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Abstract

Quantitative analysis of left ventricular deformation can provide valuable information about the 

extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-

level compactly supported radial basis approach for deformation analysis in 3D+time 

echocardiography. Our method combines displacement information from shape tracking of 

myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-

frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines 

(N=8) and show that our combined approach is better correlated to magnetic resonance tagging-

derived strains than either individual method. We also are able to identify regions of myocardial 

infarction (confirmed by postmortem analysis) using radial strain values obtained with our 

approach.

Keywords

Biomedical image processing; echocardiography; image motion analysis

I. Introduction

A. Motivation

Heart disease is the leading cause of death in the world [1] and can be broadly classified as 

being either ischemic or nonischemic in origin. Ischemic heart disease (IHD) is most 

common and results from narrowing of coronary arteries by atherosclerotic plaques, which 

can cause a reduction in myocardial perfusion either at rest or under conditions of stress 

relative to myocardial demand. This can lead to reversible myocardial ischemia or 

irreversible tissue injury with myocardial infarction (MI) and associated changes in regional 

function. Regardless of the etiology, assessment of myocardial function is critical to the 

diagnosis and treatment of heart disease. Global measures of contractility, such as left 

ventricular (LV) ejection fraction, have been used for decades. The development of accurate, 

reproducible, and noninvasive methods for quantitative evaluation of regional myocardial 

function is still needed for evaluation and management of IHD. A number of quantitative 

parameters derived from image sequences have been proposed to quantify cardiac function 

and the location and extent of myocardial injury. These include regional ejection fraction, 

relative LV motion, regional LV thickening and LV strain. Imaging modalities include X-

ray computed tomography (CT), nuclear imaging, echocardiography, and magnetic 

resonance imaging (MRI). In this paper, we adhere to the notion that accurate tracking of 

LV motion from two complementary approaches based on 4Dl echocardiography (4DE) can 

lead to robust estimation of LV regional myocardial strain.

Improved estimates of regional myocardial strain would be valuable for a variety of 

diagnostic, prognostic, and therapeutic monitoring considerations that are currently 

evaluated using other methods. In addition, strain measurements could be used in settings 

beyond current clinical standards of care. Being able to identify residual ischemia or the 
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initial extent of injury post-MI through regional myocardial strains could increase the ability 

to understand the complex chain of events following MI [2], [3]. It has been shown that 

being able to target treatment in the tissue surrounding the infarct can lead to decreased 

remodeling [4]. Strain measurements could potentially be utilized to directly target 

treatments to ischemic regions. Strains derived from ultrasound would be well suited to 

identify treatment regions due to the high spatial and temporal resolution provided by this 

modality.

B. Previous Work

Motion tracking methods from ultrasound data have largely focused on correlation-based 

approaches. These methods assume a strong correlation between voxels in neighboring 

image frames for characteristics such as ultrasonic speckle. Speckle is a unique pattern 

generated in an ultrasound image by the underlying tissue microstructure. This pattern 

remains temporally consistent for small deformations and can be used as a feature for 

motion tracking [5]. These methods can be performed on the B-mode image [6] or directly 

on the raw radio-frequency (RF) signal [7]–[10]. Displacements for each voxel are found by 

finding the maximum correlation in a neighboring frame. Performing speckle tracking on the 

raw RF signal allows for the incorporation of phase information for improved tracking in the 

axial direction [11] over B-mode tracking. Lee et al. have shown that RF-based speckle 

tracking provides accurate strain measurements when compared to tagged MR in 2D 

myocardial slices [12], [13]. They went on to show that 2D RF-based speckle tracking could 

be used to identify regions of abnormal cardiac function [14].

Other correlation-based approaches include block-matching algorithms that assume image 

intensity remains constant along a motion trajectory [15]. Such approaches either compute 

spatiotemporal derivatives of pixel intensities [15] or employ region-based methods between 

image frames [8]. Typically, a global [16] or local [17] smoothness constraint on the 

displacement field is incorporated. In general, optical flow-based algorithms provide 

accurate displacement values from within tissue where the ultrasound signal is consistent, 

but cannot track on tissue boundaries due to inhomogeneities in the signal at acoustic 

impedance boundaries [8].

Another set of tracking methodologies rely on tracking sets of features between image 

frames. These features can be intensities [18], texture [11], or shape [19], [20]. The speckle 

tracking methods introduced in the previous paragraph are specific examples using texture 

features. These features can be calculated from some segmentation of the object of interest 

[19] or directly from the image intensity values [20]. Feature points generated from 

segmentation are susceptible to errors in the initial segmentation that can influence tracking 

results. Features calculated directly from the image intensities are not subject to this same 

error, but can often be difficult to calculate reliably.

Once the feature points have been identified, there have been many different strategies used 

to match them. The iterative closest point (ICP) method matches point sets by iteratively 

assigning point correspondences and solving for a least squares transformation to match the 

point sets [21]. ICP requires that the initial pose of the two point sets be adequately close 

and this is not always possible, especially when transformation is nonrigid [22]. Robust 
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point matching (RPM) performs a global to local search using deterministic annealing and 

soft assign techniques [23]. Generalized robust point matching (GRPM) is an extension of 

RPM that incorporates feature information in addition to position to improve the point-set 

match [20]. GRPM also allows for outliers in both the reference and target point sets. 

Coherent point drift (CPD) uses Gaussian mixture models of the two point sets and imposes 

temporal coherence between them [24].

In magnetic resonance (MR) imaging, tagging has been developed to track cardiac motion. 

A sequence of nonselective radio frequency pulses separated by magnetic field gradients is 

applied to the imaging volume around the heart using the spatial modulation of 

magnetization (SPAMM) technique [25], [26]. A major drawback of these methods is the 

distance between tag lines, which can be relatively large compared to the width of the 

myocardium. This means only a small number of intersecting points lie within the 

myocardium.

Harmonic phase (HARP) MR [27] has allowed for tracking between the tag lines, but the 

reliance on filters for this method makes the resolution of the resulting strain values much 

lower than the original image resolution [28]. Three-dimensional SPAMM has been 

developed but requires very long scan times and complicated sequences of breath holds [29]. 

