIENTATION)

where is the 95th percentile of the standard normal
distribution. The jackknife estimate of the standard error is
given by

(20)

where . The sampling procedure
works by leaving out image out of the computation of
and computing the Williams index as in (18) for the
remaining images. Reliable reference measurements
have the value of the index close to 1.

TABLE IV
LENGTH ERROR (IN MM) COMPUTED ACCORDING TO FIG. 6 FOR EACH OF
THE 10 USERS AND STRUCTURE MEASUREMENT. AVERAGE ERROR WAS
COMPUTED FOR EACH USER WITH RESPECT TO ALL OTHER USERS. LAST
TWO ROWS SHOW THE AVERAGE INTER-USER VARIABILITY AND AVERAGE
DEVIATION FROM THE INITIAL AFHB AUTOMATIC MEASUREMENT. LENGTH
ERRORS COMPUTED FROM AUTOMATIC MEASUREMENTS (TABLE III)

ARE WITHIN THE INTER-USER VARIABILITY

A. Inter-User Variability

In this section, we analyze inter-user variability using eval-
uation protocol described in the previous subsection. Average
length and plane errors were computed for each of the 10 users
and each brain structure. The computation uses average user
as ground truth and follows description from Section V-B and
Fig. 6. The results for length errors are summarized in Table IV
and Fig. 11 (left) and results for plane errors are in Table V and
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TABLE V
PLANE ERROR (IN MM) COMPUTED ACCORDING TO FIG. 6 FOR EACH OF
THE 10 USERS AND STRUCTURE MEASUREMENT. AVERAGE ERROR WAS
COMPUTED FOR EACH USER WITH RESPECT TO ALL OTHER USERS. LAST
TWO ROWS SHOW THE AVERAGE INTER-USER VARIABILITY AND AVERAGE
DEVIATION FROM THE INITIAL AFHB AUTOMATIC MEASUREMENT. LENGTH
ERRORS COMPUTED FROM AUTOMATIC MEASUREMENTS (TABLE III)

ARE WITHIN THE INTER-USER VARIABILITY

TABLE VI
WILLIAMS INDEX (WI) AND CONFIDENCE INTERVALS (CI) COMPUTED
FOR LENGTH AND PLANE MEASUREMENT ERRORS. THE VALUES ARE
CLOSE TO 1, WHICH INDICATES AGREEMENT OF THE AUTOMATIC

MEASUREMENT WITH THE USERS

Fig. 11 (right). Comparing to the results of automatic measure-
ment using length and plane errors in Table III, it can be seen
that the automatic results are within range of the inter-user vari-
ability. This demonstrates the high accuracy of the fully auto-
matic measurement system. Tables IV and V also show the re-
sult of AFHB automatic measurement compared to the average
user. These errors are lower than those in Table III since the
experts were presented AFHB result for acceptance or correc-
tion (see evaluation protocol description in Section VI. Some
users have larger errors than others. For example, users 4 and 6
have larger plane errors (Table V) than other users. This typi-
cally means that the users did not strictly follow the guidelines
of the International Society of Ultrasound in Obstetrics and Gy-
necology [6] when adjusting the measurements. The plots in
Fig. 11 show the ranges of plane and length measurement errors
(minimum and maximum) computed with respect to average
user. The plots also show the deviation of each user with respect
to initial AFHB result. It is clear that from these plots that the
user variability can be quite large, especially for the longer mea-
surements, and that the average changes to the results provided
by AFHB system are small. All experts stated that the changes
to the AFHB results are not clinically significant.
The Williams index for each measurement is shown in

Table VI. The values of the confidence interval are close to 1
for all measurements. This represents a high level of agreement
of the automatic measurements with respect to joint agreement
of the users when compared to the agreement of the users
among themselves.

VII. CONCLUSION

Wider acceptance of 3-D ultrasound systems will be possible
if they are easy to use, operator independent, and make the ex-
amination faster [4]. The AFHB measurement system proposed
in this paper helps address this need. This unique system pro-
vides dramatic workflow improvements by reducing time re-
quired to measure anatomical structures, by reducing user vari-
ance for all measurements, and by increasing measurement ac-
curacy. This is achieved by employing a sequential sampling
model whichmakes it possible to use fewer samples of the struc-
ture pose and formally extend the class of binary classification
algorithms [16], [26] to multiple structures. This saves compu-
tational time and increases accuracy since the samples are taken
from the regions of high probability of the posterior distribu-
tion. This process is applied across a multi-resolution hierarchy
when detecting one structure, but also when predicting pose pa-
rameters based on other structures. Such system is capable of
resolving inherent challenges in obstetrics ultrasound imagery,
such as speckle noise, signal drop-out, strong shadows produced
by the skull, and large intra-class variation caused by differences
in gestational age. The system runs in 6.9 s on a GPU com-
patible with state-of-the-art ultrasound systems which makes it
suitable for clinical use. All structures are accurately detected
within inter-user variability.
The described framework opens up several possible avenues

of future research. One area we are particularly interested in
is how to include dependence on multiple objects at each de-
tection stage. This will result in a stronger geometrical con-
straint and therefore improve performance on objects that are
difficult to detect by exploiting only the pairwise dependence.
This will also help when extending the AFHB system to other
anatomical structures and measurements in routine ultrasound
examinations.
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