MR tagging also suffers from degradation of the tag lines over the cardiac cycle. While MR 

tagging provides accurate tracking results, it is a costly and time-consuming procedure. The 

application to cardiac patients is also limited because patients with implanted pacemakers or 

defibrillators are unable to be imaged with MR.

The different methods for motion tracking that have been discussed generally provide 

accurate displacement values at a sparse set of feature points. Complete cardiac deformation 

information over the entire myocardium is desirable, and thus dense displacement values 

must be estimated from a set of sparse input displacements requiring some form of 

regularization or interpolation.

In cardiac deformation analysis, many different techniques have been used. Free form 

deformation (FFD) overlays a lattice of grid points on a parallelepiped region [30]. These 

control points are warped from their original lattice positions according to the displacement 

values located in the region of the control point. Similar studies using FFD to model the 

displacement field for image registration-based tracking techniques were implemented on 

simulated data [31]–[33], phantoms [34], animal models [35], and patient data [31]–[33]. 

Registration has also been performed on the pre-scan converted image using FFD [35]. All 

of these methods have the disadvantage of being confined to a regular lattice that does not 

correspond to the geometry of the left ventricle. There is also an inherent trade-off between 

smoothness and accuracy in the representation of the underlying data.

Extended free form deformation (EFFD) was developed to overcome the regular grid 

requirement of FFD [36]. It was applied to modeling deformation in cardiac imaging due to 

its ability to model complex geometries [20]. The EFFD regularization method allows for 

arbitrarily shaped deformations, but the generation of the control point mesh is complicated 

and time-consuming. The feature points must also be mapped to the local control points and 

Compas et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



this mapping must be maintained throughout deformation. EFFD still suffers from the same 

trade-off between smoothness and approximation accuracy that is encountered with FFD.

To incorporate mechanical properties of the heart into the regularization, a continuum 

mechanics model was developed to model myocardial motion [37]. This physical model 

allows for physical properties to constrain the deformation field. The physical model was 

implemented using the finite element method (FEM) [38]. FEM uses small areas or elements 

to discretize the domain of a problem and provide an approximate solution. This gives a 

close approximation to the reality of the left ventricle, but has sensitivity to data distribution, 

is computationally intensive, and is difficult to formulate. The boundary element method 

(BEM) is an extension of FEM that only requires the discretization of the boundaries and not 

of the entire surface [39]. This decreases the number of nodes and makes the method much 

more computationally efficient, while still being able to incorporate mechanical properties. 

These methods were combined with the GRPM feature tracking for application to cardiac 

deformation analysis [40].

Radial basis functions (RBF) define an interpolation function as a linear combination of 

radially symmetric basis functions. They can be centered at data points or at predefined 

center locations. The unknown coefficients for the basis functions are determined by solving 

a linear system of equations. RBFs have previously been used to model the deformation 

field in image registration [41] and cardiac motion tracking [15], [42]. The center points for 

RBFs are not required to lie on a regular grid and can be placed anywhere within the image 

domain. This is advantageous when modeling the complex geometry of the LV. This also 

avoids the need for a complex meshing step present in other methods [20], [40].

The procedure for deformation analysis often requires an initial tracking step with a 

regularization procedure. In echocardiography, speckle tracking and shape tracking provide 

complementary information. Shape tracking provides accurate displacement information on 

the boundaries of the myocardium and is best obtained from B-mode data (due to the 

visually optimized spatiotemporal smoothing of these data). In contrast, speckle tracking 

provides accurate displacement information across the myocardium and is most accurately 

obtained from RF data [43], [44].

In our previous work using 2D echocardiographic image sequences, we have shown that 

combining shape and speckle tracking using RBFs provides accurate deformation 

information when compared to MR tagging-derived deformation [45], can accurately 

identify diseased tissue [46], and achieves higher accuracy than either of the approaches 

individually [47]. Extending our methods to 3D, we were able to show that strains derived 

using our combined approach were quite comparable to those derived from MR tagging data 

in the regions of the myocardium surrounding the infarct zone for a small number of datasets 

[48]. Here, we present a more complete approach to estimate strains from full 4D (3D+time) 

image sequences, and show results from eight open-chest canine datasets. In addition, we 

report results indicating that our combined approach performs better than either individual 

method when compared to MR tagging and that we are able to accurately identify infarct 

regions from the deformation information when compared to postmortem tissue analysis.
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II. Methods

A summary of the variables used for notation throughout this section is provided in Table III 

at the end of this paper.

A. Segmentation

In echocardiography, robust and accurate segmentation is challenging due to gross image 

inhomogeneities, noise, artifacts, and poor contrast between regions of interest. The inherent 

spatiotemporal coherence of echocardiographic data provides important constraints that can 

be exploited to guide cardiac border estimation and echocardiographic segmentation. As 

noted above, LV endocardial and epicardial boundary segmentation, for our purposes, is best 

obtained from B-mode data, although RF-based segmentation may be useful in certain 

situations [49].

While a number of spatiotemporal statistical models have been proposed for learning 

dynamical priors offline from databases (e.g., [50]–[53]), forming these distributions from 

training data can be cumbersome and can bias the solution when the test studies include a 

range of normal and abnormal physiology. The positions, sizes and shapes of infarcts, and 

thereby the overall heart motion, can be highly variable across the population and over 

different time points. Furthermore, we would like our segmentation approach to handle both 

animal and human data, sometimes where data from only a portion of the LV volume are 

acquired. All these issues prevent us from using conventional offline statistical models of 

cardiac appearance, shape, and dynamics. Thus, we segment the endocardial and epicardial 

boundaries of the left ventricle from echocardiographic sequences independently using an 

online dictionary learning method that is described in [54], [55]. Here we present a brief 

description of this method.

Let Ω denote the 3D image domain. The local appearance at a pixel ω ∈ Ω in frame It is 

described with a series of appearance vectors  at different appearance scales k = 

1, . . ., K. Complementary multiscale appearance information is extracted using a fixed block 

size at different levels of a Gaussian pyramid. Modeled with sparse representation, an 

appearance vector  can be represented as a sparse linear combination of the atoms 

from an appearance dictionary  that encodes the typical patterns of a 

corresponding appearance class. That is, y ≈ DΓ. The sparse representation Γ can be solved 

by sparse coding

(1)

where T0 is a sparsity factor. A cardiac boundary st is embedded in a level set function 

Ψt(ω). The regions of interest are two band regions inside and outside the boundary:  and 

. Suppose  are two dictionaries adapted to local appearance classes  and , 

respectively, at scale k. They exclusively span, in terms of sparse representation, the 

subspaces of the respective classes. Let  be the sparse coding residue of 

with respect to , where c ∈ {1, 2}. It is logical to expect that 
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when , and  when . A local appearance discriminant 

combining multiscale information is defined as

(2)

where βk's are the weighting parameters of the K appearance scales.

The dictionaries  and weights βk are trained in an online multiscale dictionary 

learning process supervised in an AdaBoost framework [56]. The process of dictionary 

learning is interlaced with frame-by-frame sequential segmentation initialized with a manual 

segmentation of the first frame. The dictionaries are dynamically updated each time a new 

frame is segmented. The K-SVD algorithm [57] is invoked to enforce the reconstructive 

property of the dictionaries. The boosting supervision strengthens the discriminative 

property of the dictionaries and optimizes the weighting of multiscale information. At each 

step of the sequential segmentation, the shape Ψt is estimated in a maximum a posteriori 

framework given the knowledge of  and I1:t. The approach integrates a spectrum of 

complementary multiscale appearance information including intensity It, the multiscale local 

appearance Rt, and a dynamical shape prediction . The segmentation is estimated by 

maximizing the posterior probability

(3)

Note that the first term in the expression on the right side of (3) promotes continuity from 

the previous frame and the last term incorporates a prior shape bias if desired (not included 

for our work). The second and third terms are the data terms that pull the solution towards 

the learned dictionaries (via a sparse representation) and the absolute appearance 

information. The third term uses local raw intensities at frame t to guide the level set along 

as seen in our previous work [55]. Thus, the second term provides high level guidance based 

on the learned tissue class dictionaries (and their distributions) and the third term provides 

guidance based primarily on mean intensities of local information near the tissue boundaries.

B. Shape Tracking

The shape tracking method for tracking contour motion uses the symmetric nearest neighbor 

algorithm to initialize shape tracking. A brief description of these methods is presented here, 

with further details in Papademetris et al. [58]. The symmetric nearest neighbor algorithm 

matches a point on one surface to the nearest point on the next based on the shape match 

metric described in the next paragraph. If the nearest neighbor to the point on the second 

surface is the same point on the first surface (according to their shape similarity) then these 

points are a match. If not, the match is discarded. Matches for the points that do not have a 

symmetric match on the second surface are found by interpolating between the matches. The 

process is performed iteratively by averaging the displacements of the nearest neighbors and 

checking the corresponding point on the second surface. This is performed until all points on 
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the first surface have a corresponding match on the second surface. The displacement field is 

then smoothed to eliminate potential singularity points.

Our shape match metric matches local information between two endocardial or two 

epicardial surfaces segmented from consecutive cardiac image frames. We assume that the 

local shape does not change for small time intervals. After an initial match is made from the 

first surface to the second, a search window is defined around the match point. For points p1 

and p2, the bending energy is calculated for all points within the search window. The 

bending energy [37] is found as

(4)

where k1 and k2 are the principal curvatures calculated directly from the surfaces. The point 

match is chosen as the p2 value within the search window that yields the minimum bending 

energy. The process continues with interpolation being performed between all found 

symmetric point matches. This generates a displacement field over both the endocardium 

and epicardium. The confidence in the match at each point is found from

(5)

where mg is a measure of how good the point match is based on the bending energy and mv 

is a measure of how unique the chosen match is [59]. The constants k1,g, k2,g, k1,ν, k2,ν, are 

used to normalize the confidence values between zero and one. This confidence measure 

gives the highest value to low bending energy point matches that are unique from their 

neighbors. The displacement vector that connects points p1 and p2 (within the search 

window) for any pair of indexed surface points referenced back to voxel x = (x, y, z) in the 

earlier frame in the sequence is now termed dsh(x).

C. Speckle Tracking

Here, we present a brief overview of the speckle tracking methods implemented in this 

work. Further details of the procedure can be found in Jia et al. [60]. At each pixel in the 

initial phase-sensitive RF image, represented as a complex image using an analytic signal 

representation, a 3D correlation kernel is defined with a spatial extent equal to 

approximately one speckle. A speckle is formally defined as the full-width at half maximum 

in all dimensions of the 3D autocorrelation function of the initial complex image [11].

The correlation kernel is cross-correlated with the complex image at the subsequent time 

point following deformation. Equation (6) shows the 3D cross correlation coefficient where 

 is the unit-normalized, complex, 3D correlation coefficient at pixel x as a function of 

lags (lx, ly, lz), It and It+1 are the successive images at times t and t + 1, and Wijk is a 

weighting function over the correlation kernel. The correlation function is a unit-normalized, 

complex function. The correlation value  is then filtered with a unity gain 

function to improve the signal to noise ratio and give ρx,y,z(lx, ly, lz). The 3D coordinates of 
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the peak correlation position are then found at every pixel to estimate the 3D speckle-based 

displacement vector dsp(x), for all locations with nonzero speckle confidence values, Csp(x). 

The displacement along the ultrasound propagation (axial) direction can be further refined 

using a phase-zero crossing method to leverage the phase-sensitive nature of RF data [8], 

[11], [61] (see (6) at bottom of page).

The magnitude of the correlation coefficient is also produced by this processing as a 

confidence measure of the speckle tracking match and, therefore, can be treated as a 

confidence

(6)

value for the corresponding displacements. All correlation calculations are performed in the 

pre-scan conversion coordinate system where the coordinates are referenced to the direction 

of the ultrasound beam. After tracking, the results are scan converted for combination with 

the shape tracking performed on scan converted B-mode images.

D. Combined Method

The displacement values generated by the shape tracking methods in Section II-B and the 

speckle tracking methods in Section II-C provide complementary information. The shape 

tracking displacements are located on the boundaries of the myocardium, while the speckle 

tracking displacements are located within the myocardium. To combine shape and speckle 

tracking data, we have developed an adaptive multi-level compactly supported radial basis 

function (CSRBF) method for determining frame-to-frame displacements everywhere within 

the myocardium.

We use a set of distinct data points  with corresponding displacement 

values  to calculate the displacements that can be accumulated in order to 

generate the deformation field over the entire myocardium. In this case, our RBF centers do 

not lie at the locations of our data points. We have a very high number of displacement 

points that are subject to noise and, therefore, we use an approximation scheme for the dense 

displacement field instead of pure interpolation. The initial center points are regularly 

spaced and are selected to fall within the myocardium. In this work, d will be used to specify 

the sparse input displacement values, while U will be used to specify the dense output 

displacement values.

The data points x1, . . . , xN and center points p1, . . . , pM, are made up of a combination of 

shape positions, xsh, with displacements, dsh and speckle positions, xsp, with displacements, 

dsp. In three dimensions, we need to find a dense displacement field, Udense, over the entire 

myocardium. In order to do this we use CSRBF to go from the sparse input displacements to 

a dense displacement field. The specific CSRBF ϕ(r) function used is Wendland's compactly 

supported positive definite RBF
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(7)

(8)

where (1 – r)+ = max(1 – r, 0), and s is the region of support for the basis function. This 

function was selected because it exhibits C4 continuity and the function ϕ is guaranteed to 

be positive definite for dimensions up to three [62]. The continuity property is very 

important because derivatives of the displacement field must be taken in order to calculate 

strain values. The compact support of the RBF used in this work is controlled by the 

parameter s. This parameter controls how far the influence of a given function extends from 

its center point. The value s is set to be twice the spacing distance between center points to 

avoid peaks around the function centers in the displacement field.

For each center point of the CSRBFs, there will be a set of displacements from shape 

tracking, dsh, and speckle tracking, dsp, that lie within the region of influence for that center. 

We can take advantage of the continuous nature of cardiac motion by extending the region 

of influence of each center not only spatially, but also temporally. This allows us to 

incorporate image information from neighboring frames. For image frame It, displacement 

information from neighboring frames is used with the influence of the neighboring frames 

decreasing with time. For a given center c at frame t, the value uc is found as a weighted 

sum of speckle and shape tracking values. The displacement values within the region of 

influence for a given center are found as

(9)

(10)

(11)

(12)

where i indexes the center point, j indexes the displacement values withing the region of 

influence of center point i, and usp and ush are the weighted means of the values contained 

within the region of influence, defined by ϕ, in the current frame and in the T neighboring 

frames weighted by w(t). The w(t) function is a scaled version of the spatial ϕ function used 

to account for the difference in units of the spatial and temporal components of the data. The 

number of frames used is then directly related to spatial distance between center points.
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These weighted sums are then combined by

(13)

(14)

where p is the number of feature points from speckle tracking, q is the number of feature 

points from shape tracking, and Csp and Csh are the weighted mean confidence values for the 

speckle and shape tracking displacements respectively. The parameter α weights the 

contribution of each of the two data sources.

The individual uc values are concatenated to form u and used to solve the linear equation

(15)

where the interpolation matrix A is defined as ac,c′ = ϕ(∥pc – pc′∥) for c and c′ from 1 . . . M. 

The interpolation matrix is guaranteed to be positive definite for many choices of ϕ [63]. 

This means that the center points can be placed at any location within the image space, and 

this is advantageous for modeling the complex geometry of the LV.

Once we have found the λ we can find the displacement field over the myocardium by

(16)

where ∥ · ∥ denotes the Euclidean distance between two points and ϕ(r) is defined for r ≥ 0. 

The displacement fields U are calculated simultaneously for each displacement direction 

from the individual components of the displacement vectors. The displacement fields are 

calculated for each frame, t, from end-diastole to end-systole.

This algorithm calculates the final deformation field iteratively across multiple levels of 

basis functions. At each level, the number of RBF centers is increased and the region of 

influence of each center is decreased both spatially and temporally. The algorithm is 

initialized by a few centers with a large region of support. These large scale functions 

capture the larger motion trends of the heart. As the algorithm proceeds, the smaller scale 

functions capture finer details of the deformation. This allows detection of local gradients of 

myocardial function near the boundaries of pathologic tissue regions. The final deformation 

field can then be computed as

(17)

(18)
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(19)

(20)

(21)

with L being the total number of levels used, where a level is defined as a set of centers with 

a set region of influence, s. At each level the displacement values within the region of 

influence are taken into account by adding only the change in the displacement field 

observed at that level. The final displacement field Udense(x) is the sum of the individual 

displacement fields over all levels L in each displacement direction.

This algorithm takes an adaptive approach to center spacing by determining if a region of 

the heart needs to be modeled at a finer level of detail using smaller scale functions. Such 

regions are characterized by having high confidence and high variance in the displacement 

values. If a region exhibits low confidence and high variance this region is likely noisy and 

we want to smooth it out with larger scale functions. A region with high confidence and low 

variance is a region with a smooth motion pattern that can be represented with larger scale 

functions.

As the algorithm progresses the number of function centers increases and the spacing 

between the centers decreases. If the displacements in a region change by more than 5% 

with the addition of finer resolution function centers, then the region is modeled at that level. 

Otherwise, no further sampling of the region is performed. In this way, the algorithm can 

run until convergence without the need to pre-set the number of levels. The only condition 

that needs to be observed is the check for low confidence in a region. If a region has low 

confidence, then it is likely noisy and does not need to be modeled at a fine level of detail. 

The threshold value for low confidence used was 0.6. None of the results presented here 

were highly sensitive to the specific choice of this threshold. The results of the adaptive 

center spacing is shown in Fig. 1. A single 2D slice through the 3D volume is shown with 

the center locations overlaid. As the algorithm progresses, the centers are placed at finer 

resolutions. In the example shown, the region with the highest detail is located in the near-

field at the top of the images.

III. Data Acquisition

A. Animal Preparation

Myocardial infarction (MI) was induced in male mongrel canines (N = 8; average weight 20 

kg) by percutaneous balloon occlusion of the left anterior descending (LAD) coronary artery 

for 6 h followed by balloon deflation and myocardial reperfusion [64]. When hemodynamics 

permitted (in three of these animals), right atrial pacing was performed at 160 beats per 
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minute during balloon occlusion in order to increase myocardial demand and infarct size. 

Animals were allowed to recover and subsequently underwent thoracotomy, pericardiotomy, 

open-chest 4DE and MR imaging, and euthanasia at 6.1 +/− 0.7 weeks post-MI. MR 

imaging was performed immediately after 4DE acquisitions were completed. All 

experimental protocols were approved by the Institutional Animal Care and Use Committee 

at the Yale University School of Medicine. Studies were performed according to the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals (1996).

B. Data Acquisition

RF and B-mode 4DE images were acquired using a Philips iE33 ultrasound system with 

X7-2 phased array transducer at a nominal frequency of 4.4 MHz (Philips Healthcare, 

Andover, MA, USA). This system was modified to allow high frame rate acquisitions with 

access to both raw RF and B-mode data. 3D cardiac ultrasound images from multi-beat 

acquisitions were stitched to reconstruct single cardiac beats at volume rates ranging from 

51–56 Hz.

C. Data Analysis

Deformation fields were calculated from end-diastole (ED) to end-systole (ES) using the 

methods outlined in Section II. The ED frame was determined by gating to the ECG signal, 

while the ES frame was manually determined for each image sequence by selecting the 

frame with the minimum LV cavity size. Segmentation was semi-automated with manual 

tracing of the endocardium and epicardium required only at ED in order to initialize the 

procedure.

The individual frame-to-frame displacements were accumulated between ED and ES. 

Radial, circumferential, and longitudinal strains were calculated using a cardiac coordinate 

system following the method defined by Yan et al. [65]. A Lagrangian strain tensor was 

calculated and rotated into the local coordinate system by finding the surface normal to the 

epicardium. For analysis, the LV was divided into segments and mean strain values were 

calculated. Image segments were defined by dividing the segmented myocardium into six 

equal segments starting from the LV–RV junction, as seen in Fig. 3. This procedure was 

used for both ultrasound and MR images. The entire LV was visible in all analyzed slices.

D. MR Acquisition

To validate our results, we compared our calculated strain values from echo against MR 

tagging-derived strains. The ultra-sound volumes were manually registered to the MR data 

using rigid registration and visual inspection on the ED frames. The slices were selected 

from the ultrasound volumes to be at equal spacing to MR slices. The MR data was 

generated using ECG gating for image alignment. The specific MR tagging procedure 

implemented for this work is the spatial modulation of magnetization (SPAMM) [26], [66]. 

The use of SPAMM allows for an increased number of tag lines within the myocardium 

compared to earlier tagging techniques [66].

SPAMM tagged images were processed using harmonic phase (HARP) analysis [67]. The 

HARP method uses the Fourier transform of the tagged image to synthesize artificial tag 
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lines to arbitrary resolution allowing for improved resolution of myocardial displacements. 

It also allows for faster processing times with less manual interaction than other processing 

methods [27]. In future acquisitions, synthetic tag lines can be generated by using a Fourier 

Series expansion of the harmonic phase, either to increase the strain resolution or, 

alternatively, to increase the visual sharpness of tag line display.

All MR tag data were acquired using a 1.5T Sonata MR scanner (Siemens Healthcare, 

Erlangen, Germany) equipped with gradient systems capable of achieving a maximum 

amplitude of 40 mT/m, and a slew rate of 200 T/m/s. To achieve 2D strain quantification on 

any prescribed slice, two sequences of images with tags oriented along the horizontal and 

vertical directions were acquired. Each sequence of images was acquired over multiple 

heartbeats in a breath-held acquisition. Images were acquired immediately following the 

ultrasound acquisitions. At the beginning of each heartbeat, a purely sinusoidal tagging 

pattern [25] was imposed on the myocardium using a 1–1 SPAMM [90°–90°] preparation 

pulse sequence triggered on the R-wave of the QRS-complex. The remainder of the cardiac 

cycle was then divided into time bins and data acquired from each of these time bins over 

multiple heartbeats (using a multi-shot segmented gradient-echo imaging technique) was 

combined to form a sequence of images depicting the deformation of these tagging patterns. 

Typical imaging parameters used were: FOV: 300 × 225 mm; imaging matrix: 192 × 144; 

tag separation: 6 mm; slice thickness: 5 mm; flip angle: 8; temporal resolution: 37 ms; TE: 4 

ms.

The two sequences of orthogonally-oriented tagged images were then imported into a HARP 

analysis software package [27]. The right-most (topmost) harmonic peak from the Fourier 

spectrum of the vertically (horizontally) tagged image sequences was filtered out by 

employing a user-defined bandpass filter. The resultant spectral image was zero padded and 

reconstructed to obtain two sequences of complex harmonic images. The 2D phase of these 

harmonic images is related to the underlying 2D motion of the myocardium. A mesh was 

superimposed on the myocardium, and the harmonic phases of points on the mesh were 

tracked to obtain their 2D motion trajectories. Regional circumferential and radial strains 

were then measured by computing the change in length of circumferential or radial segments 

in pre-defined left ventricular segments and in three layers (endo, mid, and epi) defined from 

a manually segmented myocardium. A sample radial strain map is shown in Fig. 7.

E. Postmortem Imaging

To investigate the ability of our approach to estimate regions of myocardial injury, we 

compared our strain maps to infarct regions as determined from postmortem photographs of 

myocardial tissue from excised canine hearts. After euthanasia, the canine hearts were 

excised and the cardiac chambers filled with alginate molding material. For each animal, the 

left ventricle was isolated and then cut into 4–5 mm thick slices that were photographed. 

Visual inspection of these photographs was used to distinguish regions with significant 

amounts of fibrosis (which appear white and correspond to scarred tissue from prior 

infarction) from regions of noninfarcted myocardial tissue (which appear red). To register 

these slices to the ultrasound images, the postmortem images were stacked into a 3D volume 

and interpolation was performed to render the volume at the same resolution as the 
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ultrasound data. The identified 2D infarct regions were also interpolated to create a 3D 

volume within the 3D myocardium. This image mask was then registered to the ES 

segmentation of the ultrasound image sequence using a point-based registration algorithm 

[68] in BioImage Suite [69]. The ES frame was chosen based on the thickness of the 

myocardium in the postmortem images. This registered volume was then mapped back to 

the ED image frame that is the reference frame for the cardiac strain calculations. A sample 

postmortem photograph with 3D reconstruction is shown in Fig. 10.

F. Computational Time

The computational time of this procedure is most heavily influenced by the segmentation 

and RF-speckle tracking steps. The segmentation is initiated by a manual tracing on a subset 

of the end-diastolic image slices. The algorithm then takes 3 h to complete the segmentation 

for the entire image sequence. The speckle tracking takes 2 h on a computer cluster of 96 

cores. The shape tracking and RBF combination procedures are much faster, both 

completing in about 2 min/image sequence.

IV. Results and Discussion

A. Comparison to Strains From MR Tagging

The sparse input displacements from shape tracking and speckle tracking are shown in Fig. 

2(a). Fig. 2(b) shows the 3D radial strain map overlaid on the B-mode image with the infarct 

region identified. A sample accumulated displacement field is shown in Fig. 5. The 

displacement field accumulated to ES is overlaid on the ED B-mode image. Radial, 

circumferential, and longitudinal strain curves for a single canine for four short-axis slices in 

six regions are shown in Fig. 4. Abnormal strain curves were used to identify regions 

affected by the MI. For the canine in Fig. 4, the infarct was located primarily in the anterior 

segments. Some normal variability in peak strain values in each of the normal segments is 

expected [70].

Fig. 6 shows both radial and circumferential strain curves from four slices from MR tagging 

with corresponding slices from the full volume ultrasound strain data. The slices range from 

the apex to the base and the six segments correspond to those depicted in Fig. 3. We see that 

there is good correlation in the strain curves between the two methods for both radial and 

circumferential strains. The MRI strain results are subject to potential variability due to the 

difficulty of manually segmenting the tagged images.

Fig. 6 also shows multiple anterior LV wall segments with decreased radial strains. This 

pattern is consistent with the expected regional LV dysfunction after a MI due to LAD 

occlusion-reperfusion. Infarcted myocardial tissue in those segments results in the decreased 

contractility that is seen here.

Obtaining dense longitudinal strain information from MR requires either 3D tagging 

approaches or strain-encoded (SENC) imaging, which were not employed in the current 

study. These approaches are time-consuming and require specialized sequences that were 

not available. Using 2D conventional tagging and HARP (both of which are well-established 

methods), a sparse set of 4–6 long-axis slices is typically acquired. This, in turn, is not 
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equivalent to the dense longitudinal strain information obtained by our integrated speckle 

and shape tracking approach. Nevertheless, the longitudinal strain values we obtained 

(reported here without comparison to MR) did show decreases consistent with post-MI LV 

dysfunction. Including all animals, mean end-systolic LS was –6.64% in the anterior mid-

LV segment compared to –14.12% in a remote noninfarcted mid-LV segment.

Table I shows the median correlation coefficients for radial and circumferential strains from 

the combined approach outlined in Section II-D compared to the MR tagging strains for the 

six segments corresponding to the diagram in Fig. 7 for four short-axis slices shown in Fig. 

3. Each correlation coefficient was computed by comparing MR tagging and 4DE-derived 

mean strain values at time points between ED and ES in the same anatomical segment for all 

dogs. Ultrasound provides much greater temporal resolution than MR and therefore the 

echo-derived strain curves were down-sampled to the temporal resolution of the MR. Short-

axis slices and the segments within each slice were registered using anatomic landmarks 

seen in images from both modalities. We see strong correlation between the two 

methodologies with 75% of the correlation values being greater than 0.8 across the six 

segments at four slices in all dogs. The correlation coefficients are noted to be lowest in the 

apical anterior LV segments. This region always included infarcted tissue that led to 

decreased contractility and low strain magnitudes (often close to zero) that were more 

susceptible to noise with both imaging modalities.

In addition to correlation we also computed root-mean-square errors (RMSE) between the 

peak systolic strain values over all sectors and found that the RMSE (between 4DE and MR-

tag) was 8.59% for the radial strain and 5.24% for the circumferential strain. We found the 

region with the largest RMSE in the radial direction to be the anteroseptal region, with an 

RMSE of 10.03%. This is likely due to the fact that radial motion in this segment is 

perpendicular to the ultrasound beam causing a greater variance in the calculated strain. The 

best agreement was found in the anterior region, where the RMSE in the radial direction was 

4.95%. This is what we would expect because this region is closest to the ultrasound probe 

and the motion is in the axial direction. The circumferential strains were consistent across all 

six regions, with a max RMSE of 5.10% and a min of 3.18%.

To determine if any bias is present in the strain between 4DE-derived and MR tag-derived 

measurements, Bland–Altman analyses were performed for ES strain values from all eight 

dogs for four slices with six segments each. The Bland–Altman plots for radial and 

circumferential strains from 4DE and MR tagging are shown in Fig. 9. For radial strain, a 

mean difference of 1.09 strain was observed, with echo-derived values being slightly higher 

than MR-derived values. For circumferential strain, a mean difference of 1.38% strain was 

observed, with echo-derived values having slightly decreased magnitudes (of negative 

strain) compared to MR-derived values.

The limits of agreement in the Bland–Altman plots are somewhat large. This could be the 

result of out-of-plane motion effects on MR-derived strain values that were calculated from 

2D images. In contrast, echo-derived strain values were obtained from volumetric 

acquisitions and would not be affected by out-of-plane motion. Additionally, any 

registration errors made in selecting the anatomic slice subsets of echo-derived strains for 
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comparison could lead to discrepancies. While tagged MR is recognized as providing 

reasonable estimates of strain, it does have limitations (especially with radial strain [70]) and 

there is no “gold standard” noninvasive technique [71]. Consequently, MR-derived strains 

should not be considered as ground truth and, where discrepancies exist, it is difficult to 

know which method is more accurate. We are planning experiments using implanted 

sonomicrometers to provide additional information about this question.

B. Comparison to Individual Methods

To compare the combined approach to the individual shape tracking and speckle tracking 

methods, we performed an analysis similar to our previously published 2D comparison [45], 

[46]. The adaptive radial basis function procedure was performed on the displacements from 

shape tracking alone, speckle tracking alone, and the combined values. Fig. 8 shows the 

correlations for the radial strain between shape combined approach and the two individual 

approaches. We see that the correlation values are good overall for the combined approach, 

as well as many of the segments for the individual methods. This is due to the processing 

that is performed on the raw displacement values by the radial basis function procedure. 

While the values for the individual methods are good, we can see that there are some regions 

where one of the individual methods performs poorly compared to the combined method. 

This shows the power of the combined approach. Similar analysis was performed on 

circumferential strains and the values were high for both individual and combined 

approaches.

C. Comparison to Alternative Combined Technique (FFD)

To show the power of our adaptive RBF approach, we compared the strain values from our 

approach to those generated using a fixed-grid FFD approach for regularization. FFD 

approaches have been used to regularize the displacement field used to model the 

deformation fields in image registration-based tracking approaches [31], [32], [34]. To 

facilitate comparison, we performed regularization using FFD on the displacement values 

found with shape and speckle tracking derived from the same myocardial region used in the 

RBF approach.

The specific implementation in this work uses cubic B-spline functions for interpolation 

[72]. To ensure that a fair comparison is made between our method and the FFD method, an 

equal number of control points must be used. The adaptive RBF approach does not use the 

same number of control points for each image, so the average number of control points used 

for each volume over the cardiac cycle was found. One 4DE canine dataset was analyzed for 

this comparison. It had an average of 1421 control points over the cardiac cycle. To achieve 

a comparable number of control points for FFD, a fixed grid of 12 × 11 × 11 was used to 

give 1452 control points. The input displacement values to the FFD approach were the shape 

tracked displacements and the speckle tracked displacements with correlation coefficients 

above 0.6. The individual frame-to-frame dense displacement field was generated using FFD 

and accumulated using the same methods implemented for RBF in order to calculate cardiac 

coordinate strains. The strain values were then compared to the corresponding MR tagging 

strain values. A disadvantage of the fixed-regular grid of FFD is that control points will be 
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located within the blood pool of the LV where there are no myocardial displacement values 

present.

Fig. 6 shows the radial and circumferential strain curves from RBF, FFD, and MR. There is 

a clear bias shown in the FFD plots. We can see that the FFD method underestimates the 

strain in both the radial and circumferential directions in comparison to the MR. To further 

investigate the differences between the methods, we compared the mean absolute difference 

between end-systolic strain values. The RBF approach was much closer to the values 

generated by MR. For circumferential strain, the mean difference compared to MR was 

10.29% strain for FFD and 3.23% strain for RBF. Both ultrasound methods yielded lower 

magnitude circumferential strains than MR, but the RBF approach shows better agreement 

than the FFD approach. Future work could involve comparison to a multi-resolution FFD 

approach, but we believe that these initial results show the advantage of using RBF over 

FFD. A multi-resolution method would still require control points spaced on a regular grid 

or control points to be placed within the blood-pool that are required by FFD.

D. Comparison to Postmortem Images

After registration of the ultrasound images to the postmortem images, we are able to identify 

the infarct on the strain map derived from the ultrasound data. From the postmortem defined 

infarct zone, we define the peri-infarct zone by extending the infarct zone out by 5 mm. This 

resulted in peri-infarct volumes similar to those reported in the literature [73], [74]. A 

sample image showing a single slice from the full 3D volume of ES radial strains 

superimposed on the ED frame is shown in Fig. 11. In the strain image, we can see the 

decreased strain values within the infarct zone. The radial strains in the peri-infarcted zone 

are also seen to be lower than those in the remote noninfarcted tissue. For the same eight 

animals analyzed in the previous section mean ES strain in the radial, circumferential and 

longitudinal directions were found in the remote, border, and infarct regions of the 

myocardium. The results are shown in Table II. We can see that radial strain is best able to 

distinguish these three functional regions. There are large standard deviations due to 

differences in the infarct sizes across the eight dogs. The differences between the remote and 

border strains and the border and infarct strains were found to be statistically significant (p < 

0.001) for all three strain directions using a paired-sample t-test for each. These comparisons 

all survive multiple comparison (Bonferroni) correction.

Accurate strain estimation can help determine the distribution and severity of myocardial 

injury. This would provide valuable information for both diagnostic and therapeutic 

decision-making. While assessment of infarct size is obviously important, evaluation of 

surrounding tissue in the border or peri-infarct zone may also be helpful for monitoring 

pathophysiologic changes or for directing the administration of treatments [75], [76]. The 

low spatial resolution of MR tagging makes functional evaluation of the peri-infarct zone 

difficult. Anatomic MR or CT scans to identify infarct and border zones would require 

contrast administration (and associated complication risks) with either modality as well as 

radiation exposure with CT. Echocardiographic strain analysis can avoid these limitations 

while potentially providing important functional and anatomic information.
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Much of the research literature has focused on longitudinal strain. While this measurement 

may be well suited for identifying myocardial dysfunction from an apical approach by 

taking advantage of high axial resolution, this may not be universally true. From a 3D 

parasternal short-axis view, radial strains will be associated with high axial resolution in the 

central regions of the acquisition while longitudinal strains will be associated with decreased 

resolution in a lateral direction. More so, these central radial strains will be unaffected by the 

lateral dropout that occurs, even with apical images, due to myocardial fiber orientations 

parallel to the ultrasound beam [71]. In the short axis view the motion parallel to the 

ultrasound beam in the center of the field of view is in the radial direction meaning that 

radial strain measurements could be very sensitive for detecting myocardial dysfunction. 

The relative scarcity of evidence supporting this may be due to current challenges in 

accurately assessing radial strains (especially in a lateral direction), rather than inherent 

physiologic factors. Our work aims to provide a more robust hybrid approach for strain 

determination that may be particularly useful in this setting.

V. Conclusion

In this work, we have presented an adaptive multi-level CSRBF approach for combining 

displacement information from shape and speckle tracking. We apply our methods to 

displacement values generated from shape tracking on myocardial boundaries and RF 

speckle tracking across the myocardium. We have shown that this combined approach 

correlates well to strain values derived from MR tagging. The combined approach performs 

better than either individual method when compared to MR tagging. Through a comparison 

with fixed grid FFD, we have shown that our adaptive approach is better than a single level 

approach on a fixed grid. The ability to noninvasively identify and quantify regional 

myocardial dysfunction is important for diagnosis and treatment planning. Through 

postmortem defined infarct, border, and remote regions we have shown that we are able to 

accurately identify regions of decreased contractility that correspond to prior myocardial 

infarctions. We have also shown that radial strain analysis can be useful in distinguishing 

infarct, border, and remote myocardial tissue regions.
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Fig. 1. 
Red dots indicate center locations added at each level of the adaptive algorithm.
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Fig. 2. 
(a) Sparse input vectors with shape tracking (red: epicardial, purple: endocardial), and 

speckle tracking (green). (b) Corresponding dense 3D myocardial radial strain map showing 

normal thickening in most regions (red for positive strain) and dyskinesis in the infarct (blue 

for negative strain) near ES.
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Fig. 3. 
Graphic representation of the four slices and six segments used to compare ultrasound-

derived strains to MR tagging-derived strains.
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Fig. 4. 
Radial (solid), circumferential (dashed), and longitudinal (dotted) strain curves in percent 

strain derived from 4DE as a function of percent systole from a single representative canine 

six weeks post-MI.
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Fig. 5. 
Representative ED image for three perpendicular image planes of the ED B-mode image 

with segmentation (red) and accumulated displacements at ES overlaid (green).
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Fig. 6. 
Radial (positive) and circumferential (negative) strain curves in % derived from 4DE using 

our method (solid blue) and from MR tagging using HARP analysis (solid red) for a single 

post-occlusion dog at the four slices shown in Fig. 3 ranging from the apex to the base (top 

to bottom) divided into six segments from anteroseptal (left) to anterior (right) as a function 

of percent systole. Correlation coefficients between the two methods for both radial and 

circumferential strains are shown in the title of each frame. Infarct region is in the top right 

plots. Strains derived using an FFD approach (dashed blue) are shown for comparison.
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Fig. 7. 
Sample MR tagged image with radial strain map overlaid. Left (LV) and right (RV) 

ventricle noted for reference. For segments 1) anteroseptal, 2) anterior, 3) anterolateral, 4) 

inferolateral, 5) inferior, and 6) inferoseptal. Color scale from –35% to 35%.
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Fig. 8. 
Correlation coefficients for radial strain calculated from the combined method and MR 

(red), shape tracking alone and MR (blue), and speckle tracking alone and MR (green). 

Images were divided into six segments at four slices, as shown in Fig. 3. Columns of the 

figure represent the six segments around the myocardium with four correlation values in 

each column. Colored shading highlights the range of correlation values from the combined 

method (red) compared to the two individual methods (blue).
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Fig. 9. 
Bland–Altman plots for radial (top) and circumferential (bottom) end-systolic strain % for 

all eight dogs across four image slices in six image segments for ultrasound compared to 

MR. Mean difference (solid blue line) and 95% confidence interval (dashed blue line) are 

shown on the graphs.
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Fig. 10. 
Sample slice of a postmortem heart (left). Infarcted tissue is white, while noninfarcted tissue 

is red. A 3D reconstruction of the myocardial boundaries with infarct zone (right). Infarct 

zone is the pink volume between the endoand epicardial surfaces.
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Fig. 11. 
Slice of the postmortem heart with the infarct border (blue) and peri-infarct border (green) 

defined (left). Corresponding slice of the 3D radial strain map in percent strain overlaid on 

the B-mode image at the terminal time point with the mapped infarct border (blue) and peri-

infarct (green) border warped to the B-mode image (right).
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TABLE II

Mean End-Systolic Strain for the Radial,Circumferential, and Longitudinal Directions for Remote, Border, 

and Infarct Tissue Regions Defined From Post-Mortem Image Slices

Remote Border Infarct

% Strain STD % Strain STD % Strain STD

Radial 18.3 6.7 10.8 7.3 5.9 6.7

Circ. −11.39 1.52 −8.35 3.43 −8.05 5.64

Long. −15.4 5.9 −14.7 5.6 −11.2 16.1
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TABLE III

Variables

Symbol Definition

Ω 3D image domain

ω Local image appearance

It Image frame at time t

t time point

y Appearance vector

k Appearance scale

D Appearance dictionary

Γ Sparse dictionary

T 0 Sparsity factor

st Cardiac boundary

Ψ Level set function

R Sparse coding residue

β Appearance weighting parameter

k1, k2 Principal curvature values

Ebe Bending energy

Csh Shape matching confidence

x Image voxel

d sh Shape tracking displacement

lx, ly, lz Correlation lags

ρ Speckle tracking correlation coefficient

Wijk Correlation kernel weighting function

d sp Speckle tracking displacement

Csp Speckle tracking confidence

p RBF center point

M Number of center points

U Dense Dense displacement field over the myocardium

ϕ Radial basis function

λ RBF weight

A Interpolation matrix

s Region of influence of RBF

r Radial distance from center point

usp, ush Weighted shape and speckle displacements for a given center

p, q Number of shape and speckle points for a given center

w(t) Temporal weighting function

α Weight between shape and speckle
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Symbol Definition

uc Combined displacement for a given center

l Level from 1 . . . L
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